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I BSc, MSc in Computer Science, Eötvös University Budapest
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Motivation

Let’s do a PageRank on this graph. . .

I A large Portugese webcrawl1

I 3.1 · 109 nodes

I 1.1 · 1011 edges

I 80 GB of compressed data

I Divide and conquer is almost mandatory

1a large Portuguese crawl of the Portuguese Web Archive obtained from
Daniel Gomes
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MapReduce [DG04]
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Pregel [MAB+10]

Traits

I Bulk Synchronous
Parallel [Val90]

I ,,Think like a vertex”

I Graph kept in memory

Scheme of the BSP system
Wikipedia, public domain
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Pregel [MAB+10]
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Pregel schema as perceived from a vertex
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Triangle Counter – Sequential algorithm

Sequential algorithm

Every vertex executes a search of itself bounded in depth of three.
Thus every triangle is counted three times.
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Triangle Counter – Sequential algorithm

Sequential algorithm

Every vertex executes a search of itself bounded in depth of three.
Thus every triangle is counted three times.
You can do better by making use of the ordering on the vertices.



Families of distributed graph algorithms

Distributing data-intensive algorithms

Counting the number of triangles in a graph

20 / 61

Triangle Counter – distributed algorithm

Representation

0 1 2
1 2
2 0
3

0 1

23
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Triangle Counter – distributed algorithm

First Map

Let’s send our ID to all of our
neighbours possessing a higher ID
than ours. Let’s send our neighbours
to ourselves.

First Reduce

Let’s write out the information
received.

0 1

2

0

1
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Triangle Counter – distributed algorithm

Second Map

If the ID received is smaller then
ours let’s pass it on to our
neighbours.
Let’s send our neighbours to
ourselves.

Second Reduce

If the ID received is our neighbour
then let’s increment a global
counter.

0 [] 1 [0]

2 [1]

1
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Triangle Counter – distributed algorithm

Second Map

If the ID received is smaller then
ours let’s pass it on to our
neighbours.
Let’s send our neighbours to
ourselves.

Second Reduce

If the ID received is our neighbour
then let’s increment a global
counter.

0 + + 1

2
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Local algorithms

Traits

I Dependant on a small environment of the given vertex or edge.

I ,,Trivial” candidates for parallel computing.

I Examples are fingerprint computation, local clustering
coefficient and the number of triangles.
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Graph traversal based algorithms

Traits

I Dependant on taking long routes in the graph.

I Difficult to implement in a distributed environment.

I The distributed algorithm can be less effective than the
sequential as the representation is less powerful.

I Examples could be accessibility, betweenness centrality and
strongly connected components.
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Matrix multiplication based algorithms

Traits

I Are basically power iterations of matrix-vector multiplications
with typically fast convergence traits.

I Suitable to implement in Pregel-based systems and not that
straight-forward in plain MapReduce. [KBEK14]

I Representatives could be eigenvalue centrality, PageRank or
LineRank.
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Representative algorithms

Local

TriangleCounter already presented . . .

Graph traversal based

Matrix multiplication based
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Representative algorithms

Local

Graph traversal based

LineRank Construct the linegraph, where vertices represent the
edges of the original graph and a directed edge points
from e1 to e2 if the target of e1 is the source of e2.

Matrix multiplication based
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Representative algorithms

Local

Graph traversal based

LineRank Construct the linegraph, where vertices represent the
edges of the original graph and a directed edge points
from e1 to e2 if the target of e1 is the source of e2.
Run a PageRank on this. [KPST11, PBMW98]

Matrix multiplication based
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Representative algorithms

Local

Graph traversal based

Matrix multiplication based

SCC Run a label propagation to detect connected components.
Remove edges with different labels, then do a reverse label
propagation. [MIHPR05]
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Representative algorithms

Local

Graph traversal based

Matrix multiplication based

SCC Run a label propagation to detect connected components.
Remove edges with different labels, then do a reverse label
propagation. [MIHPR05] Remove the sccs found and iterate.
The sequential algorithm is more efficient. [BCVDP11]
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Results [EBKK14]

Name Vertices Edges Source

web-Google 8, 7 · 105 5, 0 · 107 [LLDM08]
wiki-Talk 2, 4 · 106 5, 1 · 107 [LHK10]
soc-LiveJournal 4, 8 · 106 6, 9 · 108 [BHKL06]
forest10M 107 2, 4 · 108 generated2

forest20M 2 · 107 4, 8 · 108 generated2

Summary of the graphs used

2A slightly modified version of the ForestFire model. [LF06, EBKK14]
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Results [EBKK14]

Implementations

sequential Plain Java.

MapReduce Apache Hadoop on 20 cores, 40 reducers.

Pregel Apache Giraph on 17 cores, 3 occupied by Zookeeper.
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Summary

Take home messages

I If your data is ,,big” you have to go multi-core/machine

I If multi-machine, then try MapReduce

I For distributed graph algorithms it is useful to distinguish
three families

I The families behave differently

I It is worth to distribute even for data not that ,,big”
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