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Epidemiology

Two levels: 
•Microscopic: researchers try to disassemble and kill 
new viruses => quest for vaccines and medicines 
!
•Macroscopic: statistical analysis and modeling of 
epidemiological data in order to find information and 
policies aimed at lowering epidemic outbreaks => 
macroscopic prophylaxis, vaccination campaigns…



R (removed)

S (susceptible)

Compartments: S, I, R...

Standard epidemic modeling

S (susceptible) I (infected)

β µ

Neglecting differences in:

• susceptibility to disease!
• latency!
• severity of disease!
• …

• age!
• gender !
• health!
• social class/status!
• …



R (removed)

S (susceptible)

t=1 t=2 t=4 t=8

Compartments: S, I, R...

Standard epidemic modeling

S (susceptible) I (infected)

β µ

Similar to chemical reactions:

+ +
β

µ



Standard epidemic modeling
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Infected individuals => prevalence/incidence

Stages of an epidemic outbreak: 
population level



Transmission S (susceptible) I (infected)

β

Individual in state S, with k contacts, among which n infectious: in the 
homogeneous mixing approximation, the probability to get the infection in 
each time interval dt is: 
!
   Proba(S     I) = 1 -  Proba(not to get infected by any infectious)  
          = 1 - (1 - βdt)n  

             ≅ β n dt  (β dt << 1) 
             ≅ β k i dt  as  n ~ k i for homogeneous mixing

HOMOGENEOUS MIXING ASSUMPTION 

Hypothesis of mean-field nature:!
every individual sees the same density of infectious among his/her 
contacts, equal to the average density in the population



The SI model S (susceptible) I (infected)β

N individuals 
I(t)=number of infectious, S(t)=N-I(t) number of susceptible 
i(t)=I(t)/N , s(t)=S(t)/N = 1- i(t)

If k = <k> is the same for all individuals (homogeneous network): 
dI

dt

= S(t)⇥ Proba(S ! I)

= �kS(t)i(t)

di

dt
= �ki(t)(1� i(t))



The SI model S (susceptible) I (infected)

β

N individuals 
I(t)=number of infectious, S(t)=N-I(t) number of susceptible 
i(t)=I(t)/N , s(t)=S(t)/N



The SIS model

N individuals 
I(t)=number of infectious, S(t)=N-I(t) number of susceptible 
i(t)=I(t)/N , s(t)=S(t)/N

Homogeneous mixing

S (susceptible)S (susceptible) I (infected)

β µ

Competition of two time scales: 1/µ and 1/(β <k>)



The SIR model
N individuals 
I(t)=number of infectious, S(t) number of susceptible, R(t) recovered 
i(t)=I(t)/N , s(t)=S(t)/N, r(t)=R(t)/N=1-i(t)-s(t)

Homogeneous mixing:

Competition of two time scales: 1/µ and 1/(β <k>)



SIS and SIR models: linear approximation

Short times, i(t) << 1  (and r(t)<<1 for the SIR)

Exponential evolution exp(t/τ), with

If β<k> > µ : exponential growth 
If β <k> < µ : extinction

Epidemic threshold condition: �hki = µ



Long time limit, SIS model

Stationary state: di/dt = 0

Epidemic threshold condition:  

Active phase
Absorbing 
phase

Finite prevalence
Virus death

λ=β/µ

Phase diagram: 

�hki = µ

�hki > µ ) i1 = 1� µ/(�hki)

�hki < µ ) i1 = 0



Immunization

λ=β/µ

Fraction g of immunized (vaccinated) individuals:  
reduce population of susceptible individuals

S ! S ⇥ (1� g)

di

dt
= �ki(t)(1� i(t))(1� g)



Immunization

λ=β/µ

 => critical immunization threshold

g > gc

Fraction g of immunized (vaccinated) individuals: 
reduce population of susceptible individuals

� ! (1� g)�

� ! (1� g)�
Equivalent to a reduction of β:   

 Fraction of population to vaccinate 
 to prevent an outbreak

gc = 1� µ/(�hki)



Homogeneous mixing: summary

λ=β/µ

Competition of time scales 
=> Epidemic threshold condition: �hki = µ



Homogeneous mixing: summary

λ=β/µ

 immunization threshold bringing the system under the 
epidemic threshold by depleting the susceptible 
population

gc = 1� µ/(�hki)



Going beyond: additional compartments



Going beyond: additional compartments



Going beyond: population structure

Different classes of individuals: age, gender, etc…!
!
=> potentially different!
!

• ! transmissibility!
• ! contact rates



Going beyond: population structure
Different classes of individuals: age, gender, etc…!
=> potentially different!

