Quantum Transport in InAs/GaSb

Wei Pan

Sandia National Laboratories
Albuquerque, New Mexico, USA
Outline

• InAs/GaSb heterostructure

• The experiments and results
 – Circular conductivity law in the charge neutrality regime in an InAs/GaSb field-effect-transistor
 – McMillan-Rowell like oscillations in a Ta-InAs/GaSb-Ta junction
 – Giant supercurrent in a Ta-InAs/GaSb-Ta junction

• Summary
InAs/GaSb heterostructure:

Quantum spin Hall effect

Outline

• InAs/GaSb heterostructure

• The experiment and results
 – Circular conductivity law in the charge neutrality regime in an InAs/GaSb field-effect-transistor
 – McMillan-Rowell like oscillations in a Ta-InAs/GaSb-Ta junction
 – Giant supercurrent in a Ta-InAs/GaSb-Ta junction

• Summary
Growth structure:

- air
- InAs 20A (or GaSb 20A)
- AlSb 500A
- GaSb QW 50A
- InAs QW 150A
- AlSb 1um
- GaSb 1um
- GaSb substrate (p-doped)

Field-effect transistor:

Electron transport at zero magnetic field:

- $R_{xx} (\text{k}\Omega)$
- $V_g (\text{V})$
- $B = 0 \text{T}$
- $T \sim 25 \text{ mK}$

Diagram showing E_g_0, E_1, and Δ.
G_{xx} (e^2/h)

V_g (V)

$T \sim 25 \text{ mK}$
$B = 0 \text{ T}$

$4e^2/h$
\(\sigma_{xx}^{th} \approx \frac{e^2}{h} \times \frac{E_{g0}}{\Delta} \)

\(E_{g0} \sim 15 \text{ meV} \)

\(\Delta \sim 1 \text{ meV} \)

\(\sigma_{xx}^{th} \approx 15 \frac{e^2}{h} \)

\(G_{xx}^{th} = 5 \frac{e^2}{h} \sim 4 \frac{e^2}{h} \)
$G_{xx} = 3.97 + 0.10 \times \log (T)$

Electron transport at low magnetic fields:

\[R_{xx} \text{ (arb. units)} \]

\[V_g \text{ (T)} \]

\[B = 2 \text{ T} \]

\[\nu = 16 \]

\[22 \]

\[28 \]

\[34 \]
At charge neutrality point CNP \((n + p = 0)\),
\[|n| = |p| \sim 0.6 \times 10^{11} \text{ cm}^{-2}\]
\[\sigma_{xx}, \sigma_{xy} \left(e^2/h \right) \]

- \[B = 5T \]

- \[\nu_h = -2 \]

- \[\nu_e = 12 \]
Electron transport at high magnetic fields:

\[\sigma_{xx}, \sigma_{xy} \text{ (e}^2/\text{h}) \]

\[V_g \text{ (V)} \]

\[B = 20 \text{ T} \]

\[T \sim 30 \text{ mK} \]

\[\nu_e = 3 \]

\[\nu_h = 2 \]

\[\nu = 1 \]

\[\nu = 0 \]

\[\nu = -1 \]

\[\nu = -2 \]
\[(\sigma_{xx} - N)^2 + \sigma_{xy}^2 = N^2\]
Semi-Circular conductivity law in quantum Hall plateau transition

\[(\sigma_{xy} - \nu/2)^2 + \sigma_{xx}^2 = (\nu/2)^2 \]

independently of \(\rho_{xx}\)

\[(\sigma_{xx} - N)^2 + \sigma_{xy}^2 = N^2\]

\[\rho_{xx} = \frac{h/e^2}{2N}\]

$B = 20 \text{ T}$

$T \sim 30 \text{ mK}$
The circular conductivity law due to co-existence of both electrons and holes and their interactions

- In the CN regime, electron density and hole density low.
- Landau level filling factors for electrons and holes small
- Without e-h interactions, 2D electrons and holes in high magnetic field induced insulating phase, $\sigma_{xx} = 0$ and $\sigma_{xy} = 0$.
• Breakup of perfect dissipationless edge states due to disorder and e-h interactions.

• Breakup of stable orbits can give rise to chaotic motions.

Outline

• InAs/GaSb heterostructure

• The experiment and results
 – Circular conductivity law in the charge neutrality regime in an InAs/GaSb field-effect-transistor
 – McMillan-Rowell like oscillations in a Ta-InAs/GaSb-Ta junction
 – Giant supercurrent in a Ta-InAs/GaSb-Ta junction

• Summary
8-band k.p calculations with QW widths (GaSb 5 nm; InAs 10 nm)

K. Chang, unpublished
Density \(n = 1.8 \times 10^{11} \text{ cm}^{-2} \)

Mobility \(\mu = 1.2 \times 10^5 \text{ cm}^2/\text{Vs} \)

\(E_F = 18.7 \text{ meV} \)

\(l_{\text{mfp}} = 0.8 \mu \text{m} \)

\(V_F = 5.4 \times 10^5 \text{ m/s} \)
Ta-InAs/GaSb-Ta junction

- Junction: W=10 µm L=2 µm

\[
\begin{align*}
&\text{Ta} \\
&240 \text{ nm} \\
&\text{InAs} \ 2 \text{ nm} \\
&\text{AlSb} \ 50 \text{ nm} \\
&\text{GaSb} \ 5 \text{ nm} \\
&\text{InAs} \ 10 \text{ nm} \\
&\text{AlSb} \ 50 \text{ nm} \\
&\text{Ta} \\
&240 \text{ nm}
\end{align*}
\]

\[R (\Omega) \quad T (K)\]

\[T_c = 1.55 K\]
Zero bias conductance peak + multiple equally spaced dips
McMillan-Rowell like Oscillations

\[V_n = V_0 + n \times \frac{hV_F}{4d_N} \]
One serious issue with MRO explanation:

From the slope of MRO plot, a Fermi velocity of $V_F = 1.3 \times 10^7$ m/s is obtained.

This value is much larger than that ($V_F = 5.4 \times 10^5$ m/s) obtained from SdH oscillations.
Giant super-current in Ta-InAs/GaSb-Ta junction
Giant super-current observed
A couple of details:

1) Very large J_c, $J_c = 350 \text{nA/\mu m} \gg \sim 15 \text{nA/\mu m}$ reported by other groups.
 (considering $L = 2\mu \text{m}$, $\xi_{sc} \sim 80\text{nm}$ (bulk Ta) and $l_{mfl} = 0.8\mu \text{m}$)

2) Large number of flux per lobe $\sim 300 \Phi_0 \gg 1$.
 A large value of flux per lobe was also observed in S-GaAs-S junction by Rokhinson et al.
Summary:

(1) Well-developed integer quantum Hall effect states at Landau level fillings \(\nu = 1, 2 \) in the hole regime and \(\nu = 1, 2, 3... \) in the electron regime.

(2) Chaotic quantum transport behavior at extremely high magnetic fields around the charge neutrality point.

(3) Circular conductivity law in \(\sigma_{xx} \) versus \(\sigma_{xy} \).

(4) MRO in Ta-InAs/GaSb-Ta junction device

(5) Giant supercurrent in Ta-InAs/GaSb-Ta junction
Collaborators:

Sandia:
– John Klem
– Sam Hawkins
– Ken Lyo
– Jin Kim
– Mike Cich
– Madhu Thalakulam
– Wenlong Yu
– Xiaoyan Shi

Princeton:
– Jian Li
– Andrei Berniverg

Georgia Tech:
– Wenlong Yu
– Zhigang Jiang