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Overview 

• INTRODUCTION 
o Recommender use cases (Amazon,  Netflix, Gravity) 

o Classes of algorithms – Collaborative filtering,  Matrix factorization, Similarity; 
Content and side information based 

• ALGORITHMS 
o Singular Value Decomposition and a hidden connection to graph spectrum 

o Stochastic gradient descent and the Factorization Machine 

o User and item similarity based recommendation 

o Alternating Least Squares 

• COMPARISON, SUMMARY, NEW TOPICS 
o Netflix Prize lessons learned  

o Temporal, online and geographical recommendation 

o Scalability, Distributed methods and Software 
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Introduction 

Recommender use cases 

Classes of algorithms 

Evaluation metrics 
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Amazon Recommendations 



Case Study – Amazon.com 

• Customers who bought this item also bought: 

• Item-to-item collaborative filtering 
o Find similar items rather than similar customers. 

• Record pairs of  items bought by the same customer 
and their similarity. 
o This computation is done offline for all items. 

• Use this information to recommend similar or 
popular books bought by others. 
o This computation is fast and done online. 

• Needs no notion of the „content” (text, music, 
movies, metadata) 

• Only uses the transaction data → domain 
independent 

 

 

 

 



Challenges for Collaborative Filtering 

• Sparsity problem – when many of the items have not been 
rated by many people, it may be hard to find ‘like minded’ 
people. 

• First rater problem – what happens if an item has not  been 
rated by anyone. 

• Privacy problems. 

• Can combine collaborative filtering with content based: 

o Use content based approach to score some unrated items. 

o Then use collaborative filtering for recommendations. 

• Serendipity - recommend something I do not know already  

o Persian fairy tale The Three Princes of Serendip, whose 
heroes "were always making discoveries, by accidents and 
sagacity, of things they were not in quest of". 



User-User vs. Item-Item Collaborative Filtering 

• User-user: For user u, find other similar users 

• Item-item: For item s, find other similar items  

• Estimate rating based on ratings 

 For similar items / By similar users 

• Can use same similarity metrics and prediction functions 

• In practice, it has been observed that item-item often works 
better than user-user 



Netflix Recommendations 

• Netflix  
o 100 million 1 - 5 stars 

o 6 years (2000-2005) 

o 480,000 users 

o 17,770 “movies” 

o $1,000,000 prize given in 
2009 

• Runner up Gravity team 
coordinated by 
Hungarians lost by 20 
minutes 
o Founded a startup with 

the same name 

 



More Recommender Research Data 

• MovieLens 43,000 users 3500 movies 100,000 ratings of users 
who rated 20 or more movies. 

• Jester: small joke ratings data set 

• Yelp! data release last Spring 

  greater Phoenix, AZ metropolitan area including: 

  11,537  businesses 

    8,282  check-in sets. 

  43,873  users 

229,907  reviews 

 
 



Borrowed from these presentations 

• Anand Rajaraman, Jeffrey D. Ullman book & Stanford slides 

• Gravity slides 

• Yehuda Koren’s slides (Netflix prize winner – everyone is using 
his slides, hard to note all re-uses) 

• Danny Bickson’s GraphLab presentation 

• … and from my students, colleagues 

 



CS345 
Data Mining (2009) 

Recommendation Systems 

Netflix Challenge 

 

Anand Rajaraman, Jeffrey D. Ullman 





Bayesian Tensor  
Factorization 

Gibbs Sampling 

Dynamic Block Gibbs Sampling 

Matrix 
Factorization 

Lasso 

SVM 

Belief Propagation 

PageRank 

CoEM 

K-Means 

SVD 

LDA 

…Many others… 

Linear Solvers 

Splash Sampler Alternating Least  
Squares 

GraphLab algorithms 



Practical considerations of 

recommendation systems 

Domonkos Tikk, CEO/CSO 

Gravity R&D 



Facing with real needs 

What we may learn 
• rating prediction algorithms 

• coded in various languages 

• blending mechanism 

• accuracy oriented 

What clients want 
• recommendations that 

bring revenue 

• robustness 

• low response time 

• easy integration 

• reporting 

 



What does Gravity do? 

users 

content of service 

provider 
recommender 



Time requirements 

• Response time: few ms (max 200) 

• Training time: maximum few hours 

• regular retraining 

• incremental training 

• Newsletters: 

• nightly batch run 



The 5% question – Importance of UI 

Francisco Martin (Strands): „the algorithm is only 5% 

in the success of the recommender system” 

• placement  

 below or above the fold 

 scrolling 

 easy to recognize 

 floating in 

• title 

 not misleading 

 explanation like 

• widget 

 carrousel 

 static 

 

 



Marketing channels 

Changing the order of two boxes: 25% CTR increase 



Cannibalization 

• Goal: increase user engagement 

• Measurements 

• average visit length 

• average page views 

• Effect of accurate recommendations: 

• use of listing page ↓ 

• use of item page ↑ 

• Overall page view: remains the same 

• Secondary measurements 

• Contacting 

• CTR increase 

 

 



Data sources – transactions 

Trans- 
actions 

• Transaction: interaction between users and items 

• Transaction types 
o Numerical ratings 

• E.g.: „On a scale of 1-5  

 how do you rate this book?” 

o Ordinal ratings 

• E.g.: „How good do you  

 think this book is?  