• ! transmissibility!
• ! contact rates

Ex: flu => different contact rates for children and adults

Contact matrices



Going beyond: population structure
Different classes of individuals: age, gender, etc…!
=> potentially different!

• ! transmissibility!
• ! contact rates

Ex: HIV => different transmissibility depending on gender

f

f

m

m

Contact matrices



Wide spectrum of complications and 
complex features to include…

Simple Realistic 
Ability to explain trends at a 
population level

Model realism looses in 
transparency.  
Validation is harder. 



Complex networks



Complex networks

Diseases propagate on networks: 
! Social (contact) networks 
! Technological networks: 

! Internet, Web, P2P, e-mail...

...which are complex, heterogeneous networks

Usual mean-field: neglects the degree heterogeneity

Extension of mean-field theory to take it into account



Degree-based mean-field theory

Number of contacts (degree) can vary a lot 
huge fluctuations (<k2> >> <k>) 
  
!
Heterogeneous  (degree-based) mean-field: density of  
!Susceptible in the class of degree k, sk=Sk/Nk 

!Infectious in the class of degree k, ik=Ik/Nk 

!(Recovered in the class of degree k, rk=Rk/Nk  )

s(t)=ΣP(k) sk , i(t)= ΣP(k) ik , r(t)= Σ P(k) rk



Degree-based representation

MF-like assumption: all individuals in a given class are “equivalent”



The SIS model in the degree-based MF theory
S (susceptible)S (susceptible) I (infected)β

µdegree k degree k degree k

dIk

dt

= Sk(t)⇥ Proba(Sk ! Ik)� µIk(t)

interaction with nodes 
of any degree k’

interaction with nodes 
of any degree k’



P (k’| k)  =  the probability that a link originated in a node  
                      with connectivity k points to a node with connectivity k’

Mean-Field

The SIS model in the degree-based MF theory

Proba(Sk ! Ik)

Number k of possible contacts

Proba of a contact with a node of degree k’

Proba that the node is infectious: ik0

P (k0|k)

k

k

k

k’

k’



Θk=Proba that any given link points to an infected node

P (k’| k)  =  the probability that a link originated in a node  
                      with connectivity k points to a node with connectivity k’

Mean-Field

The SIS model in the degree-based MF theory



In uncorrelated networks:

Short times, ik(t) << 1

Epidemic threshold condition

The SIS model in the degree-based MF theory



In uncorrelated networks:

Long time limit, SIS model

Self-consistent equation of the form x=F(x) 
with F(0)=0, F’ > 0, F’’ < 0 

Su
m ov

er
 k



Graphical solution

Θ=F(Θ)

Epidemic threshold:  
existence of a non-zero solution for Θ  "  F’(0) > 1 :

Θ=F(Θ)



Epidemic threshold in uncorrelated networks

Heterogeneous, infinite network:

Condition always satisfied 
Finite prevalence for any spreading parameters

The SIS model in the degree-based MF theory



Epidemic phase diagram in 
heterogeneous networks

•Wide range of spreading rate with low prevalence 
•Lack of healthy phase = standard immunization cannot  

                 drive the system below threshold!!! 
 



Finite size effects
Finite number of nodes N 
⇒ Finite cut-off for P(k) 
⇒ Finite 
⇒ Finite epidemic threshold 

Ratio of epidemic threshold 
to the value obtained in a 
homogeneous network:



Case of correlated networks
SIS model:

Short times:

Solution ik=0  unstable iff there exists at least one positive eigenvalue

largest eigenvalue of 

Epidemic threshold:

Boguna, Pastor-Satorras, Vespignani, Phys. Rev. Lett. 90:028701 (2003),  and arXiv:cond-mat/0301149

diverges in Markovian 
scale-free networks 



Spreading dynamics

Short times: 

=> Exponential growth:



Consequences on immunization strategies

Uniform immunization: 
Fraction g of randomly chosen immunized (vaccined) individuals: 

     β −> β (1−g) 
!

        => inefficient: need

tends to 1



Proportional immunization
gk fraction of immunized individuals of degree k, such that:

Short times (uncorr. nets):

Epidemic threshold recovered!

