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Epidemiology

Two levels:

*Microscopic: researchers try to disassemble and Kill
new viruses => quest for vaccines and medicines

*Macroscopic: statistical analysis and modeling of
epidemiological data in order to find information and
policies aimed at lowering epidemic outbreaks =>
macroscopic prophylaxis, vaccination campaigns...



Standard epidemic modeling

Compartments: S, |, R...

S (susceptible) | (infected) R (removed)

¢ O ﬁ ® w @ S (susceptible)

Neglecting differences in:

age susceptibility to disease

o
gender e latency
health e severity of disease
[

social class/status



Standard epidemic modeling

Compartments: S, |, R...

S (susceptible) | (infected) @ R{(removed)

¢ O |3 ® w @ S (susceptible)

Similar to chemical reactions: [3




Standard epidemic modeling
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Stages of an epidemic outbreak:
population level

A

p'(t)

Exponential
growth

Noisy .
regime |

Infected individuals => prevalence/incidence




Transmission S (susceptible) | (infected)

® —> o9
®3

HOMOGENEOUS MIXING ASSUMPTION

Individual in state S, with & contacts, among which 7 infectious: in the
homogeneous mixing approximation, the probability to get the infection in

each time interval dr 1s:

Proba(S=»1) =1 - Proba(not to get infected by any infectious)
=1-(1- Bdr)"
=Bndt (Pdt<<l)

=B kidt as n~kifor homogeneous mixing

Hypothesis of mean-field nature:
every individual sees the same density of infectious among his/her

contacts, equal to the average density in the population



The SI mOdeI S (susceptible) B | (infected)

O —)‘ O

N individuals
I(t)=number of infectious, S(¢#)=N-I(t) number of susceptible
it)=I()/N, s()=S(t)/N = I- i(1)

If £ = <k> 1s the same for all individuals (homogeneous network):

% = S(t) x Proba(S — I)

= BES(t)i(t)




The SI mOdeI S (susceptible) | (infected)
[ TB-) @

N individuals
I(t)=number of infectious, S(z)=N-I(t) number of susceptible
i()=I(t)/N, s(t)=S(t)/N

di

— = Blkyi(1 — i)

J

i(t) = 'ioexp(t;:) = 1/(,3<k>)

1+ ip(exp(t/T) — 1)



The SIS model

S (susceptible) | (infected) S (susceptible)
* T * > e
N individuals

I(t)=number of infectious, S(z)=N-I(¢) number of susceptible
i((t)=I(t)/N, s(t)=5(t)/N

Homogeneous mixing

di L
- = Bk)i(l — i) —

k Competition of two time scales: 1/u and 1/(f <k>)



The SIR model

N individuals

I(t)=number of infectious, S(z) number of susceptible, R(?) recovered
i(t)=I(t)/N, s(t)=S()/N, r()=R(t)/N=1-i(1)-s (1)

Homogeneous mixing: ds

E = —/3<k>i(t)3(t)
= BRi(D)s(0) — pi(t)
% = pi(t)

Competition of two time scales: 1/u and 1/(p <k>)



SIS and SIR models: linear approximation

Short times, i(?) << 1 (and r(z)<<I for the SIR)

% (B(K) — i)

Exponential evolution exp(t/xt), with

1/7 = B(k) — 1

If B<k> > u : exponential growth
If p <k> < u : extinction

Epidemic threshold condition: S{k) =



Long time limit, SIS model

Stationary state: di/dt = 0 /J/[,OO — 6<k>zoo(]- — Zoo)
B(k) <t = 100 =0

Epidemic threshold condition: 5{k) =
Bk) > = ioo = 1 — p/(B(k))

Loo

A

Phase diagram: Absorbing

phase Active phase

. Finite prevalence
Virus death

he = (k) =Bl



Immunization

Fraction g of immunized (vaccinated) individuals:
reduce population of susceptible individuals

S— 8 x(1—g)

d . :
= Bki(t)(1 —(t))(1 — g)




Immunization

Fraction g of immunized (vaccinated) individuals:
reduce population of susceptible individuals

1 —
> Equivalent to a reduction of f3: f=(1=9)8
A= (1—g)A

=> critical immunization threshold

ge =1 — :LL/(6<]{7>)

Fraction of population to vaccinate
to prevent an outbreak

A=R/w



Homogeneous mixing: summary

Loo,

he = (k) 7:=|3/u

Competition of time scales
=> Epidemic threshold condition: B{k) = u



Homogeneous mixing: summary

Loo,

he = (k) 7:=|3/u

immunization threshold bringing the system under the
epidemic threshold by depleting the susceptible

ge =1 —p/(B(k))

population



Going beyond: additional compartments

s — E——(—— R

susceptible exposed infectious recovered

@ — B

susceptible infectious recovered susceptible




Going beyond: additional compartments

sympt. infectious

susceptible exposed recovered

asympt. infectious

)‘

infectious

S . .

susceptible “ exposed

recovered

treated infectious



Going beyond: population structure

Different classes of individuals: age, gender, etc...
=> potentially different

e transmissibility
e contact rates



Going beyond: population structure

Different classes of individuals: age, gender, etc...
=> potentially different

e transmissibility

° contact rates

— Contact matrices

Ex: flu => different contact rates for children and adults

C d

a -




Going beyond: population structure

Different classes of individuals: age, gender, etc...
=> potentially different

e transmissibility

° contact rates

- Contact matrices

/

Ex: HIV => different transmissibility depending on gender

m f

f -




Wide spectrum of complications and
complex features to include...