(amazing, good, fair, could read once, horrible)” 

o Binary ratings 

• E.g.: „Do you like this book?” 

o Unary ratings (events) 

• E.g.: The user bought this book. 

o Textual reviews, opinions 

• E.g.: „I liked this book because…, but the author should have made a different 
ending because it was really bad.” 



Explicit vs. implicit feedback 

• Explicit types have a larger cognitive cost on the user and 
therefore more usable but it is harder to collect them 

• Explicit feedback: rating information that explicitly tells us 
whether the user likes the item or not 

• Implicit feedback: events that only indicate that the user may 
like the item, but the absence of the events does not mean 
that the user does not like the item 

o E.g.: purchased it elsewhere, did not even know that the 
item existed, etc. 

o Reverse problem is also possible: events indicate dislike, 
we have no information of like 



Hierarchy of recommender algorithms 

 

 

 

 

 

Explicit feedback problems 

 

 

 

Implicit feedback problems 

Collaborative Filtering 

Memory based 

algorithms 
Model based algorithms 

 

Matrix 

factorization 



Collaborative Filtering (CF) 

• Only uses the ratings (events) 

o Does not need heterogeneous data sources 

oWe don’t need to integrate different aspects of 
the items/users 

• Minimal preprocessing is needed 

• Accurate 

o Best results of any „clean” methods 

• Domain independent 

 



Disadvantages of CF 

• Cold start problem 

oWe can not recommend items that have no ratings 

oWe can not recommend to anyone who does not 
provide rating 

o Our recommendation is inaccurate if there are 
only a few ratings for the given user 



Recommendation Evaluation 

• Single item rating prediction (typically, the explicit rating) 

 vs.  

• Top k problem (typically, the implicit binary relevance) 

• rui: relevance, or rating for item i given by user u 

•     : predicted rating or relevance 𝑟 𝑢𝑖 



The explicit feedback model 

• Rating matrix (𝑅) 

o Items (e.g. movies) rated by users (explicit feedback) 

o Very sparse 

• Task: predict missing ratings 

o How would user 𝑢 rate item 𝑖? 

• Evaluation 

o Test set: ratings not used for training 

o Error metrics 
• RMSE (Root Mean Squared Error) 

o Most common metric 

o Larger penalty on larger deviations 

 

• MAE (Mean Absolute Error) 
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Recall @ K: number of hits/number of relevant items 
 
 
 
        single user 
 
 
 
Normalized Discounted Cumulative Gain @ K 
 
 
        single user  
         
 
        where  

    

Item Rank for a 
user 

Relevance 
to the user 

item1 0 0 

item2 1 1 

… … 0 

1 

0 

0 

1 

item K-1 K-2 0 

item K K-1 1 

Relevance ru,i: 
 
Binary or real  

Top-k Evaluation Metrics 



The DCG function for a single item 



Recommender Methods 
Singular Value Decomposition, Spectral analysis and graphs 

Stochastic gradient descent and the Factorization Machine 

User and item similarity based recommendation variants 

Alternating Least Squares 

Implicit ratings case 

30 June - 2 July 2014 Recommender Systems 



Matrix Factorization 

• We are searching for  
the unknown values of  
a matrix  

• We know that the  
values of the matrix  
are correlated in  
some sort of sense  

• But:  
exact rules aren‘t known 



Latent factor models 

• Items and users described by unobserved 
factors 

• Each item is summarized by a  
d-dimensional vector Pi  

• Similarly, each user summarized by Qu 

• Predicted rating for Item i by User u 
o Inner product of Pi and Qu 

 ∑ Puk Qik  



Geared towards  

females 

Geared towards  

males 

serious 

escapist 

The Princess 
Diaries 

The Lion King 

Braveheart 

Lethal Weapon 

Independence 
Day 

Amadeus 
The Color Purple 

Dumb and 
Dumber 

Ocean’s 11 
Sense and 
Sensibility 

Gus 

Dave 

Yehuda Bell’s Example 



Warmup 

• Hypertext-induced topic search (HITS) 

• Connections to Singular Value Decomposition 

• Ranking in Web Retrieval – not-so-well-known-to-be matrix 
factorization application 

Some slides source: Monika Henzinger’s Stanford CS361 talk 



http://recsys.acm.org/ 

http://icml.cc/2014/ 

http://www.kdd.org/kdd2014/ 

Authority 

(content) 

Hub (link collection) 

Motivation 



Neighborhood graph 

• Subgraph associated to each query 

Query Results 
= Start Set 

 
Forward Set 

 
Back Set 

An edge for each hyperlink, but no edges within the same host 

Result1 

Result2 

Resultn 

f1 

f2 

fs 

... 

b1 

b2 

bm 

 

… 

 
... 