Efficient immunization: need

Pastor-Satorras, Vespignani, Phys Rev E 65:036104 (2002)

�0 < µ i.e., 



Targeted immunization

Pastor-Satorras, Vespignani, Phys Rev E 65:036104 (2002)

=> immunize fraction g of individuals with largest connectivity

need:

similar to  targeted attacks!!! 
immunizing " removing nodes and links

Ex of explicit calculation for BA network: 
  gc ∝ exp(-2µ/mβ)



Immunization

NB: when network’s topology unknown: acquaintance immunization 
[Cohen, Havlin, ben-Avraham, Phys Rev Lett 91:247901 (2003)]



What does HMF neglect

1. Structural correlations in the network 
(HMF equivalent to an annealed network approximation) 
!
!
!
2. Dynamical correlations  
(emerging during the spreading process)



Beyond HMF: Quenched mean-field

Chakrabarti et al., Epidemic Thresholds in Real Networks, ACM Trans. Inf. Syst. 
Secur. 10, 1 (2008) 
Gomez et al., Discrete-time Markov chain approach to contact-based disease 
spreading in complex networks, EPL 89 38009 (2010) 
P. Van Mieghem, arXiv:1402.1731!
!
“Quenched”/“Individual-based” mean field theory: 
• write the evolution equation for the probability that a node i is infected 

• take into account the real connections of the network as given by the 
adjacency matrix 

• neglect correlations (hence mean-field) 

• check for the stability of the absorbing state of zero infection 



Quenched MF for the SIS model
Xi(t) = 0 for S nodes, 1 for I nodes

E[Xi(t)] = ⇢Ii (t) = probability that i is infected

P. Van Mieghem, arXiv:1402.1731

Mean-Field

Real network structure

� = �/µ

MF: correlations neglected

d⇢Ii (t)

dt
= �⇢Ii (t) + �(1� ⇢Ii (t))

NX

j=1

aij⇢
I
j (t)

d⇢Ii (t)

dt
= �⇢Ii (t) + �

NX

j=1

aij⇢
I
j (t)� �

NX

j=1

aijE [Xi(t)Xj(t)]

dE[Xi(t)]
dt = E

h
�µXi(t) + �(1�Xi(t))

PN
j=1 aijXj(t)

i



Quenched MF for the SIS model

Linear approximation for the stability of the epidemic-free state

d ~⇢I

dt
= � ~⇢I + �A ~⇢I

eigenvalues and eigenvectors of the adjacency matrix A

~⇢I = 0 unstable iff the largest eigenvalue of A is larger than 1/

d⇢Ii (t)

dt
= �⇢Ii (t) + �(1� ⇢Ii (t))

NX

j=1

aij⇢
I
j (t)

A = adjacency matrix

~⇢I =

X

↵

~⇢↵ exp ((�⌫↵ � 1)t)

⇢↵, ⌫↵

�



!
=> epidemic threshold for SIS given by 
  

λc = 1/Λm 

!
where Λm is the largest eigenvalue of the adjacency matrix

Quenched MF for the SIS model



Quenched vs Degree-based MF

Use annealed adjacency matrix in quenched MF equation aij ⌘ akikj

akikj =
kikj
NhkiEx for uncorrelated networks

⇢k =
1

Nk

X

i|ki=k

⇢Ii

d⇢Ii (t)

dt
= �⇢Ii (t) + �(1� ⇢Ii (t))

NX

j=1

aij⇢
I
j (t)Sum equation

over all nodes of degree k:

recover heterogeneous mean-field equation for



For random scale-free networks, it is possible to obtain the scaling 
of Λm (Chung, Lu, Vu, Proc. Natl. Acad. Sci. USA 100, 6313 (2003)) 

!
=> epidemic threshold for SIS given by  
!

λc =  
!
!
=> epidemic threshold vanishes in the thermodynamic limit in power-law 
distributed networks 	


• for any value of γ, even larger than 3, 	


• as long as kmax is a diverging function of the network size N	


=> role of the hubs

1/
p

k
max

if � > 5/2

hki/hk2i if 2 < � < 5/2{

Quenched MF for the SIS model



Numerics
!
Kitsak et al., Identification of influential spreaders in complex 
networks. Nat. Phys. 6, 888–893 (2010) 
!
!
Numerical study => most efficient spreaders are located at 
the innermost, dense core of the network, as identified by 
means of a k-core decomposition 
!
=> apparent contradiction? 
!
!



Castellano & Pastor-Satorras, Competing activation mechanisms in 
epidemics on networks, Scientific Reports 2, 371 (2012) 

!
=> numerical investigation, measure of: 
!
• density of infected vertices in the whole network 
• density of infected when the dynamics takes place (in 
isolation) on the k-core of highest index (maximum k-core) 
• density of infected when the dynamics takes place (in 
isolation) on the star-graph centered around the hub of the 
network, with largest degree 

Numerics



Beyond HMF
Castellano & Pastor-Satorras, Competing activation mechanisms in 
epidemics on networks, Scientific Reports 2, 371 (2012) 

!
Results, as β increases: 
!
large 𝛾:  onset of active stationary state for the whole 
network for values of β at which the star graph around the 
hub starts being active, while the max-k-core is subcritical 
!



Castellano & Pastor-Satorras, Competing activation mechanisms in 
epidemics on networks, Scientific Reports 2, 371 (2012) 

!
!