) bk
o)

‘ : | work

Homogeneous Multi-scale Agent Based
mixing models models

Simple e Realistic

Ability to explain trends at a Model realism looses in

population level transparency.
Validation is harder.
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Complex networks

Diseases propagate on networks:
e Social (contact) networks
e Technological networks:

In P(k) ‘

Internet, Web, P2P, e-maill...

...which are complex, heterogeneous networks

P(k) ~ k™7

v

In k

Usual mean-field: neglects the degree heterogeneity

Extension of mean-field theory to take it into account



Degree-based mean-field theory

Number of contacts (degree) can vary a lot
huge fluctuations (<k2> >> <k>)

.

Heterogeneous (degree-based) mean-field: density of
eSusceptible in the class of degree k, s,=S,/N,

eInfectious in the class of degree k, i, =/,/N,

®(Recovered in the class of degree k, r,.=R,/N, )

S(W)=2P(k) s, i(t)=SP(K) i,, r()="2 P(k) r,



Degree-based representation

’------------_

| o ‘
! o T : class of individuals with
: o/ go\ | degree k=|

|
e T
\ !
T -T - === \

class of individuals with
degree k=2

MF-like assumption: all individuals in a given class are “equivalent”



The SIS model in the degree-based MF theory

S (susceptible) B | (infected) S (susceptible)
degree k T degree k W degree k
O

interaction with nodes
of any degree k’

al
TRk Si(t) x Proba(Sy — I) — puli(t)

) T

interaction with nodes
of any degree k’



The SIS model in the degree-based MF theory
Proba(Sx — Ii)

V Number k of possible contacts
K
k’
V Proba of a contact with a node of degree k’ P(k/ k)
k

kl

V Proba that the node is infectious: @
k \

Mean-Field
Pk’

k) = the probability that a link originated in a node
with connectivity & points to a node with connectivity £’



The SIS model in the degree-based MF theory

diy . .
P Bk(1 — Zk)@k — ULk

©,=Proba that any given link points to an infected node

Or =Y P(k’\k\
& -

_Mean-Field

P (k’| k) = the probability that a link originated in a node
with connectivity & points to a node with connectivity &’



The SIS model in the degree-based MF theory

d1 s
— = Bk(1 =)0 — i Ok =D PKIbie
k/
In uncorrelated networks: O, = © = — P (k" )iy
k Zk: ) k
Short times, () <<'1 @ B 18 <]~C2> o
e \Tw

Epidemic threshold condition é _ <k>
v




Long time limit, SIS model

diy, : ﬂk@k(OO)
— = L OO ) =
= 0= O Bko(oo) + 4
Or = » P(K'|k)ir
In ungorrelated netw =0 = Z %,P(k’)zk

Self-consistent equation of the form x=F(x)
with F(0)=0, F’> 0, F” <0



Graphical solution

A) B)
A A
e e ey s
. ©=F(®) ©=F(0)
o :
Epidemic threshold:

existence of a non-zero solution for ® <~ F’(0)>1:

B(k?)
pu k)

— Z kngk)ﬂ —

> 1




The SIS model in the degree-based MF theory

Epidemic threshold in uncorrelated networks

B _ (k)

poo (k?)

Heterogeneous, infinite network:

(k%) — oo

Condition always satisfied
Finite prevalence for any spreading parameters



Epidemic phase diagram In
heterogeneous networks

080

*Wide range of spreading rate with low prevalence
*Lack of healthy phase = standard immunization cannot
drive the system below threshold!!!



Finite size effects

Finite number of nodes N
= Finite cut-off for P(k)
~ Finite k& = (k*)/ (k)

= Finite epidemic threshold

Ratio of epidemic threshold
to the value obtained in a 5
homogeneous network:

o—0 ~v=2.8

O—0 ~= 25

O—0 v=2.2




Case of correlated networks

di | |
SISO =R = k(1 — ik)Ok — pix O = > P(K' k)i
k/

Short times:
(" .
—= ~ Y Liwir Ly = —pdpw + BEP(K'|k)

Solution i, =0 unstable iff there exists at least one positive eigenvalue

A, largest eigenvalue of Oy, = kP(K'|k)

Epidemic threshold: é i

l,l, ‘ diverges in Markovian
‘}

scale-free networks

Boguna, Pastor-Satorras, Vespignani, Phys. Rev. Lett. 90:028701 (2003), and arXiv:cond-mat/0301149



Spreading dynamics
. dO (k)
Short times: —
dt (6 (k) M> 0
=> Exponential growth: @ — Qg exp(t/7)

di ~ kO — pig

C 1k OC@EXP t/T)




Consequences on immunization strategies

Uniform immunization:
Fraction g of randomly chosen immunized (vaccined) individuals:

p—>h-g
B _ (k)
=> inefficient: need (1 — g)— < —5+
=90 < )
p (k)
g>g.—=1 > tends to 1
G (k2)




Proportional immunization

g, fraction of immunized individuals of degree k, such that:

Bk(l —gr) =B = cst

— = '(1 — 1%)Or — 1
- = P (1 = ik)Ok — ik
Short times (uncorr. nets):

@ — ( /@’ — U) © Epidemic threshold recovered!
dt

I
Efficient immunization: need 5/ < u ie, | Gk >1— =

Bk

Pastor-Satorras, Vespignani, Phys Rev E 65:036104 (2002)



Targeted immunization

=> immunize fraction g of individuals with largest connectivity

kg P
<k2>g g H

similar to targeted attacks!!!

need:

immunizing < removing nodes and links

Ex of explicit calculation for BA network:
g. = exp(-2w/mf)

Pastor-Satorras, Vespignani, Phys Rev E 65:036104 (2002)



Immunization

I = |

O—O Uniform
0.8 o—0o Targeted
06
e
CNO’
0.4
0.2
D
O N | M | N
0 ’|‘ 0.2 0.4 0.6

NB: when network’s topology unknown: acquaintance immunization
[Cohen, Havlin, ben-Avraham, Phys Rev Lett 91:247901 (2003)]



What does HMF neglect

1. Structural correlations in the network
(HMF equivalent to an annealed network approximation)

2. Dynamical correlations
(emerging during the spreading process)



Beyond HMF: Quenched mean-field

Chakrabarti et al., Epidemic Thresholds in Real Networks, ACM Trans. Inf. Syst.
Secur. 10, 1 (2008)

Gomez et al., Discrete-time Markov chain approach to contact-based disease
spreading in complex networks, EPL 89 38009 (2010)
P. Van Mieghem, arXiv:1402.1731

“Quenched’/“Individual-based” mean field theory:
e write the evolution equation for the probability that a node i is infected

e take into account the real connections of the network as given by the
adjacency matrix

e neglect correlations (hence mean-field)

e check for the stability of the absorbing state of zero infection



Quenched MF for the SIS model

Xq; (t) = 0 for S nodes, 1 for | nodes P. Van Mieghem, arXiv:1402.1731

E [X i (t)] — ,07{ (t) = probability that i is infected Real network structure

dE[ii(;'(t)] — E {—qu'(t) + B(1 — X;(t)) Z;'V:lXJ' (t)}

MF: correlations neglected



Quenched MF for the SIS model

P o)+ A1 o) Y augel (0

j=1

Linear approximation for the stability of the epidemic-free state

oy .
% — —pI - )\A,OI A = adjacency matrix

g pl = > paexp ((Avg — 1)t)

Po s Ve eigenvalues and eigenvectors of the adjacency matrix A

=P 1= 0 eeve v oot Alarben k.




Quenched MF for the SIS model

=> epidemic threshold for SIS given by
)\c - 1”\m

where Anm is the largest eigenvalue of the adjacency matrix



Quenched vs Degree-based MF

Use annealed adjacency matrix in quenched MF equation @;; = G,k

Ex f lated network ik
X TOr uncorreliated networks akik. —
7 N(k)
| dpj (t) A
Sum equatlon dt — _pz( ) + o IO’L Z a’ZJpj

over all nodes of degree k:

: : 1
» recover heterogeneous mean-field equation for p;, = A pi
k

i|k;i=k




Quenched MF for the SIS model

For random scale-free networks, it is possible to obtain the scaling
of Am (Chung, Lu, Vu, Proc. Natl. Acad. Sci. USA 100, 6313 (2003))

=> egpidemic threshold for SIS given by

1/v/ kmaz if v>5/2
(kY / (k%) if 2 <~y <5/2

)\C=

=> epidemic threshold vanishes in the thermodynamic limit in power-law
distributed networks

e for any value of vy, even larger than 3,

e as long as kmax 1s a diverging function of the network size N
=> role of the hubs



Numerics

Kitsak et al., ldentification of influential spreaders in complex
networks. Nat. Phys. 6, 888—893 (2010)

Numerical study => most efficient spreaders are located at
the innermost, dense core of the network, as identified by
means of a k-core decomposition

=> apparent contradiction?



Numerics

Castellano & Pastor-Satorras, Competing activation mechanisms in
epidemics on networks, Scientific Reports 2, 371 (2012)

=> numerical investigation, measure of:

* density of infected vertices in the whole network

* density of infected when the dynamics takes place (in
isolation) on the k-core of highest index (maximum k-core)

* density of infected when the dynamics takes place (in
Isolation) on the star-graph centered around the hub of the
network, with largest degree



Beyond HMF

Castellano & Pastor-Satorras, Competing activation mechanisms in
epidemics on networks, Scientific Reports 2, 371 (2012)

Results, as [3 increases:

large y: onset of active stationary state for the whole

network for values of 3 at which the star graph around the
hub starts being active, while the max-k-core is subcritical



Numerics

Castellano & Pastor-Satorras, Competing activation mechanisms in
epidemics on networks, Scientific Reports 2, 371 (2012)
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Beyond HMF

Castellano & Pastor-Satorras, Competing activation mechanisms in
epidemics on networks, Scientific Reports 2, 371 (2012)

Results, as [3 increases:

large y: onset of active stationary state for the whole

network for values of 3 at which the star graph around the
hub starts being active, while the max-k-core is subcritical

small y: onset of active stationary state for the whole

network for values of 3 at which the max k-core starts being
active, while the star graph is subcritical



