
Recommender Systems: Tutorial

Andras Benczur

Insitute for Computer Science and Control
Hungarian Academy of Sciences

30 June - 2 July 2014 Recommender Systems

Supported by the EC FET Open project "New tools and
algorithms for directed network analysis" (NADINE No 288956)

Overview

• INTRODUCTION
o Recommender use cases (Amazon, Netflix, Gravity)

o Classes of algorithms – Collaborative filtering, Matrix factorization, Similarity;
Content and side information based

• ALGORITHMS
o Singular Value Decomposition and a hidden connection to graph spectrum

o Stochastic gradient descent and the Factorization Machine

o User and item similarity based recommendation

o Alternating Least Squares

• COMPARISON, SUMMARY, NEW TOPICS
o Netflix Prize lessons learned

o Temporal, online and geographical recommendation

o Scalability, Distributed methods and Software

About the presenter

• Head of a large young team

• Research
o Web (spam) classification

o Hyperlink and social network analysis

o Distributed software, Stratosphere Streaming

• Collaboration- EU
o NADINE

o European Data Science research – EIT ICTLabs

 Berlin, Stockholm, INRIA, Aalto, …

o Future Internet Research

 Virtual Web Observatory with Marc

• Collaboration- Hungary
o Gravity, the recommender company

o AEGON Hungary

o Search engine for Telekom etc.

o Ericsson mobile logs

András Benczúr

benczur@sztaki.hu

Introduction

Recommender use cases

Classes of algorithms

Evaluation metrics

30 June - 2 July 2014 Recommender Systems

Amazon Recommendations

Case Study – Amazon.com

• Customers who bought this item also bought:

• Item-to-item collaborative filtering
o Find similar items rather than similar customers.

• Record pairs of items bought by the same customer
and their similarity.
o This computation is done offline for all items.

• Use this information to recommend similar or
popular books bought by others.
o This computation is fast and done online.

• Needs no notion of the „content” (text, music,
movies, metadata)

• Only uses the transaction data → domain
independent

Challenges for Collaborative Filtering

• Sparsity problem – when many of the items have not been
rated by many people, it may be hard to find ‘like minded’
people.

• First rater problem – what happens if an item has not been
rated by anyone.

• Privacy problems.

• Can combine collaborative filtering with content based:

o Use content based approach to score some unrated items.

o Then use collaborative filtering for recommendations.

• Serendipity - recommend something I do not know already

o Persian fairy tale The Three Princes of Serendip, whose
heroes "were always making discoveries, by accidents and
sagacity, of things they were not in quest of".

User-User vs. Item-Item Collaborative Filtering

• User-user: For user u, find other similar users

• Item-item: For item s, find other similar items

• Estimate rating based on ratings

 For similar items / By similar users

• Can use same similarity metrics and prediction functions

• In practice, it has been observed that item-item often works
better than user-user

Netflix Recommendations

• Netflix
o 100 million 1 - 5 stars

o 6 years (2000-2005)

o 480,000 users

o 17,770 “movies”

o $1,000,000 prize given in
2009

• Runner up Gravity team
coordinated by
Hungarians lost by 20
minutes
o Founded a startup with

the same name

More Recommender Research Data

• MovieLens 43,000 users 3500 movies 100,000 ratings of users
who rated 20 or more movies.

• Jester: small joke ratings data set

• Yelp! data release last Spring

 greater Phoenix, AZ metropolitan area including:

 11,537 businesses

 8,282 check-in sets.

 43,873 users

229,907 reviews

Borrowed from these presentations

• Anand Rajaraman, Jeffrey D. Ullman book & Stanford slides

• Gravity slides

• Yehuda Koren’s slides (Netflix prize winner – everyone is using
his slides, hard to note all re-uses)

• Danny Bickson’s GraphLab presentation

• … and from my students, colleagues

CS345
Data Mining (2009)

Recommendation Systems

Netflix Challenge

Anand Rajaraman, Jeffrey D. Ullman

Bayesian Tensor
Factorization

Gibbs Sampling

Dynamic Block Gibbs Sampling

Matrix
Factorization

Lasso

SVM

Belief Propagation

PageRank

CoEM

K-Means

SVD

LDA

…Many others…

Linear Solvers

Splash Sampler Alternating Least
Squares

GraphLab algorithms

Practical considerations of

recommendation systems

Domonkos Tikk, CEO/CSO

Gravity R&D

Facing with real needs

What we may learn
• rating prediction algorithms

• coded in various languages

• blending mechanism

• accuracy oriented

What clients want
• recommendations that

bring revenue

• robustness

• low response time

• easy integration

• reporting

What does Gravity do?

users

content of service

provider
recommender

Time requirements

• Response time: few ms (max 200)

• Training time: maximum few hours

• regular retraining

• incremental training

• Newsletters:

• nightly batch run

The 5% question – Importance of UI

Francisco Martin (Strands): „the algorithm is only 5%

in the success of the recommender system”

• placement

 below or above the fold

 scrolling

 easy to recognize

 floating in

• title

 not misleading

 explanation like

• widget

 carrousel

 static

Marketing channels

Changing the order of two boxes: 25% CTR increase

Cannibalization

• Goal: increase user engagement

• Measurements

• average visit length

• average page views

• Effect of accurate recommendations:

• use of listing page ↓

• use of item page ↑

• Overall page view: remains the same

• Secondary measurements

• Contacting

• CTR increase

Data sources – transactions

Trans-
actions

• Transaction: interaction between users and items

• Transaction types
o Numerical ratings

• E.g.: „On a scale of 1-5

 how do you rate this book?”

o Ordinal ratings

• E.g.: „How good do you

 think this book is?