Numerics



Beyond HMF
Castellano & Pastor-Satorras, Competing activation mechanisms in 
epidemics on networks, Scientific Reports 2, 371 (2012) 

!
Results, as β increases: 
!
large 𝛾:  onset of active stationary state for the whole 
network for values of β at which the star graph around the 
hub starts being active, while the max-k-core is subcritical 
!
small 𝛾:  onset of active stationary state for the whole 
network for values of β at which the max k-core starts being 
active, while the star graph is subcritical 



Castellano & Pastor-Satorras, Competing activation mechanisms in 
epidemics on networks, Scientific Reports 2, 371 (2012) 

!
!

Numerics



Castellano & Pastor-Satorras, Competing activation mechanisms in 
epidemics on networks, Scientific Reports 2, 371 (2012) 
!
- the max-k-core is a homogeneous network, hence has an epidemic 
threshold λS ~ 1/kS 
- the scaling of kS  is known for scale-free networks: kS ~              
(same scaling as        ) 
- for γ < 5/2, this gives back the HMF result 
- for γ > 5/2, the hub is responsible 
!
“When γ < 5/2, the epidemic transition is collectively triggered by the 
vertices in the innermost core and the threshold is correspondingly given 
by                 , as in HMF theory. On the other hand, for γ > 5/2, the hub 
triggers the global activity, and the threshold is given by                     “ 1/

p
k
max

k��3
max

1/hk2i

hk2i

Numerics



Numerics

Castellano & Pastor-Satorras, Competing activation mechanisms in 
epidemics on networks, Scientific Reports 2, 371 (2012) 
Ferreira, Castellano, Pastor-Satorras, arXiv:1206.6728, Phys. Rev. E 86, 
041125 (2012) 
!
=> for exponents < 5/2, HMF substantially correct 
!
=> for exponents > 5/2, QMF better than HMF, but dynamic 
correlations come into play => QMF still needs improvement



Some rigorous results

Chatterjee, Durrett, Contact processes on random graphs with power law 
degree distributions have critical value 0. Annals of Probability 37, 2332–
2356 (2009). 
!
Durrett, Some features of the spread of epidemics and information on a 
random graph, Proc. Natl. Acad. Sci. USA 107, 4491 (2010) 
!
!
Mountford et al., Exponential extinction time of the contact process on 
finite graphs, arXiv:1203.2972 
!
!
Van Mieghem, Exact Markovian SIR and SIS epidemics on networks and 
an upper bound for the epidemic threshold, arXiv:1402.1731 
!
!
=> special cases, bounds and asymptotic exact results



Some more complications
Degree correlations 
!
Clustering 
!
Directed networks 
!
Weights 
 DBMF: 
!
 IBMF: largest vp of   
!
Community structures 
 Initial (local) faster spread, slowing down at global scale 
 Strength of weak ties (Granovetter 1973, Onnela et al. 2007) 
 Immunization of bridges

�kk0 / (kk0)�

⌦ij = wijaij



Wide spectrum of complications and 
complex features to include…

Simple Realistic 
Ability to explain trends at a 
population level

Model realism looses in 
transparency.  
Validation is harder. 



General framework: 
reaction-diffusion processes

! Previous cases: (at most) one particle/individual per 
site 

! In general: reaction-diffusion processes on networks 
=> no restriction on the number of particles per site

“Particles”  
•diffusing along edges 
•reacting in the nodes



Meta-population models

City a

City j

City i

Intra-population infection dynamics by 
stochastic compartmental modeling 
Inside each population: homogeneous 
mixing 

Baroyan et al. (1969) 
Ravchev, Longini (1985)



Baroyan et al. (1969) 
Ravchev, Longini (1985)

multi-level description : 
!
" intra-city  
   epidemics 
!
!
" inter-city  
  travel

Modeling of global epidemics propagation



Why is a large-scale approach 
needed?

14th century - Black death



Nov. 2002

Mar. 2003

SARS

Why is a large-scale approach 
needed?



2009 - H1N1 pandemic

Bajardi et al, PLoS ONE (2011)

Why is a large-scale approach 
needed?



What has changed: availability of 
unprecedented amounts of data…..
! Transportation infrastructures 
! Behavioral Networks  
! Census data 
! Commuting/traveling patterns 
!