Numerics

Castellano & Pastor-Satorras, Competing activation mechanisms in
epidemics on networks, Scientific Reports 2, 371 (2012)
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Numerics

Castellano & Pastor-Satorras, Competing activation mechanisms in
epidemics on networks, Scientific Reports 2, 371 (2012)

- the max-k-core is a homogeneous network, hence has an epidemic
threshold As ~ 1/ks
ks

- the scaling of ks is known for scale-free networks: ks~ K, .
(same scaling as (k)

- for y < 5/2, this gives back the HMF result

- for y > 5/2, the hub is responsible

“When y < 5/2, the epidemic transition is collectively triggered by the
vertices in the innermost core and the threshold is correspondingly given
by 1/<k2> , as in HMF theory. On the other hand, for y > 5/2, the hub
triggers the global activity, and the threshold is given by 1/v/k,00



Numerics

Castellano & Pastor-Satorras, Competing activation mechanisms in
epidemics on networks, Scientific Reports 2, 371 (2012)

Ferreira, Castellano, Pastor-Satorras, arXiv:1206.6728, Phys. Rev. E 86,
041125 (2012)

=> for exponents < 5/2, HMF substantially correct

=> for exponents > 5/2, QMF better than HMF, but dynamic
correlations come into play => QMF still needs improvement



Some rigorous results

Chatterjee, Durrett, Contact processes on random graphs with power law
degree distributions have critical value 0. Annals of Probability 37, 2332—
2356 (2009).

Durrett, Some features of the spread of epidemics and information on a
random graph, Proc. Natl. Acad. Sci. USA 107, 4491 (2010)

Mountford et al., Exponential extinction time of the contact process on
finite graphs, arXiv:1203.2972

Van Mieghem, Exact Markovian SIR and SIS epidemics on networks and
an upper bound for the epidemic threshold, arXiv:1402.1731

=> gpecial cases, bounds and asymptotic exact results



Some more complications

Degree correlations
Clustering
Directed networks

Weights
DBMF: Mg o< (kk')?

IBMF: largest vp of €2 = w;;a,;

Community structures
Initial (local) faster spread, slowing down at global scale
Strength of weak ties (Granovetter 1973, Onnela et al. 2007)
Immunization of bridges



Wide spectrum of complications and
complex features to include...

hospital
. ...... : school
Cm O ’ ....... .
O () home ..:..... ;
ol | 0
: | work
Homogeneous Social structure Contact network Multi-scale Agent Based
mixing models models models

Simple e Realistic

Ability to explain trends at a Model realism looses in

population level transparency.
Validation is harder.




General framework:
reaction-diffusion processes

® Previous cases: (at most) one particle/individual per
site

¢ In general: reaction-diffusion processes on networks
=> no restriction on the number of particles per site

“Particles”

«diffusing along edges

reacting in the nodes



Meta-population models

City i

City j
Network structure

Baroyan et al. (1969)
Ravchev, Longini (1985)

>

city ¢

travel

C

homogeneous mix

Intra-population infection dynamics by
stochastic compartmental modeling
Inside each population: homogeneous

miXing




Modeling of global epidemics propagation

multi-level description :
= intra-city

epidemics

" inter-city
travel

Baroyan et al. (1969)
Ravchev, Longini (1985)



Why Is a large-scale approach
needed?

| 4th century - Black death S35

June 1350
Nortl
Se:
Dec. 1349
June 1349,
Epidemic front
evolution | Dec. 1348 .

[Jun_o 1348_]

A .
. "' et
“Oiterrane, 1 Sea
Dec. 1347

time




Why is a large-scale approach

heeded?

Nov. 2002

Mar. 2003




Why is a large-scale approach
needed?

2009 - HINI pandemic

April 1 - April 15
—— April 16 - April 30

before March 31
— May 1 - May 15

Bajardi et al, PLoS ONE (2011)



What has changed: availability of
unprecedented amounts of data.....

Transportation infrastructures
Behavioral Networks

Census data
Commuting/traveling patterns

e Different scales:
International
Intra-nation (county/city/municipality)
Intra-city (workplace/daily commuters/individuals behavior)
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A recent large-scale platform

http://www.gleamviz.org

simulation platform for the worldwide propagation
of diseases, used in real time during the H1N1
pandemic

D. Balcan, V. Colizza, B. Gongalves, H. Hu, J.J. Ramasco, A. Vespignani
Proc. Natl. Acad. Sci. USA 106, 21484-21489 (2009)



GLEaM in brief

census
areas

Population distribution:
detailed population data from
|/4x1/4 degree tasselation.




GLEaM in brief

census

commuting air travel

A2
A\ %, s

Local mobility: Long range travel:
census data from about 30 countries in the 5 3362 cities in 220 countries.
continents extended to all countries. More than 16000 connections with travel flows.



GLEaM in brief

census

latent

susceptible

. symptomatic . symptomatic asymptomatic
infectious (no travel) infectious (travel) infectious

Epidemic compartmental model
Metapopulation model with homogeneous
mixing assumption.