(amazing, good, fair, could read once, horrible)”

o Binary ratings

• E.g.: „Do you like this book?”

o Unary ratings (events)

• E.g.: The user bought this book.

o Textual reviews, opinions

• E.g.: „I liked this book because…, but the author should have made a different
ending because it was really bad.”

Explicit vs. implicit feedback

• Explicit types have a larger cognitive cost on the user and
therefore more usable but it is harder to collect them

• Explicit feedback: rating information that explicitly tells us
whether the user likes the item or not

• Implicit feedback: events that only indicate that the user may
like the item, but the absence of the events does not mean
that the user does not like the item

o E.g.: purchased it elsewhere, did not even know that the
item existed, etc.

o Reverse problem is also possible: events indicate dislike,
we have no information of like

Hierarchy of recommender algorithms

Explicit feedback problems

Implicit feedback problems

Collaborative Filtering

Memory based

algorithms
Model based algorithms

Matrix

factorization

Collaborative Filtering (CF)

• Only uses the ratings (events)

o Does not need heterogeneous data sources

oWe don’t need to integrate different aspects of
the items/users

• Minimal preprocessing is needed

• Accurate

o Best results of any „clean” methods

• Domain independent

Disadvantages of CF

• Cold start problem

oWe can not recommend items that have no ratings

oWe can not recommend to anyone who does not
provide rating

o Our recommendation is inaccurate if there are
only a few ratings for the given user

Recommendation Evaluation

• Single item rating prediction (typically, the explicit rating)

 vs.

• Top k problem (typically, the implicit binary relevance)

• rui: relevance, or rating for item i given by user u

• : predicted rating or relevance 𝑟 𝑢𝑖

The explicit feedback model

• Rating matrix (𝑅)

o Items (e.g. movies) rated by users (explicit feedback)

o Very sparse

• Task: predict missing ratings

o How would user 𝑢 rate item 𝑖?

• Evaluation

o Test set: ratings not used for training

o Error metrics
• RMSE (Root Mean Squared Error)

o Most common metric

o Larger penalty on larger deviations

• MAE (Mean Absolute Error)

 

test

Rriu

iu

R

rr

RMSE test







),,(

2

,
ˆ

test

Rriu

iu

R

rr

MAE test







),,(

,
ˆ

Recall @ K: number of hits/number of relevant items

 single user

Normalized Discounted Cumulative Gain @ K

 single user

 where

Item Rank for a
user

Relevance
to the user

item1 0 0

item2 1 1

… … 0

1

0

0

1

item K-1 K-2 0

item K K-1 1

Relevance ru,i:

Binary or real

Top-k Evaluation Metrics

The DCG function for a single item

Recommender Methods
Singular Value Decomposition, Spectral analysis and graphs

Stochastic gradient descent and the Factorization Machine

User and item similarity based recommendation variants

Alternating Least Squares

Implicit ratings case

30 June - 2 July 2014 Recommender Systems

Matrix Factorization

• We are searching for
the unknown values of
a matrix

• We know that the
values of the matrix
are correlated in
some sort of sense

• But:
exact rules aren‘t known

Latent factor models

• Items and users described by unobserved
factors

• Each item is summarized by a
d-dimensional vector Pi

• Similarly, each user summarized by Qu

• Predicted rating for Item i by User u
o Inner product of Pi and Qu

 ∑ Puk Qik

Geared towards

females

Geared towards

males

serious

escapist

The Princess
Diaries

The Lion King

Braveheart

Lethal Weapon

Independence
Day

Amadeus
The Color Purple

Dumb and
Dumber

Ocean’s 11
Sense and
Sensibility

Gus

Dave

Yehuda Bell’s Example

Warmup

• Hypertext-induced topic search (HITS)

• Connections to Singular Value Decomposition

• Ranking in Web Retrieval – not-so-well-known-to-be matrix
factorization application

Some slides source: Monika Henzinger’s Stanford CS361 talk

http://recsys.acm.org/

http://icml.cc/2014/

http://www.kdd.org/kdd2014/

Authority

(content)

Hub (link collection)

Motivation

Neighborhood graph

• Subgraph associated to each query

Query Results
= Start Set

Forward Set

Back Set

An edge for each hyperlink, but no edges within the same host

Result1

Result2

Resultn

f1

f2

fs

...

b1

b2

bm

…

...

HITS [Kleinberg 98]

• Goal: Given a query find:

o Good sources of content (authorities)

o Good sources of links (hubs)

Intuition

• Authority comes from in-edges.
Being a good hub comes from out-edges.

• Better authority comes from in-edges from good hubs.
Being a better hub comes from out-edges to good
authorities.