! Different scales: 
! International 
! Intra-nation (county/city/municipality) 
! Intra-city (workplace/daily commuters/individuals behavior)



100 101 102 103 104 105

ki kj

103

104

105

106

<wi, j>

WAN
(kikj)

0.5

Barrat et al., PNAS (2004), Colizza et al. PNAS (2006)



A recent large-scale platform

http://www.gleamviz.org     
    simulation platform for the worldwide propagation 

of diseases, used in real time during the H1N1 
pandemic

D. Balcan, V. Colizza, B. Gonçalves, H. Hu, J.J. Ramasco, A. Vespignani  
Proc. Natl. Acad. Sci. USA 106, 21484-21489 (2009) 



GLEaM in brief

census
areas

Population distribution: 	


detailed population data from 
1/4x1/4 degree tasselation.



Local mobility:	


census data from about 30 countries in the 5 
continents extended to all countries.

air travel

10 1

10 5

Long range travel:	


3362 cities in 220 countries. 	


More than 16000 connections with travel flows.

census
areas

GLEaM in brief



census
areas

air travel

10 1

10 5

latent

susceptible

infectious (travel)
symptomatic

infectious
asymptomatic

recovered

infectious (no travel) 
symptomatic

GLEaM in brief

Epidemic compartmental model	


Metapopulation model with homogeneous 
mixing assumption.



air travel

10 1

10 5

latent

susceptible

infectious (travel)
symptomatic

infectious
asymptomatic

recovered

infectious (no travel) 
symptomatic

census
areas

GLEaM in brief



comparing  
with data

http://www.gleamviz.org

Prediction  
months in advance  

of the epidemic peak timing 
!

see www.gleamviz.org 

http://www.gleamviz.org


Travel limitations ?

Colizza, Barrat, Barthélemy, Valleron, Vespignani. PLoS Medicine (2007)



Analytical approach

=> Degree-based mean-field 

!

 Diffusion (random walk) between nodes 

!

 Reaction (SIS, SIR) inside each node



Degree-based mean-field approach: 
Diffusion

Node i => Wi walkers 
W= Σi Wi

N nodes, W walkers

Degree block variables

Nk = NP (k) = number of nodes of degree k

Evolution equation:

Walkers going 
out of nodes

Walkers going 
into nodes

Diffusion rate 
along edges k’-k

rk = k
P

k0 dkk0P (k0|k)



Degree-based mean-field approach: 
Diffusion

Simplest case: uniform diffusion rk = r; dk0k = r/k0

Uncorrelated random networks: 

Stationarity  =>



Degree-based mean-field approach: 
Diffusion

Example of other diffusion rates 

Uncorrelated random networks: 

Stationarity  =>

dkk0 = w0(kk0)✓/Tk, rk = r

Colizza, Vespignani, J. Theor. Biol. 251:450 (2008)



Degree-based mean-field approach: 
Diffusion

Diffusion rate keeping constant populations: !
important in the perspective of modelling travel behaviours

Number of travellers between 2 subpopulations per unit time=fixed

Proba per unit time to go from i to j: 

@tWi =
X

j

Wj
wij

Wj
�Wi

X

j

wij

Wi
= 0

wij

Wi

Any population distribution is stationary



Degree-based mean-field approach: 
Diffusion

Diffusion rate keeping constant populations: !
important in the perspective of modelling travel behaviours
In the degree-based framework

Any population distribution is stationary

dkk0 =
wkk0

Wk
(wkk0 = wk0k)

@tWk(t) = �rkWk(t) + k
X

k0

dk0kP (k0|k)Wk0(t)

= �k
X

k0

wkk0

Wk
P (k0|k)Wk + k

X

k0

wk0kP (k0|k)

= 0

rk = k
P

k0 dkk0P (k0|k)

Colizza, Vespignani, J. Theor. Biol. 251:450 (2008)



Degree-based mean-field approach: 
SIS

In each node i: Si susceptible, Ii infectious, Wi = Si + Ii

Ik =
1

Nk

X

i|ki=k

IiSk =
1

Nk

X

i|ki=k

SiDegree block variables

Each time step: 2 processes!
! 1- reaction!
! 2- diffusion

Colizza, Vespignani, J. Theor. Biol. 251:450 (2008)



Degree-based mean-field approach: 
SIS
Each time step: 2 processes!
!
   1- reaction!
!
   2- diffusion

Ik ! Ik � µIk + ��k

Ik ! (Ik � µIk + ��k)(1� rk)

+ k
X

k0

P (k0|k)dk0k((1� µ)Ik0 + ��k0)

�k = SkIk/Wk

Uniform diffusion or diffusion with constant populations!
=> epidemic threshold

�/µ = 1

Colizza, Vespignani, J. Theor. Biol. 251:450 (2008)



Degree-based mean-field approach: 
SIR case

Colizza, Vespignani, J. Theor. Biol. 251:450 (2008)

expect a transition between 
• confined epidemics at low diffusion rates 
• global invasion at large diffusion rates

• Zero diffusion: epidemics confined in first subpopulation 
• Infinite diffusion: population well-mixed