GLEaM in brief

susceptible

o
<
e
=1
£
£
<]
v

asymptomatic
infectious

ous (travel)

ptomatic

sym|
fecti

in

omatic

sympt
infectious (no travel)

air travel




http://www.gleamviz.org

with data
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http://www.gleamviz.org

Travel limitations ?
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Analytical approach

=> Degree-based mean-field
Diffusion (random walk) between nodes

Reaction (SIS, SIR) inside each node



Degree-based mean-field approach:
Diffusion

Node i => W, walkers
N nodes, W walkers
node w W=z, W

Degree block variables W = — Z Wi
zlk =k

Nj, = N P(k) =number of nodes of degree k

. . Diffusion rate
Evolution equation: along edges k -k

- QD D

Walkers going Walkers going
re =k Zk/ diw P(K'| k) out of nodes into nodes




Degree-based mean-field approach:
Diffusion

Simplest case: uniform diffusion 7", = T°; dk;/k; — T/k/

Uncorrelated random networks:

8th.(t) = —T'Wk(t) +

Stationarity => Wi (t) _




Degree-based mean-field approach:
Diffusion

Example of other diffusion rates djzr = wo(kk')? /Ty, i = 7

Uncorrelated random networks:

Wi (t) = —rWi(t) + k' 05" P(K )W (1)

Alk) 4
140
Stationarity => Wi (t) _ <:1+9> V]z

Colizza, Vespignani, J. Theor. Biol. 251:450 (2008)



Degree-based mean-field approach:
Diffusion

Diffusion rate keeping constant populations:
important in the perspective of modelling travel behaviours

Number of travellers between 2 subpopulations per unit time=fixed

Proba per unit time to go from ito J; Qg;j

L S S
j (]

Any population distribution is stationary




Degree-based mean-field approach:
Diffusion

Diffusion rate keeping constant populations:
important in the perspective of modelling travel behaviours

In the degree-based framework

Wik’

A = W, (wkk’ — wk’k) T = ka/ dkk’P(k/|k)

O Wi (t) = —rp;Wy (t) + k Z dk/kP(k’]k)Wk/ (t)
L/

- —kzwkk (K| k) Wk+k2wk/kPk|k)

= 0

» Any population distribution is stationary

Colizza, Vespignani, J. Theor. Biol. 251:450 (2008)



Degree-based mean-field approach:
SIS

In each node i: S; susceptible, | infectious, Wi = S; + |

Degree block variables S, = — Z S; I, = — Z I;
z|k =k 'L|k =k

Each time step: 2 processes
1- reaction
2- diffusion

Colizza, Vespignani, J. Theor. Biol. 251:450 (2008)



Degree-based mean-field approach:
SIS

Each time step: 2 Processes I'. = S.1 /M/
k kLk k
1- reaction -lk’ 7 lk ,u]k‘ | ﬁ]:k

2- diffusion I, — (Ik' — ,UIk + 5Fk)(1 — rk)
+ kY Pk dwi((1— p) I + BTx)
k/

Uniform diffusion or diffusion with constant populations
=> epidemic threshold
B/p=1

Colizza, Vespignani, J. Theor. Biol. 251:450 (2008)



Degree-based mean-field approach:
SIR case

B/pn>1

« Zero diffusion: epidemics confined 1n first subpopulation
* Infinite diffusion: population well-mixed

expect a transition between
 confined epidemics at low diffusion rates
 global invasion at large diffusion rates

NB: for SIS, as soon as non-zero diffusion, global invasion

as there 1s a stationary state Colizza, Vespignani, J. Theor. Biol. 251:450 (2008)



Degree-based mean-field approach:

SIR case
Problem: Can be very small: travel of fractions of individuals
Ol = =rple + (—pdy + BL%)(1 — ri)

+ kY PK[k)dpr((1 = p) Iy + BL)
"

continuous approximation cannot capture the global invasion threshold

need to take into account discreteness & stochasticity

Colizza, Vespignani, J. Theor. Biol. 251:450 (2008)



Invasion: branching process

0 1l
Dk ,Dk,--- # of diseased nodes (i.e., with at least one infected individual) of
degree k, at generation n=0, I, ...

first neighbors:

seed: generation n=1

generation n=0

Colizza, Vespignani, J. Theor. Biol. 251:450 (2008)



Invasion: branching process

possible paths
of infection  proba connection k’-k

Dp =" DpM (K — 1)P(k|K)
kl

Dn—l Ak/k |
x [1— —E 1 — S
Ny, R

| ] |

probability of finding proba of outbreak in pop. k=
uninfected 1 - proba of extinction
subpopulation for a seed of A/
individuals

Number of infectious individuals that move
L >\k’ I into population k during the
outbreak in population of degree k’

Colizza, Vespignani, J. Theor. Biol. 251:450 (2008)



from micro to macro scale

# of new seeds from k’ to k
(time-scale separation):

total # of infected generated
| |

aN,,

L J
. rate | > R

Ex of diffusion rates:
iy =P Wy (K'K)% T}

Aoy ()Y N >

(stationary populations ind. of diffusion process))

Colizza, Vespignani, J. Theor. Biol. 251:450 (2008)



For R, close to 1, uncorrelated networks and at short times:

K" P(k) w0

D! =(R, -1) D7k (k'-1)
k .
) w |
@I/l—l
o (k1) <k2+2e > _ <k1+2e> Wt o

\ (k) .

