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Rating vs. binary matrix
Sparsity: <1% of known values
Overfitting

Singular Value Decomposition

dense representation
no regularization

Stochastic Gradient Descent
sparse representation
vs. conjugate (ALS)
regularization

Both optimize RMSE

Evaluation?

User/Movie Napoleon Monster  Cindarella Life on
Dynamite Inc. Earth
David 1 ? ? 3
Dora 5 3 5 5
Peter ? 4 3 ?
User/Movie Napoleon Monster  Cindarella Life on
Dynamite Inc. Earth
David 1 0 0 1
Dora 1 1 1 1
Peter 0 1 1 0
User/Movie Napoleon Monster  Cindarella Life on
Dynamite Inc. Earth
David 1 1
Dora 1 1 1 1
Peter 1 1
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Singular Value Decomposition Stochastic Gradient Descent
R=UTSV R=UTV
=
R U S Vv
In our case:

M: number of users
N: number of items
R: the original (<1% known) rating matrix

In comparison to SVD, the SGD factors are not ranked
Ranked factors: iterative SGD optimize only on a single factor at a time
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(by Simon Funk)
1st iteration 2nd jteration

1xN
M M x Fix the 15t factor
M x N ~ | ~ Optimize only
1 2 on the 2nd factor

kth iteration
k xN

Fix the 1..k-1 factors

Optimize only
M x k on the k" factor
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The first 4 factors
mapped over France
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Singular Value Decomposition Stochastic Gradient Descent
not ranked!

Smoothness
képlet
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Recommend locations near to already visited places
VS.
Expand/modify the training set or regularization

Expansion via locality

- SVD vs. SGD

- Binary vs. Rating matrix

- identifying neighbors: k-nearest vs. radius, travel time?
- number of neighbors (n)?

Let be E the set of known ratings and N; the neighbors of the location j, than
we can modify the training set as follows. For all (u,i)

Tu,i if (‘Uﬂ, Z) € E
Fui = S f(Ruy Nuji) if (u,7) ¢ E and 3 j with (u,j) € E and i € N;
0 or don‘t care otherwise

where f is function of R, the set of known ratings by user “u” and N, ,, the set

‘“__77

locations visited by “u”where

u,i’
11377 2
1

is a place of their neighorhood.
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Model 1: expand the list of locations per user with the neighbors of visited
places
a) learn the ratings

f(Rua Nu,i) — m ZjeNu,i Tu,j

Or a constant

f(Ru: N’u,,i) —C
b) learn the occurrence
f(RU.} Nu,z’) — ]-

Model 2: adaptive distance based expansion, smoothed with local density
a) learn the ratings

dyo(%J)
1 ~ - 73 .
f(}%ujfwuj):: Nual E jéﬂhhiruﬁe dr2(j)
b) learn the occurrence

dr,2(4,5)

f(Ry,Ny;) = e dr2®
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Singular Value Decomposition Stochastic Gradient Descent

=1

original original
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Q

n=20
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Performance measures

RMSE RMSE = | 37y (rus = 73,)?

U,t

RMSEspaTSG — \/Z(u,@')eE(ru,’i T Tz,i)2)

Recall @ K: number of hits/number of relevant items

Recall(K) = 7 >, Recall,(K)

IU |
per user

Recall (K) = 7 S0, rely,

Normalized Discounted Cumulative Gain @ K
nDCG(K) = 7 32, nDCG,(K)

per user

nDCGL(K) = DOGLE) — where DCG,(K) = relys + 30, logz(z

iDCGy(K)

Item Rank fora  Relevance
user to the user
item1 0 0
item2 1 1
0
1
0
0
1
item K-1 K-2 0
item K K-1 1

Relevance (rel,;)?

Binary or real

)
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Preliminary results
Datasets

Nomao: France, mostly Paris
7605 location

9471 users
97453 known ratings

Yelp: US.A
45981 users
11537 locations
227906 known ratings
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“Rating effect”

For a given user the neighbors of “average” rated places are more-likely visited
as the neighbors of “extremely” rated places

k=30
05 .

04 B

03 |- i

02 | B

0.1 | .

rating=1 rating=2 rating=3 rating=4 rating=5

Refine recommendation: regularization or re-ranking
Location adaptive expansion via the ratings of the visited places
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“Rating effect” on Yelp
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“Rating effect” on Yelp (log-scale)
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“Rating effect” on Yelp
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M1a: Expansion with the original ratings (nDCG@100)
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M1a: Expansion with the original ratings (Recall@100)
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M1la: Weighted expansion per rating (nDCG@100 and Recall rate)
Note: we lower the test predicitions if the original rating was “low”
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MT1a: Constant expansion per rating (nDCG@100)
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nomac’
MIlar: Rating dependent constant expansion per rating (nDCG@100) .
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M1b: Expansion the list of visited locations with neighbors (nDCG@100) .
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nomac’
M1b: Expansion the list of visited locations with neighbors (Recall@100) .
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M2b: Distance adaptive expansion of visited locations , smoothed
(nDCG@100 and Recall)
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M2a: Distance adaptive expansion of ratings , smoothed
(nDCG@100 and Recall)
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M2a: Probability of expansion
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Conclusions and future work

« SGD and SVD “factors” are similar
* factors with highest eigenvalue are mostly correlated with a particular
place
« “Rating effect”
 rating dependent distribution of visited neighbors
* observed over Nomao and Yelp too
* In some cases expansion via neighbors of visited places could increase the
performance

Next steps:
« Combination of non-factor and factor models
* Wejust started to use the “rating effect”: probabilistic models

* MultiMF: Learn where to expand

Thank you! Questions?