�/µ > 1

NB: for SIS, as soon as non-zero diffusion, global invasion 
as there is a stationary state



Degree-based mean-field approach: 
SIR case

Colizza, Vespignani, J. Theor. Biol. 251:450 (2008)

@tIk = �rkIk + (�µIk + ��k)(1� rk)

+ k
X

k0

P (k0|k)dk0k((1� µ)Ik0 + ��k0)

Can be very small: travel of fractions of individuals

continuous approximation cannot capture the global invasion threshold

need to take into account discreteness & stochasticity

Problem:



Invasion: branching process

seed: 
generation n=0

first neighbors: 
generation n=1

# of diseased nodes (i.e., with at least one infected individual) of 
degree k, at generation  n=0, 1, ...

Colizza, Vespignani, J. Theor. Biol. 251:450 (2008)



proba	
  of	
  outbreak	
  in	
  pop.	
  k=	
  
1	
  -­‐	
  proba	
  of	
  ex3nc3on	
  
for	
  a	
  seed	
  of	
  	
  
individuals

proba	
  connec3on	
  k’-­‐k

probability	
  of	
  finding	
  
uninfected	
  	
  

subpopula3on

possible	
  paths	
  	
  
of	
  infec3on

Colizza, Vespignani, J. Theor. Biol. 251:450 (2008)

Invasion: branching process

Number of infectious individuals that move !
into population k during the!
outbreak in population of degree k’

�k0k

�k0k



# of new seeds from k’ to k  
(time-scale separation):

rate	
  	
  	
  I " R

total	
  #	
  	
  of	
  infected	
  generated

diffusion	
  
rate

from micro to macro scale

Ex of diffusion rates: 
               dk’k = p w0 (k’k)θ/ Tk’ 

            dk’k = w0 (kk’)θ/  Nk’

(stationary populations ind. of diffusion process))

Colizza, Vespignani, J. Theor. Biol. 251:450 (2008)



For R0 close to 1, uncorrelated networks and at short times:

> 1 # global invasion
Colizza, Vespignani, J. Theor. Biol. 251:450 (2008)



Global invasion threshold

Colizza & Vespignani, PRL (2007), JTB (2008)

R*1

absorbing phase 
virus extinction

active phase 
virus invasion

phase transition in mobility

Ex: SIR, α ~ 2(R0-1)/R0
2

Real-world network: w0 10 times larger than w0c  !!!

Explains empirical results!!



Going beyond

! Population structure (age/gender) and travel 
behaviours 

(Apolloni et al., BMC ID 2013) 
! Length of stay at destination 

(Poletto et al., J. Th. Biol. 2013) 
! Change of behaviour 

(Meloni et al., Sci. Rep. 2011)



Epidemics in multiplex networks

Interdependent networks (power-grid - communication/computer network)!
Layers of social networks!
Different transportation networks!
…

Effect of coupling on cascading failures 
(percolation processes)!
Epidemics on multiplex networks!
Cooperation in multiplex social networks!
…



Epidemics in multiplex networks

Sanz et al., arXiv:1402.4523

Modification of infectiousness of disease (a) !
if spreader or susceptible are infected with disease (b!
!
Modification of recovery rate for disease (a) if 
infectious is also infected with disease (b)

mutual enhancement 
or !
partial cross-immunity



Epidemics in time-varying networks

Networks= (often) dynamical entities 
(communication, social networks, online networks, transport networks, etc…) 

•  Which dynamics? 
• Characterization? 
• Modeling? 
• Consequences on dynamical phenomena? 

           (e.g. epidemics, information propagation…) 
!

Time-varying networks: often represented by 
aggregated views 

• Lack of data 
• Convenience



Example: 
contacts in a 

primary school, 
dynamic view

J. Stehlé et al. PLoS ONE 

6(8):e23176 (2011) 



J. Stehlé et al. PLoS ONE 

6(8):e23176 (2011) 

Example: 
contacts in a 

primary school, 
aggregated view



Definition: temporal network
Temporal network: T=(V,S) 

• V=set of nodes 
• S=set of event sequences assigned to pairs of nodes

99

sij 2 S :

Other representation: 
time-dependent adjacency matrix:  
a(i,j,t)= 1 <=> i and j connected at time t

sij = {(ts,1ij , te,1ij ) · · · (ts,`ij , te,`ij )}



Reachability in temporal networks

100Review Holme-Saramaki, Phys. Rep. (2012), arXiv:1108.1780 



Aggregation of temporal network

101Review Holme-Saramaki, Phys. Rep. (2012), arXiv:1108.1780 

wij =

Z t
max

t
min

a(i, j, t)dt

NB: enough information if underlying process is Poissonian



Aggregation of temporal network

102Review Holme-Saramaki, Phys. Rep. (2012), arXiv:1108.1780 

Temporal behavior most often non-Poissonian 
=> aggregate view hides important temporal patterns