HITS details

Repeat until h and a converge:

 Normalize h and a

 h[v] := S a[ui] for all ui with Edge(v, ui)

 a[v] := S h[wi] for all wi with Edge(wi, v)

w1

wk
...

a w2

u1

uk

u2
...

h

v

HITS and matrices

a(k+1) T = h(k) T A Aij=1 if ij is edge, 0 otherwise

h(k+1) T = a(k+1) T AT

h(k+1) T = h(1) T (A AT)k

a(k+1) T = a(1) T (AT A)k

HITS and matrices II

a(k+1) T = h(k) T A

h(k+1) T = a(k+1) T AT

a(k+1) T = a(1) T (AT A)k

h(k+1) T = h(1) T (A AT)k

()
w1

2 0 … 0

0 w2
2 0 … 0

 …

0 … 0 wn
2

()
w1

2 0 … 0

0 w2
2 0 … 0

 …

0 … 0 wn
2

k

k

= a(1) T V VT

= h(1) T U UT

Decomposition theorem:

AT A = VWVT

A AT = UWUT

VVT= UUT = I

a = α1v1 + … + αnvn ; a
Tvi = αi

Hubs and Authorities example

Octave example

• octave:1>

• octave:2> h=[1,1,1,1,1]

• octave:3> a=h*L

• octave:4> h=a*transpose(L)

• …

• octave:12> h=[0,0,1,0,0]

• octave:13> a=h*L

• octave:14> h=a*transpose(L)

• octave:15> [U,S,V]=svd(L)

• octave:16> A=U*S*transpose(V)

• octave:17> a=h*L/2.1889

• octave:4> h=a*transpose(L)/2.1889

• …

Example

Compare the authority scores of node D to nodes B1, B2, and B3 (Despite two
separate pieces, it is a single graph.)

• Values from running the 2-step hub-authority computation, starting from
the all-ones vector.

• Formula for running the k-step hub-authority computation.

• Rank order, as k goes to infinity.

• Intuition: difference between pages that have multiple reinforcing
endorsements and those that simply have high in-degree.

HITS and path concentration

•

 Paths of length exactly 2 between i and j

 Or maybe also less than 2 if Aii>0

• Ak

 = |{paths of length k between endpoints}|

• (AAT)

 = |{alternating back-and-forth routes}|

• (AAT)k

 = |{alternating back-and-forth k times}|


k

kjikij AAA][2

Guess best hubs and authorities!

• And the second best ones?

• HITS is instable, reverting the connecting edge completely
changes the scores

Singular Value Decomposition (SVD)

• Handy mathematical technique that has
application to many problems

• Given any mn matrix A, algorithm to
find matrices U, V, and W such that

A = U W VT

U is mm and orthonormal

W is mn and diagonal

V is nn and orthonormal

Notion of Orthonormality?

Orthonormal Basis

v1

v2 ()
w1

2 0 … 0

0 w2
2 0 … 0

 …

0 … 0 wn
2

k

 aT V VT
aT

[aT V]i = i

















 nvvvV 21

aT V

a = α1v1 + … + αnvn ; a
Tvi = αi

SVD and PCA

• Principal Components Analysis (PCA): approximating a high-
dimensional data set
with a lower-dimensional subspace

Original axes

* *

*
*

*
*

* *

*

*

*
*

*

*

*

*

*
* *

*
*

*

*
*

Data points

First principal component Second principal component

SVD and Ellipsoids

• {y=Ax : ||x|| = 1}

• ellipsoid with axes ui of length wi


i i

i

w

Uy
2

2][

Original axes

* *

*
*

*
*

* *

*

*

*
*

*

*

*

*

*
* *

*
*

*

*
*

Data points

First principal component Second principal component

Projection of graph nodes by A

First three singular components of a social network

Clusters by
K-Means

{xi
TA : xi are base

vectors of nodes}

When will two nodes be near?

If their Aij vectors are close – cosine distance

Geared towards

females

Geared towards

males

serious

escapist

The Princess
Diaries

The Lion King

Braveheart

Lethal Weapon

Independence
Day

Amadeus
The Color Purple

Dumb and
Dumber

Ocean’s 11
Sense and
Sensibility

Gus

Dave

Recall the recommender example

SVD proof: Start with longest axis …

• Select v1 to maximize {||Ax|| : ||x|| = 1}

• Compute u1 = A v1 / w1

• u1 should play the same role for AT:

 maximize {||ATy|| : ||y|| = 1} – but why u1??

• Fix conditions ||x|| = ||y|| = 1;

 w1 = max {||Ax||} = max {(Ax) TAx} ≥ max {|yTAx|},

 and in fact equal as u1 is in the direction of Av1

• We can have the same for xT ATy = (yTAx)T

 max {|| ATy ||} = max {|yTAx|} = w1

Surprise: We Are Done!

• We need to show UTAV=W (why?)

• Use any orthonormal U*, V* orthogonal to u1, v1
and try to finish:

• A*11 = w1 by the way we defined u1

• A*.1 and A*1. is of form xAy and xATy, hence cannot
be longer than w1

• We have the first row and column, proceed by
induction …

T

V

v
A

U

u
A 




















 11

SVD with missing values

• Most of the rating matrix is unknown

• The Expectation Maximization algorithm:

• Seems impossible as matrix A becomes dense, but …

• For example, the Lanczos algorithm multiplies this or
transpose with vector x: imputation result is cheap operation

• Seemed promising but badly overfits – no way to „regularize”
the elements of U and V (keep them small)

• The imputed values will quickly dominate the matrix

ij

k

kjkik

k

kjkik

ij
t

ij
t err

otherwise

known rating if)(

)1(






 


VU

VU

A
A 

)(j

k

kjkik xVU

General overview of MF approaches

• Model

o How we approximate user preferences

o 𝑟 𝑢,𝑖 = 𝑝𝑢
𝑇𝑞𝑖

• Objective function (error function)

o What we want to minimize or optimize?