> 1 <> global invasion

Colizza, Vespignani, J. Theor. Biol. 251:450 (2008)



Global invasion threshold

<k2+2e > _ <k1+2e > Wyt

R. = (R, -1
(R, =1) B "

Ex: SIR, o~ 2(R,-1)/R,?

n M
%\7 absorbing phase
2 i tincti
MRO <k> virus extinction

Woe = Z(RO _1)2 <k2+2e>_<k1+2e>

active phase
virus invasion

1 R.

phase fransition in mobility
Real-world network: w, 10 times larger than w,,_ !!!

Explains empirical results!!
Colizza & Vespignani, PRL (2007), JTB (2008)



Going beyond

e Population structure (age/gender) and travel
behaviours

(Apolloni et al., BMC ID 2013)
¢ | ength of stay at destination
(Poletto et al., J. Th. Biol. 2013)
e Change of behaviour

(Meloni et al., Sci. Rep. 2011)



Epidemics in multiplex networks

Interdependent networks (power-grid - communication/computer network)
Layers of social networks
Different transportation networks

Effect of coupling on cascading failures
(percolation processes)

Epidemics on multiplex networks
Cooperation in multiplex social networks




Epidemics in multiplex networks

Modification of infectiousness of disease (a)
if spreader or susceptible are infected with disease (b mutual enhancement
or

partial cross-immunity

-

Modification of recovery rate for disease (a) if
infectious is also infected with disease (b)

Sanz et al., arXiv:1402.4523



Epidemics in time-varying networks

Networks= (often) dynamical entities

(communication, social networks, online networks, transport networks, etc...)
* Which dynamics?
 Characterization?
* Modeling?

« Consequences on dynamical phenomena?
(e.g. epidemics, information propagation...)

Time-varying networks: often represented by
aggregated views
» Lack of data
e Convenience



Examp|e: 2nd grade
contacts in a
primary school,
dynamic view

AW
DRI
¥ \ \\'
3rd grade X Y 1st grad
g A7 g
4th grade *,
Thu, 11:20- 12:00 J. Stehlé et al. PLoS ONE

6(8):€23176 (2011)



Example:
contacts in a
primary school,
aggregated view
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Definition: temporal network

Temporal network: T=(V,S)
« V=set of nodes
« S=set of event sequences assigned to pairs of nodes

el s,¥ ,el
SZJES S@]_{(zj7zg)“.(tijat@'j)}

Other representation:
time-dependent adjacency matrix:
a(i,j,t)= 1 <=>1iandj connected at time t

99



Reachability in temporal networks

8,13,14

IIIIIIIIIIIIII

Review Holme-Saramaki, Phys. Rep. (2012), arXiv:1 16%.1780



Aggregation of temporal network

T <

111111

[1me (days)

tmax
Wi = / a(z’,j, t)dt
t

min

NB: enough information 1f underlying process is Poissonian

Review Holme-Saramaki, Phys. Rep. (2012), arXiv:1168.1780



Aggregation of temporal network

Temporal behavior most often non-Poissonian
=> aggregate view hides important temporal patterns

Escort

SC\-hu}Ur

r S T T ' T T
(b) 0 500 1000 1500 2000
lime (days)

Review Holme-Saramaki, Phys. Rep. (2012), arXiv:1168.1780



Burstiness

lv

1
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T

— 300} Poisson process
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A.-L. Barabasi, Nature (2006)
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Generalization of definitions
to temporal networks

Reachability 1ssue
=> time respecting path (“journey”)
=> set of influence of a node
=> temporal connectivity (similar to case of directed graphs)

Path length => concept of shortest paths
Time respecting path duration => concept of fastest journey

Temporal motifs

Centrality measures

(..)

Review Holme-Saramaki, Phys. Rep. (2012), arXiv:1108.1780



Complex temporal characteristics

» burstiness
» non-Poissonian inter-event distributions
» power-law temporal correlations

» heterogeneity of event durations
» single events
» aggregated durations (weights in aggregated networks)

» stationarity of statistical features
» daily, weekly, and organizational rhythms
» weight-topology correlations

» topology-activity correlations (e.g., school)



Temporal networks

» Generalization of concepts?

* Centrality of a node?

e Temporal communities?

e Models for temporal networks?

e Impact of temporal features on dynamical processes?



Toy spreading processes on dynamical networks

» deterministic Sl process

e fastest paths # shortest paths

. ./. ) C
B B B
O%‘ Time tt ®
Time t">t’
O A

A A

Fastest path= A->B->C
Shortest path= A-C



Example: shortest vs fastest paths
in a temporal contact network
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Incidencs curve
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804
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Example: deterministic Sl
in temporal contact networks
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>(Toy) spreading processes
on dynamical networks

dynamical process

2nd grade
= N,
J
\
i /
Wy, XA
. 2 W
. 7i7a >
3rd grade d T 1st grade
. P
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”‘,‘,-;i\q;,i.:“ﬂ;\
=

7 PO o
) o~ .o Lo
P . S~ 3 . o
4th grade *, / V-\\,k Sth grade
Thu, 11:20- 12:00

Use of null models to reveal the role of
the temporal aspects



Mobile phone data:

e community structure (C)

* weight-topology correlations (W)

* burstiness on single links (B)

e daily patterns (D)

* event-event correlations between links (E)

Effects of the different ingredients?