Burstiness

103

Poisson process

Bursty behavior

A.-L. Barabasi, Nature (2006)



Generalization of definitions  
to temporal networks

Reachability issue 
=> time respecting path (“journey”) 

=> set of influence of a node 
=> temporal connectivity (similar to case of directed graphs) 

  
!
Path length => concept of shortest paths 
Time respecting path duration => concept of fastest journey 
!
Temporal motifs 
!
Centrality measures 
!
(…)

Review Holme-Saramaki, Phys. Rep. (2012), arXiv:1108.1780 



Complex temporal characteristics
!‣ burstiness

‣ non-Poissonian inter-event distributions

‣ power-law temporal correlations


!‣ heterogeneity of event durations 

‣ single events

‣ aggregated durations (weights in aggregated networks)


!‣ stationarity of statistical features 

!
‣ daily, weekly, and organizational rhythms

!
‣ weight-topology correlations

!
‣ topology-activity correlations (e.g., school)

…



! Generalization of concepts? 
! Centrality of a node? 
! Temporal communities? 
! Models for temporal networks? 
! Impact of temporal features on dynamical processes?

Temporal networks



• deterministic SI process 
!
• fastest paths ≠ shortest paths

Toy spreading processes on dynamical networks

Time	
  t Time	
  t’>t
Time	
  t’’>t’

B

A

C

A

B B

A

C C

Fastest path= A->B->C 
Shortest path= A-C



Example: shortest vs fastest paths 	


in a temporal contact network

Conference Museum



Example: deterministic SI	


in temporal contact networks
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+
dynamical process

S I

>(Toy) spreading processes 
on dynamical networks

Use of null models to reveal the role of 
the temporal aspects



M. Karsai et al., Small But Slow World: How Network Topology and Burstiness Slow Down Spreading, Phys. 
Rev. E (2011).

Mobile phone data: 
• community structure (C) 
• weight-topology correlations (W) 
• burstiness on single links (B) 
• daily patterns (D) 
• event-event correlations between links (E)

Effects of the different ingredients? 
!
!
!
!

Use series of null models!



M. Karsai et al., Small But Slow World: How Network Topology and Burstiness Slow Down Spreading, Phys. 
Rev. E (2011).

Null models

• community structure (C) 
• weight-topology correlations (W) 
• burstiness on single links (B) 
• daily patterns (D) 
• event-event correlations between links (E)



M. Karsai et al., Small But Slow World: How Network Topology and Burstiness Slow Down Spreading, Phys. 
Rev. E (2011). 
Kivela et al, Multiscale Analysis of Spreading in a Large Communication Network, arXiv:1112.4312 !

Mobile phone data
• community structure (C) 
• weight-topology correlations (W) 
• burstiness on single links (B) 
• daily patterns (D) 
• event-event correlations between links (E)

Bursty dynamics slows down spreading



Rocha et al., PLOS Comp Biol (2011) 
• data: temporal network of sexual contacts 
• temporal correlations accelerate outbreaks 
!
Pan & Saramaki, PRE (2011) 
• data: mobile phone call network 
• slower spread when correlations removed 
!
Miritello et al., PRE (2011) 
• data: mobile phone call network 
• burstiness decreases transmissibility 
!
Takaguchi et al., PLOS ONE (2013) 
• data: contacts in a conference; email  
• threshold-based spreading model 
• burstiness accelerate spreading 
!
Rocha & Blondel, PLOS Comp Biol (2013) 
• model with tuneable distribution of inter-event times 
(no correlations) 
• burstiness => initial speedup, long time slowing down 

More results



Results 
!
• depend on data set 
!

• depend on spreading model 
!

• generally 
!

• burstiness slows down spreading 
• correlations (e.g., temporal motifs) favors spreading 
• role of turnover 
• +: effect of static patterns

Still somewhat unclear picture



SIS model on activity-driven network

Perra et al., Sci. Rep. (2012)

Model: N nodes, each with an “activity” a, taken from a distribution F(a)

At each time step:!
!