o E.g. optimize for RMSE with regularization

L = 𝑟 𝑢,𝑖 − 𝑟𝑢,𝑖
2

(𝑢,𝑖)∈𝑇𝑟𝑎𝑖𝑛 + 𝜆𝑈 𝑃𝑢
2𝑆𝑈

𝑢=1 +𝜆𝐼 𝑄𝑖
2𝑆𝐼

𝑖=1

• Learning method

o How we improve the objective function?

o E.g. stochastic gradient descent (SGD)

Learning

≈ 𝑆𝐼

𝑆𝐼

𝑆𝑈 𝑆𝑈

𝐾

𝐾

M x N M x k

k x N

≈

Stochastic Gradient Descent

In our case:
M: number of users
N: number of items
R: the original (sparse) rating matrix

In comparison to SVD, the SGD factors are not ranked
Ranked factors: iterative SGD optimize only on a single factor at a time

M x N M x M M x N = N x
N

Singular Value Decomposition

R = UT S V R = PT Q

U S V

P Q

R

R

Matrix Factorization Recommenders

M x N
M
x
1

1 x N

≈ M x N
M x

2

2 x N

≈

M x N M x k

k x N

≈

Iteration 1 Iteration 2

Iteration k

Fix factor 1
Optimize only
for factor 2

Fix factors 1..k-1
Optimize only
for factor k

…

Iterative Stochastic Gradient Descent („Simon Funk”)

1 4 3

4

4 4

4

2

1,4

-0,2

0,8

0,5

-1,3

-0,4 1,6

-0.1 0.5

0,3

1,2 -0,5 1,1 -0,4

1,2 0,9

0,4 -0,4

1,2 -0,3

1,3

-0,1

0,9

0,4

1,1 -0,2

1,5

 0,0

1,1 0,8

-1,2

-0,3

1,2 0,9

1,6

 0,1 1,5

 0,0

0,5 -0,3

-1,1

-0,2

0,4 -0,2 0,5 -0,1

0.6

0,2

P

Q

R

1 4 3

4

4 4

4

2

1,5

-1,0

2,1

0,8

 1,0

 1,6 1,8

 0.7 1.6

0,0

1,4 1,1

0,9 1,9

2,5 -0,3

P

Q

R
3.3 2.4

-0.5 3.5 1.5

1.1 4.9

Simplest SGD: Perceptron Learning

• Compute a 0-1 or a graded function of the weighted sum of
the inputs

• g is the activation function

i iw x w x 

1w

nw

2w

1x

2x

nx

()g w x
g

Perceptron Algorithm

Input: dataset D, int number_of_iterations,

 float learning_rate

1. initialize weights w1, …, wn randomly

2. for (int i=0; i<number_of_iterations; i++) do

3. for each instance x(j) in D do

4. y‘ = ∑ x(j)k wk

5. err = y(j) – y‘

6. for each wk do

7. dj,k = learning_rate*err*xk
(j)

8. wk = wk + dj,k

9. end for

10. end foreach

11.end for

The learning step is a derivative

• Squared error target function

 err 2 = (y - ∑wixi)
2

• Derivative

 2 wi (y - ∑wixi) = 2 wi err

Matrix factorization

• We estimate matrix M as the product of two matrices U and V.

• Based on the known values of M, we search for U and V so that
their product best estimates the (known) values of M

Matrix factorization algorithm

• Random initialization of U and V

• While U x V does not approximate the values of M
well enough

o Choose a known value of M

o Adjust the values of the corresponding row and
column of U and V respectively, to improve

Example for an adjustment step

 (2*2)+(1*1) = 5 which equals to the selected value  we do
not do anything

Example for an adjustment step

 (3*1)+(2*3) = 9
9 > 4  we decrease the values of the corresponding rows so
that their products will be closer to 4

What is a good adjustment step?

1. Adjustment proportional to error

  let it be ε times the error

o Example: error = 9 – 4 = 5
with ε=0.1 decrease proportional to 0.1*5=0.5

(3*1)+(2*3) = 9

What is a good adjustment step?

2. Take into account how much a value contributes to the error

o For the selected row:
3 is multiplied by 1  3 is adjusted by ε*5*1 = 0.5
2 is multiplied by 3  2 is adjusted by ε*5*3 = 1.5

o For the selected column respectively:
ε*5*3=1.5 and ε*5*2=1.0

Result of the adjustment step

ε = 0.1

• row values decrease by:
ε*5*1 = 0.5
ε*5*3 = 1.5

• column values decrease by:
ε*5*3=1.5

 ε*5*2=1.0

 2.5 0.5
-0.5

2

(2.5*-0.5)+(0.5*2) = -0.25

Gradient Descent

• Why is the previously shown adjustment step a good
one (at least in theory)?