Use series of null models!

M. Karsai et al., Small But Slow World: How Network Topology and Burstiness Slow Down Spreading, Phys.
Rev. E (2011).



e community structure (C)

» weight-topology correlations (W)

e burstiness on single links (B)

e daily patterns (D)

 event-event correlations between links (E)

Null models

EVENT SEQUENCE
Original

Equal-weight link-sequence shuffled

Link-sequence shuffled
Time shuffled
Configuration model

SNNERNE

SNRNRNE
<

NSRNRNE

M. Karsai et al., Small But Slow World: How Network Topology and Burstiness Slow Down Spreading, Phys.
Rev. E (2011).



Mobile phone data

0.0

T

1

1

1

0

0

|

02

b ,
0 10 20 30

100

200

t (in days)

0

e community structure (C)

» weight-topology correlations (W)

e burstiness on single links (B)

* daily patterns (D)

» event-event correlations between links (E)

400 600 800
ty (in days)

Bursty dynamics slows down spreading

M. Karsai et al., Small But Slow World: How Network Topology and Burstiness Slow Down Spreading, Phys.

Rev. E (2011).

Kivela et al, Multiscale Analysis of Spreading in a Large Communication Network, arXiv:1112.4312



More results

Rocha et al., PLOS Comp Biol (2011)
 data: temporal network of sexual contacts
» temporal correlations accelerate outbreaks

Pan & Saramaki, PRE (2011)

» data: mobile phone call network
 slower spread when correlations removed

Miritello et al., PRE (2011)

» data: mobile phone call network
 burstiness decreases transmissibility

Takaguchi et al., PLOS ONE (2013)
 data: contacts in a conference; email
 threshold-based spreading model

* burstiness accelerate spreading

Rocha & Blondel, PLOS Comp Biol (2013)

* model with tuneable distribution of inter-event times
(no correlations)

* burstiness => initial speedup, long time slowing down



Still somewhat unclear picture

Results

* depend on data set

« depend on spreading model

* generally

burstiness slows down spreading

correlations (e.g., temporal motifs) favors spreading

role of turnover
+: effect of static patterns



SIS model on activity-driven network

Model: N nodes, each with an “activity” a, taken from a distribution F(a)

At each time step:

e node i active with probability a(i)

e ecach active node generate m links
to other randomly chosen nodes

e jterate with no memory

Activity-based mean-field theory:

— ['HA — — uAtl + 1! A
I N o a' At
/m(N. —1I")aAt :1:1"?', t/m(N!—1') | da' -~ Y

Perra et al., Sci. Rep. (2012)




SIS model on activity-driven network

Epidemic threshold: Ae

1
- m((a) +/(a?))

0.2 T T T

@ Integrated network T = 20

epidemic prevalence
o
|

0.1 0.2

@ Activity driven network

¢ Integrated network T = 40

Perra et al., Sci. Rep. (2012)



Immunization strategies

=> take into account temporal structure

Lee et al.,, PLOS ONE (2012)

=>inspired by “acquaintance protocol” in static networks)

» “Recent’. choose a node at random, immunize its most recent contact

» “Weight’: choose a node at random, immunize its most frequent contact in a
previous time-window

Starnini et al., JTB (2012)

« aggregate network on [0, T]

« compare strategies
* immunize nodes with highest k or BC in [0,T]
« immunize random acquaintance (on [0,T])
 recent, weight strategies

e vary T

« find saturation of efficiency as T increases

Liu et al., arXiv:1309:7031 (activity-driven network model=>analytics)
+ target nodes with largest activity
» random neighbour (over an observation time T) of random node



>Representing data for
data-driven numervrical
simulations



« data (e.g. contacts) measured in one specific context at one
specific time

* need to perform numerical simulations that can give

information on a potential spread at a different time (in
similar context)



How much detail to inform the models?

Detailed dynamic network

e very detailed v

e very realistic v

e takes into account individual heterogeneities of
behavior v/

e very specific (context+period), not easy to generalize
X

Contact matrix

e coarse-grained X

e fully connected structure X

e only heterogeneities between groups X
e very easy to generalize v/




“synopsis’ of dynamic network data

Temporal network
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“synopsis’ of dynamic network data

Role-based structure

Teoihery

10000

w020

Heterogeneities

10

frequency

S
et

S

5 10 15
weights

Contact matrix of distributions:
-role based
-takes heterogeneities into account



Evaluating representations

data epidemic model

representation| T s el B r

VS

epidemic model

* Do DD




>A concrete example:
contact patterns in a
hospital



Network representations

Construction of 3 networks:

1. Dynamic network (DYN):
Real sequence of successive contacts

2. Heterogeneous network (HET):
1-day aggregated network
A—-B if A and B have been in contact

WAB = cumulative duration of the contacts A-B

3. Homogeneous network (HOM):
1-day aggregated network
A—DB if A and B have been in contact
W,z = average cumulative duration

Networks:
e Take into account network structure at the individual level
e Difficult to generalize

Data aggregation




4. Contact matrix

Assistants
Assustants
Doctors 1.16
Nurses 24.7
Patients 0.95

Caregivers  1.92

e Underlying fully connected network structure

Doctors

1.16
20.8
3.99
0.95
1.20

Average contact time in seconds per day

Nurses

24.7
2 aq
47.3
2.32
2.57

e Takes into account role structure

e Average temporal information, no heterogeneities within each role
e Easy to generalize

Patients

0.95
0.95
2.32

Caregivers

1.92
1.20
252,
‘46 9/

--‘

1.80



5. Novel representation: Contact matrix of distributions

. e e . Example: Assistant-Doctor
a. Fit each role-pair distribution of weights

(using negative binomials) 10
b. Create a network in which weights are drawn
from the fitted distribution (NB: including zero weights)

510

Z

=3

2 .