• node i active with probability a(i)!
• each active node generate m links 

to other randomly chosen nodes!
• iterate with no memory

Activity-based mean-field theory:



SIS model on activity-driven network

Perra et al., Sci. Rep. (2012)

Epidemic threshold:



Immunization strategies

Lee et al., PLOS ONE (2012) 
=>inspired by “acquaintance protocol” in static networks) 
• “Recent”: choose a node at random, immunize its most recent contact 
• “Weight”: choose a node at random, immunize its most frequent contact in a 

previous time-window 
!
Starnini et al., JTB (2012) 
• aggregate network on [0,T] 
• compare strategies 

• immunize nodes with highest k or BC in [0,T] 
• immunize random acquaintance (on [0,T]) 
• recent, weight strategies 

• vary T 
• find saturation of efficiency as T increases 
!
Liu et al., arXiv:1309:7031 (activity-driven network model=>analytics) 
• target nodes with largest activity 
• random neighbour (over an observation time T) of random node

=> take into account temporal structure



>Representing data for 
data-driven numerical 

simulations



• data (e.g. contacts) measured in one specific context at one 
specific time 
!

• need to perform numerical simulations that can give 
information on a potential spread at a different time (in 
similar context)



How much detail to inform the models?

Detailed dynamic network 
• very detailed   ✔ 
• very realistic   ✔ 
• takes into account individual heterogeneities of 
behavior ✔ 
• very specific (context+period), not easy to generalize 
✕

Contact matrix 
• coarse-grained  ✕ 
• fully connected structure  ✕ 
• only heterogeneities between groups  ✕ 
• very easy to generalize   ✔



“synopsis” of dynamic network data

Temporal network Static network

Contact matrix 
(underlying fully 
connected assumption + no 
within-class heterogeneity)



“synopsis” of dynamic network data

x (x,
y

+

Contact matrix of distributions: 
-role based 
-takes heterogeneities into account

Role-based structure Heterogeneities



+
epidemic model

S E I R

vs

Evaluating representations

+
epidemic model

S E I R

data

representation



>A concrete example:	


contact patterns in a 

hospital
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Network representations
Construction of 3 networks: 
!
1. Dynamic network (DYN): 

Real sequence of successive contacts  
!
!

2. Heterogeneous network (HET): 
1-day aggregated network 
 A—B if A and B have been in contact 
WAB = cumulative duration of the contacts A-B 

!
3. Homogeneous network (HOM): 

1-day aggregated network 
A—B if A and B have been in contact 
WAB = average cumulative duration

D
at

a 
ag

gr
eg

at
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n

Networks: 
• Take into account network structure at the individual level 
• Difficult to generalize



• Underlying fully connected network structure 
• Takes into account role structure 
• Average temporal information, no heterogeneities within each role 
• Easy to generalize

4. Contact matrix



5. Novel representation: Contact matrix of distributions

a. Fit each role-pair distribution of weights 
(using negative binomials) 
b. Create a network in which weights are drawn 
from the fitted distribution (NB: including zero weights)

Machens et al, BMC Infect. Dis.(2013)

• Underlying realistic network structure 
• Takes into account role structure 
• Takes into account heterogeneities within each role 
• Easy to generalize



+
Epidemiological model

Evaluating the representations?

• Evaluation of : 
• Extinction probability 
• Attack rate 
• Role of initial seed 
• Attack rate for each group !

• Comparison with most realistic DYN representation

Machens et al, BMC Infect. Dis.(2013)



SEIR simulation results

Machens et al, BMC Infect. Dis.(2013)

Importance of heterogeneities of contact durations



SEIR simulation results

Attack rate by groups (for AR > 10%)

Machens et al, BMC Infect. Dis.(2013)



> Use of data-driven 
simulations	



Scenarii evaluation	



+
epidemic model

S E I R



An example: SEIR + school	


Which containment strategies?

Model: 
-SEIR with asymptomatics 
-contact data as proxy for possibility of transmission inside school 
-when children are out of school: residual homogeneous risk of 
contamination by contact with population 
!
Containment strategies (suggested by the data): 
-detection and subsequent isolation of symptomatic individuals 
-whenever symptomatic individuals are detected (more than a given 
threshold), closure of  

(i) class 
(ii) class + most connected other class (same grade) 
(iii) whole school

Gemmetto, Barrat, Cattuto, in preparation



An example: SEIR + school	


Which containment strategies?

Gemmetto, Barrat, Cattuto, in preparation

Average over cases !
with AR > 10%



An example: SEIR + school	


Which containment strategies?

Gemmetto, Barrat, Cattuto, in preparation
Average over cases !
with AR > 10%



Gemmetto, Barrat, Cattuto, in preparation

Probability that AR < 10% Average AR when AR > 10%

Which containment strategies?	


Comparing class/grade/school closure

Targeted	


class

Targeted	


grade

Targeted	


grade

Targeted	


class

Strategy	


(Threshold, duration)      	



    

Strategy	


(Threshold, duration)      	



    

School School



An example: SEIR + school	


Which containment strategies?

Gemmetto, Barrat, Cattuto, in preparation

Cost in number of 	


lost class-days