• Error function: sum of squared errors

• Each value of U and V is a variable of the error
function  partial derivatives

 err2 = (u1v1 + u2v2 - m)2

 d err2 / du1 =

 = 2 (u1v1 + u2v2 - m) v1

• Minimization of the error by gradient descent leads
to the previously shown adjustment steps

Gradient Descent Summary

• We want to minimize RMSE

o Same as minimizing MSE

• Minimum place where its derivatives are zeroes

o Because the error surface is quadratic

• SGD optimization

   
 











testtest Riu

K

k

kiukui

testRiu

uiui

test

qpr
R

rr
R

MSE
),(

2

1),(

2 1
ˆ

1

BRISMF model

• Biased Regularized Incremental Simultaneous Matrix
Factorization

• Applies regularization to prevent overfitting

• To further decrease RMSE using bias values

• Model:

iu

K

k

kiukiuiuui cbqpcbqpr  
1

ˆ


BRISMF Learning

• Loss function

• SGD update rules

  









  i

i

u

u

Riu ki

ki

ku

ukiu

K

k

kiukui cbqpcbqpr
train

22

),(),(

2

),(

2

2

1



 ukkiuiuk pqep    kiukuiki qpeq  

 uuiu beb    iuii cec  

BRISMF – steps

• Initialize 𝑃 and 𝑄 randomly

• For each iteration

o Get the next rating from 𝑅

o Update 𝑃 and 𝑄 simultaneously using the update
rules

• Do until..

o The training error is below a threshold

o Test error is decreasing

o Other stopping criteria is also possible

CS345
Data Mining (2009)

Recommendation Systems

Netflix Challenge

Anand Rajaraman, Jeffrey D. Ullman

Content-based recommendations

 Main idea: recommend items to
customer C similar to previous items
rated highly by C

 Movie recommendations

 recommend movies with same actor(s),
director, genre, …

 Websites, blogs, news

 recommend other sites with “similar”
content

Plan of action

likes

Item profiles

Red

Circles

Triangles

User profile

match

recommend
build

Item Profiles

 For each item, create an item profile

 Profile is a set of features

 movies: author, title, actor, director,…

 text: set of “important” words in document

 How to pick important words?

 Usual heuristic is TF.IDF (Term Frequency
times Inverse Doc Frequency)

TF.IDF

fij = frequency of term ti in document dj

ni = number of docs that mention term i

N = total number of docs

TF.IDF score wij = TFij x IDFi

Doc profile = set of words with highest
TF.IDF scores, together with their scores

User profiles and prediction

 User profile possibilities:

 Weighted average of rated item profiles

 Variation: weight by difference from average
rating for item

 …

 Prediction heuristic

 Given user profile c and item profile s,
estimate u(c,s) = cos(c,s) = c.s/(|c||s|)

 Need efficient method to find items with
high utility: later

Model-based approaches

 For each user, learn a classifier that
classifies items into rating classes

 liked by user and not liked by user

 e.g., Bayesian, regression, SVM

 Apply classifier to each item to find
recommendation candidates

 Problem: scalability

 Won’t investigate further in this class

Limitations of content-based
approach

 Finding the appropriate features

 e.g., images, movies, music

 Overspecialization

 Never recommends items outside user’s
content profile

 People might have multiple interests

 Recommendations for new users

 How to build a profile?

 Recent result: 20 ratings more valuable
than content

Similarity based Collaborative
Filtering

 Consider user c

 Find set D of other users whose ratings
are “similar” to c’s ratings

 Estimate user’s ratings based on ratings
of users in D

Similar users

 Let rx be the vector of user x’s ratings

 Cosine similarity measure

 sim(x,y) = cos(rx , ry)

 Pearson correlation coefficient

 Sxy = items rated by both users x and y

Rating predictions

 Let D be the set of k users most similar to c
who have rated item s

 Possibilities for prediction function (item s):

 rcs = 1/k d  D rds

 rcs = (d  D sim(c,d) x rds)/(d  D
 sim(c,d))

Complexity

 Expensive step is finding k most similar
customers

 O(|U|)

 Too expensive to do at runtime

 Need to pre-compute

 Naïve precomputation takes time
O(N|U|)

 Tricks for some speedup

 Can use clustering, partitioning as
alternatives, but quality degrades

The traditional similarity approach

• One of the earliest algorithms

• Warning: performance is very poor

• Improved version next …

Factorization Machine (Steffen Rendle)

• Model: linear regression and pairwise rank k interactions:

• Substitution for traditional matrix factorization:

• If items have attributes (e.g. content, tf.idf, …):

• One (but not the only) way to train is by gradient descent

Hierarchy of recommender algorithms

Explicit feedback problems

Implicit feedback problems

Collaborative Filtering

Memory based

algorithms
Model based algorithms

iALS

Matrix factorization

SVD, ALS

N
ea

re
st

 N
ei

g
h

b
o

r
b

as
ed

 m
et

h
o

d
s

F
ac

to
ri

za
ti

o
n

m

ac
h

in
e

Implicit feedback
and

Alternating Least Squares

„Rating” matrix changes

1 1 1

1

1 1

1

1

0 0

0 0 0

0 0

The task

• 𝑅(𝑢, 𝑖): User 𝑢 viewed/purchased 𝑖 – 𝑅(𝑢, 𝑖) times

o Most cases: most of the values in 𝑅 are zeros, there are some ones,
the occurrence of other values is very low (e.g. movie recommender)

o 𝑅 is dense

• Recommend a (previously not viewed/purchased) item that
the user will enjoy

• We do not know if the user liked an item
o We have to infer that → heuristics

o Additional step: Predicting the preference?