“— 10
e Underlying realistic network structure
 Takes into account role structure 107 5 10 5
e Takes into account heterogeneities within each role weights

e Easy to generalize
Machens et al, BMC Infect. Dis.(2013)



weights

Evaluating the representations!?

" Epidemiological model

HOM

-
FULL

network structure

e Evaluation of :
 Extinction probability

e Attack rate
e Role of initial seed
* Attack rate for each group

e Comparison with most realistic DYN representation

Machens et al, BMC Infect. Dis.(2013)



SEIR simulation results

CMD
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HET
DYN
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Machens et al, BMC Infect. Dis.(2013)



SEIR simulation results

Attack rate by groups (for AR > 10%)
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Machens et al, BMC Infect. Dis.(2013)



> Use of data-driven

simulations
Scenarii evaluation

2nd grade

3rd grade 1st grade

epidemic model

+

ath grade  *, / -v-\\,[:smwde

Thu, 11:20- 12:00



An example: SEIR + school
Which containment strategies!

Model:

-SEIR with asymptomatics

-contact data as proxy for possibility of transmission inside school
-when children are out of school: residual homogeneous risk of
contamination by contact with population

Containment strategies (suggested by the data):
-detection and subsequent isolation of symptomatic individuals
-whenever symptomatic individuals are detected (more than a given
threshold), closure of

(i) class

(ii) class + most connected other class (same grade)

(iii) whole school

Gemmetto, Barrat, Cattuto, in preparation



# of infectious

An example: SEIR + school
Which containment strategies!?

30 v
- NoO closure
—  One class
25 One grade
- School
20+
15l Average over cases
with AR > 10%
10
5»
O ‘_r‘“J

0 10 20 30 20 50 60
Time (days)

Gemmetto, Barrat, Cattuto, in preparation



30¢r

25

20r

# infectious
=)
W

10+

An example: SEIR + school
Which containment strategies!?

One class
. g

— No closure
24 h
— 48 h
72 h
96 h
120 h
144 h

10 20 30 a0 50
Time (days)

Average over cases
with AR > 10%

60

One grade
BOF T . 32 .
—— No closure
- 24 h
254 — 48 h
72 h
96 h
20+ 120 h
144 h
%15
=
1
10+
o | | l_‘ l | H;\_
1 LL\bl 1
] -
0 A ‘ .l lj
0 20 30 40 S0 60
Time (days)

Gemmetto, Barrat, Cattuto, in preparation



Which containment strategies?

Comparing class/grade/school closure

T 1

Strategy Targeted Targeted | school Strategy Targeted Targeted School
i (Threshold, duration) class grade J (Threshold, duration) class grade

No closure 34.6 | No closure 179 i14g,203i I
3,24 h 26.0 3,24 h 170 [151,202]
3,48 h 23.2 3,48 h 162 [43,199]
3, 72h 14.8 3,72 h 146 [28,198]
3,96 h 13.0 3,96 h 120 [27,195]
3,120 h 7.5 3,120 h 67 (26,192
3,144 h 5.6 3. 144 h 55 (25,180 ||
2,24 h 22.9 2,24 h 173 [139,198]
2,48 h 17.8 2.48 h 170 [62,199]
2,72 h 14.4 2,72 h 149 [48,201]
2,96 h 11.0 2.96 h 141 [31,196]
2,120 h 3.2 2,120 h 133 [30,195]
2,144 h 1.6 2,144 h 57 [25,192]

Probability that AR < 10%

Average AR when AR > 10%

Gemmetto, Barrat, Cattuto, in preparation



An example: SEIR + school
Which containment strategies!?

Closure strategy
(Threshold, duration)

Targeted class

Targeted grade

Whole school

3, 24h 6.2 6.6 10.0
3, 48h 7.6 8.0 14.3
3, 72h 8.2 9.7 16.1
3, 96h 11.3 13.7 22.4
3, 120h 12.2 13.5 26.5
3, 144h 13.3 13.9 27.9
2, 24h 5.8 5.8 10.0
2, 48h 6.5 7.6 13.5
2, 72h 6.4 8.1 16.1
2, 96h 8.5 9.4 21.5
2, 120h 8.5 10.6 24.3
9, 144h 8.3 9.8 25.3

Cost in number of
lost class-days

Gemmetto, Barrat, Cattuto, in preparation



Dynamical Processes on Content et ovatebte ot Scvors S
Complex Networks

Physics Reports
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Temporal networks
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Epidemic processes in complex networks
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