• We have no information about items that the user didn’t like

Problem with explicit objective function

• L = 𝑟 𝑢,𝑖 − 𝑟𝑢,𝑖
2

(𝑢,𝑖)∈𝑇 + 𝜆𝑈 𝑃𝑢
2𝑆𝑈

𝑢=1 +𝜆𝐼 𝑄𝑖
2𝑆𝐼

𝑖=1

• The matrix to be factorized contains 0s and 1s

o If we consider only the positive events (1s)

• Predicting 1s everywhere trivially minimizes L

• Some minor differences may occur due to regularization

• Modified objective function (including zeros)

o L = 𝑟 𝑢,𝑖 − 𝑟𝑢,𝑖
2𝑆𝑈,𝑆𝐼

𝑢=1,𝑖=1 + 𝜆𝑈 𝑃𝑢
2𝑆𝑈

𝑢=1 +𝜆𝐼 𝑄𝑖
2𝑆𝐼

𝑖=1

o Number of terms increased

o #zeros ≫ #ones
• All zero prediction gives pretty good 𝐿

Why „explicit” optimization suffers

• Complexity of the best explicit method

o 𝑂 𝑇 𝐾

o Linear in the number of observed ratings

• Implicit feedback

o One should consider negative implicit feedback („missing
rating”)

o There is no real missing rating in the matrix
• An element is either 0 or 1, no empty cells

o Complexity: 𝑂 𝑆𝑈𝑆𝐼𝐾

o Sparse data (< 1%, in general)

o 𝑆𝑈𝑆𝐼 ≫ 𝑇

iALS
(Implicit Alternating Least

Squares)

Short detour: linear regression

• 𝐴𝑥 = 𝑏 linear equation

o 𝐴𝜖ℝ𝑁×𝑀, b𝜖ℝ𝑁 known

o x𝜖ℝ𝑀 unknown

• Meaning

o Rows of 𝐴 are the training instances

o Elements are the output for each instance

o 𝑥 is a weighting vector

o Assume output is obtained with linear combination of inputs

• Objective function: MSE

o 𝐿 = 𝑏 − 𝐴𝑥 2 =
1

𝑁
 𝑏𝑖 − 𝐴𝑇

𝑖
𝑇
𝑥

2
𝑁
𝑖=1

Solution of the linear regression

• Error function is convex, its minimum is attained
where its derivative is zero

• Gradient:
𝜕𝐿

𝜕𝑥
= 2𝐴𝑇 𝑏 − 𝐴𝑥

• 2𝐴𝑇 𝑏 − 𝐴𝑥 = 0

• 𝐴𝑇𝑏 = 𝐴𝑇𝐴𝑥

• 𝑥 = 𝐴𝑇𝐴 −1𝐴𝑇𝑏

• The inverse of 𝐴𝑇𝐴 may not exist – pseudoinverse

Alternating Least Squares (ALS)

• 𝑅 ≈ 𝑅 = 𝑃𝑇𝑄

• Fix one of the matrices, let’s pick 𝑃

• Given a fixed 𝑃 the 𝑖-th column of 𝑅 depends only on the 𝑖-th
column of 𝑄

• Problem to solve: 𝑅𝑖 = 𝑃𝑇𝑄𝑖

o Problem of linear regression

• Error function

o 𝐿 = 𝑅 − 𝑅
𝑓𝑟𝑜𝑏

2
+ 𝜆𝑈 𝑃 𝑓𝑟𝑜𝑏

2
+ 𝜆𝐼 𝑄 𝑓𝑟𝑜𝑏

2

o The derivatives of 𝐿 by 𝑄 is a linear function of the
columns of 𝑄, therefore each column of 𝑄 can be
calculated separately

ALS

• Initialize 𝑃 and 𝑄 randomly

• Fix 𝑄

• For each row of 𝑃 solve with linear regression
𝑄′𝑇𝑝𝑢

𝑇 = 𝑟𝑢′

o The target vector consists of the ratings in the row of 𝑅 for
user 𝑢

o 𝑄’ contains only the columns for those items that are rated
by the user

• Fix 𝑃

• For each column of 𝑄 solve with linear regression

𝑃′𝑞𝑖 = 𝑟𝑖
′𝑇

iALS – objective function

• 𝐿 = 𝑤𝑢,𝑖 𝑟 𝑢,𝑖 − 𝑟𝑢,𝑖
2𝑆𝑈,𝑆𝐼

𝑢=1,𝑖=1 + 𝜆𝑈 𝑃𝑢
2𝑆𝑈

𝑢=1 + 𝜆𝐼 𝑄𝑖
2𝑆𝐼

𝑖=1

• Weighted MSE

• 𝑤𝑢,𝑖 =
𝑤𝑢,𝑖 if (𝑢, 𝑖) ∈ 𝑇

𝑤0 otherwise
 𝑤0 ≪ 𝑤𝑢,𝑖

• Typical weights: 𝑤0 = 1, 𝑤𝑢,𝑖 = 100 ∗ 𝑠𝑢𝑝𝑝 𝑢, 𝑖

• What does it mean?
o Create two matrices from the events

o (1) Preference matrix

• Binary

• 1 represents the presence of an event
o (2) Confidence matrix

• Interprets our certainty on the corresponding values in the first
matrix

• Negative feedback is much less certain

Effective optimization with ALS

• Q-step, first column:
𝜕𝐿

𝜕𝑄1
= 2 𝑤𝑢,1 𝑃𝑢

𝑇𝑄1 − 𝑟𝑢,1 𝑃𝑢
𝑆𝑈
𝑢=1 + 2𝜆𝐼𝑄1

• The sum has 𝑆𝑈 terms; calculating this for every column of 𝑄 would
require 𝑂 𝑆𝑈𝑆𝐼
o Does not scale

• Let 𝑤𝑢,𝑖 = 𝑤′𝑢,𝑖 + 𝑤0

• After substituting and decomposition
1

2

𝜕𝐿

𝜕𝐼1
= − 𝑤𝑢,1𝑟𝑢,1𝑃𝑢

𝑇𝑆𝑈
𝑢=1 +

 𝑤′
𝑢,1𝑃𝑢𝑃𝑢

𝑇𝑄1
𝑆𝑈
𝑢=1 + 𝑤0𝑃𝑢𝑃𝑢

𝑇
𝑆𝑈
𝑢=1 𝑄1 + 𝜆𝐼𝑄1

• First two sums scale with the positive implicit feedback of the first
item in 𝑅

• The sum in the third member does not depend on the column of 𝑄
o can be pre-calculated

• Cost of calculating one column of 𝑄 is the 𝐾 × 𝐾 matrix inversion

iALS algorithm

0. Random initialization of 𝑃 and 𝑄

1. Stop, if the approximation is good

2. Fix 𝑃 and calculate the columns of 𝑄

o 𝐶(𝑄) = 𝑤0𝑃𝑢𝑃𝑢
𝑇𝑆𝑈

𝑢=1

o For the 𝑖-th column

• 𝐶(𝑄,𝑖) = 𝐶(𝑄) + 𝑤′
𝑢,1𝑃𝑢𝑃𝑢

𝑇𝑆𝑈
𝑢=1

• 𝑂(𝑄,𝑖) = 𝑤𝑢,1𝑟𝑢,1𝑃𝑢
𝑇𝑆𝑈

𝑢=1

• 𝑄𝑖 = 𝐶(𝑄,𝑖) + 𝜆𝐼𝐸
−1

𝑂(𝑄,𝑖)

3. Fix 𝑄 and calculate the columns of 𝑃

o Analogously

4. GOTO: 1

Complexity of iALS

• One epoch (𝑃- and 𝑄-step)

o 𝐶(𝑃) and 𝐶(𝑄)  𝑂 𝐾2 𝑆𝑈 + 𝑆𝐼

o 𝐶(𝑄,𝑖) and 𝐶(𝑃,𝑢)  proportional to the #non-zeros  𝑂 𝐾2𝑁+

o Matrix inversion for each column  𝑂 𝐾3 𝑆𝑈 + 𝑆𝐼

• Total cost: 𝑂 𝐾3 𝑆𝑈 + 𝑆𝐼 + 𝐾2𝑁+

o Linear in the number of events

o Cubic in the number of features

• In practice: 𝑆𝑈 + 𝑆𝐼 ≪ 𝑁+ so for small K the second term
dominates

o Quadratic in the number of features

Performance, summary,
additional topics

COMPARISON, SUMMARY, NEW TOPICS

Netflix Prize lessons learned

Temporal, online and geographical recommendation

SCALABILITY, DISTRIBUTED METHODS AND SOFTWARE

30 June - 2 July 2014 Recommender Systems

Data about the Netflix Movies

Count Avg rating Most Loved Movies

137812 4.593 The Shawshank Redemption

133597 4.545 Lord of the Rings :The Return of the King

180883 4.306 The Green Mile

150676 4.460 Lord of the Rings :The Two Towers

139050 4.415 Finding Nemo

117456 4.504 Raiders of the Lost Ark

Most Rated Movies

Miss Congeniality

Independence Day

The Patriot

The Day After Tomorrow

Pretty Woman

Pirates of the Caribbean

Highest Variance

The Royal Tenenbaums

Lost In Translation

Pearl Harbor

Miss Congeniality

Napolean Dynamite

Fahrenheit 9/11

Most Active Users

User ID # Ratings Mean Rating

 305344 17,651 1.90

 387418 17,432 1.81

2439493 16,560 1.22

1664010 15,811 4.26

2118461 14,829 4.08

1461435 9,820 1.37

1639792 9,764 1.33

1314869 9,739 2.95

Social contacts as side information

Slides:
Robert Palovics

Influence, or?

Social Regularization I

• Average-based regularization

Minimize Ui’s taste with the average tastes of Ui’s friends.
The similarity function Sim(i, f) allows the social
regularization term to treat users’ friends differently.

Ma, Zhou, Liu, Lyu, King. WSDM 2011

Social Regularization II

• Individual-based regularization

This approach allows similarity of friends’ tastes to be
individually considered. It also indirectly models the
propagation of tastes.

Ma, Zhou, Liu, Lyu, King. WSDM 2011

Catching the influence event

Measuring the influence

The influence recommender

The influence recommender

Online recommendation

• Use SGD model update once for each new item

• Challenge for evaluation

o Model changes after each and every transaction

o Needs an evaluation metric for single transactions: DCG

Experiments over Last.fm

 Datasets

 Nomao: France, mostly Paris
 7605 locations
 9471 users
 97453 known ratings

 Yelp: Phoenix, AZ
 45981 users
 11537 locations
 227906 known ratings
 Text review

Geographic side information

The first 4 factors
mapped over France

Singular Value Decomposition

Method 1: regularization (omitted)

Method 2: imputation

Let be E the set of known ratings and Nj the neighbors of the location j,
than we can modify the training set as follows. For all (u,i)

where f is function of Ru, the set of known ratings by user “u” and
Nu,i, the set locations visited by “u” where “i” is a place of their
neigborhood.

- identifying neighbors: k-nearest vs. radius , travel time?
- number of neighbors (n)?

Recommend locations near already visited places

Model 1: expand the list of locations per user with the neighbors of visited
places
 a) learn the ratings

 or a constant

 b) learn the occurrence

Model 2: adaptive distance based expansion, smoothed with local density
 a) learn the ratings

 b) learn the occurrence

Imputation models

Users rate average at locations that they frequently visit.
New locations get extreme (1 and 5) ratings

Refine recommendation: regularization or re-ranking
Location adaptive expansion by ratings of the nearby places

Ratings by frequency of location

Ratings by frequency: Yelp!

Yelp!, log scale

Distributed algorithms,
parallelization, scalability,

software

Carnegie Mellon University

Danny Bickson

Yucheng
Low

Aapo
Kyrola

Carlos
Guestrin

Joe
Hellerstein

Alex
Smola

Parallel Machine Learning for Large-Scale Graphs

Jay
Gu

Joseph
Gonzalez

The GraphLab Team:

Parallelism is Difficult

Wide array of different parallel architectures:

Different challenges for each architecture

GPUs Multicore Clusters Clouds Supercomputers

High Level Abstractions to make things easier

Belief
Propagation

Label Propagation

Kernel
Methods

Deep Belief
Networks

Neural
Networks

Tensor
Factorization

PageRank

Lasso

Map-Reduce for Data-Parallel ML

Excellent for large data-parallel tasks!

Data-Parallel Graph-Parallel

Cross
Validation

Feature
Extraction

Map Reduce

Computing Sufficient
Statistics

Map – Shuffle/Sort – Reduce

Input Splitting Mapping Shuffling Reducing Output

data luchon
network

science data
science
network

luchon science

data
luchon

network

science
data

science

network
luchon
science

data,1
luchon,1

 network,1

data,1
science,1
 science,1

luchon,1
network,1
 science,1

luchon,1
luchon,1

network,1
network,1

data,1
data,1

science,1
 science,1
 science,1

luchon,2

network,2

data,2

science,3

luchon,2
network,2

data,2
science,3

SGD, ALS implementations in Mahout

• ALS single iteration is easy:
o 𝑞𝑖 = 𝑃𝑇𝑃 −1𝑃𝑇 𝑅𝑖 = 𝑃𝑇𝑃 −1𝑃𝑗

𝑇 𝑅𝑖𝑗
𝑁
𝑗=1

o Partition by i

o Broadcast 𝑃𝑇𝑃, just a kxk matrix

• SGD?
o Updates affect both the user AND the item models

o Partitioning neither for users nor for items is sufficient

o Efficient shared memory implementations but no real nice distributed

• More iterations?
o Hadoop will write all information to disk, we may re-partition before

writing to have it ready for the next iteration

o Should we consider this efficient??

PageRank in MapReduce

• MAP:
o Read out-edge list of node n

o p  out-edge (n): emit (p, PageRank(n)/outdegree(n))

• Reduce
o Grouped by p

o Add up emitted values as new PageRank (p)

o Write all results to disk and restart

• Something is missing to start the next iteration!

MapReduce PageRank code

public static void main(String[] args) {
String[] value = {
// key | PageRank| points-to
 "1|0.25|2;4",
 "2|0.25|3;4",
 "3|0.25|2",
 "4|0.25|3",
};

mapper(value);
reducer(collect.entrySet());

}

 | 1 2 3 4

--+----------

1 | 0 1 0 1

2 | 0 0 1 1

3 | 1 0 0 0

4 | 0 0 1 0

Result (𝜀 = 0):
„1|0.25”,
„2|0.125”,
„3|0.25”,
„4|0.375”

Where are the edges??

Edges from node i need to be joined with new PageRank (i)

ALS: a very expensive example

• 𝑞𝑖 = 𝑃𝑇𝑃 −1𝑃𝑇 𝑅𝑖 = 𝑃𝑇𝑃 −1𝑃𝑗
𝑇 𝑅𝑖𝑗

𝑁
𝑗=1

• For each nonzero 𝑅𝑖𝑗 we have an „edge”

• We need to emit 𝑃𝑇𝑃 −1 of dimension k2

• Join by using i as key, to compute Q

• If we have a predefined partition, we should not emit the
same data for ALL edges from partition x to partition y

References

• Rajaraman, Anand, and Jeffrey David Ullman. Mining of massive datasets.
Cambridge University Press, 2011.

• Koren, Yehuda, Robert Bell, and Chris Volinsky. Matrix factorization
techniques for recommender systems. Computer 42.8 (2009): 30-37.

• Rendle, Steffen. Factorization machines. ICDM, 2010

• Bell, Robert M., and Yehuda Koren. Improved neighborhood-based
collaborative filtering. KDD Cup and Workshop at SIGKDD, 2007.

• Pilászy, István, Dávid Zibriczky, and Domonkos Tikk. Fast ALS-based matrix
factorization for explicit and implicit feedback datasets. RecSys 2010.

• Pilászy, István, and Domonkos Tikk. Recommending new movies: even a
few ratings are more valuable than metadata. RecSys 2009.

• Ma, H., Zhou, D., Liu, C., Lyu, M. R., & King, I. Recommender systems with
social regularization. WSDM 2011

• Pálovics, Benczúr. Temporal influence over the Last.fm social network. IEEE
ASONAM 2013

• Gemulla, Rainer, et al. Large-scale matrix factorization with distributed
stochastic gradient descent. KDD 2011.