HITS [Kleinberg 98] 

• Goal: Given a query find: 

 

 

o Good sources of content (authorities) 

 

 

o Good sources of links (hubs) 



Intuition 

• Authority comes from in-edges.  
Being a good hub comes from out-edges. 

 

  

 

• Better authority comes from in-edges from good hubs. 
Being a better hub comes from out-edges to good 
authorities. 
 



HITS details 

Repeat until h and a converge: 

        Normalize h and a 

   h[v] := S a[ui]  for all ui with Edge(v, ui) 

   a[v] := S h[wi] for all wi with Edge(wi, v) 

w1 

wk 
... 

a w2 

u1 

uk 

u2 
... 

h 

v 



HITS and matrices 

a(k+1) T = h(k) T A      Aij=1 if ij is edge, 0 otherwise 

h(k+1) T = a(k+1) T AT 

h(k+1) T = h(1) T (A AT)k 

 

a(k+1) T = a(1) T (AT A)k 

 



HITS and matrices II 

a(k+1) T = h(k) T A 

h(k+1) T = a(k+1) T AT 

a(k+1) T = a(1) T (AT A)k 

 

h(k+1) T = h(1) T (A AT)k 

(     )  
w1

2  0      …     0 

0    w2
2  0   …  0 

          …   

0         …    0 wn
2 

(     )  
w1

2  0      …     0 

0    w2
2  0   …  0 

          …   

0       …       0 wn
2 

k 

k 

= a(1) T V                        VT 

= h(1) T U                        UT 

Decomposition theorem: 

AT A = VWVT 

A AT = UWUT 

VVT= UUT = I 

a = α1v1 + … + αnvn ;   a
Tvi = αi 



Hubs and Authorities example 



Octave example 

• octave:1>  

• octave:2> h=[1,1,1,1,1] 

• octave:3> a=h*L 

• octave:4> h=a*transpose(L) 

• … 

• octave:12> h=[0,0,1,0,0] 

• octave:13> a=h*L 

• octave:14> h=a*transpose(L) 

 

• octave:15> [U,S,V]=svd(L) 

• octave:16> A=U*S*transpose(V) 

• octave:17> a=h*L/2.1889 

• octave:4> h=a*transpose(L)/2.1889 

• … 



Example 

Compare the authority scores of node D to nodes B1, B2, and B3 (Despite two 
separate pieces, it is a single graph.)  

• Values from running the 2-step hub-authority computation, starting from 
the all-ones vector. 

• Formula for running the k-step hub-authority computation. 

• Rank order, as k goes to infinity. 

• Intuition: difference between pages that have multiple reinforcing 
endorsements and those that simply have high in-degree. 

 



HITS and path concentration 

•   

  Paths of length exactly 2 between i and j 

 Or maybe also less than 2 if Aii>0 

• Ak  

 = |{paths of length k between endpoints}| 

• (AAT)  

 = |{alternating back-and-forth routes}| 

• (AAT)k  

 = |{alternating back-and-forth k times}| 


k

kjikij AAA ][ 2



Guess best hubs and authorities! 

• And the second best ones? 

• HITS is instable, reverting the connecting edge completely 
changes the scores 



Singular Value Decomposition (SVD) 

• Handy mathematical technique that has 
application to many problems 

• Given any mn matrix A, algorithm to 
find matrices U, V, and W such that 

A = U W VT 

U is mm and orthonormal 

W is mn and diagonal 

V  is nn and orthonormal 

Notion of Orthonormality? 



Orthonormal Basis 
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SVD and PCA 

• Principal Components Analysis (PCA): approximating a high-
dimensional data set 
with a lower-dimensional subspace 

Original axes 

* * 

* 
* 

* 
* 

* * 

* 

* 

* 
* 

* 

* 

* 

* 

* 
* * 

* 
* 

* 

* 
* 

Data points 

First principal component Second principal component 



SVD and Ellipsoids 

• {y=Ax : ||x|| = 1} 

 

• ellipsoid with axes ui of length wi 
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Projection of graph nodes by A 

First three singular components of a social network 

Clusters by 
K-Means 

{xi
TA : xi are base 

vectors of nodes}  

When will two nodes be near? 

If their Aij vectors are close – cosine distance 



Geared towards  

females 

Geared towards  

males 

serious 

escapist 

The Princess 
Diaries 

The Lion King 

Braveheart 

Lethal Weapon 

Independence 
Day 

Amadeus 
The Color Purple 

Dumb and 
Dumber 

Ocean’s 11 
Sense and 
Sensibility 

Gus 

Dave 

Recall the recommender example 



SVD proof: Start with longest axis … 

• Select v1 to maximize {||Ax|| : ||x|| = 1} 

• Compute u1 = A v1 / w1  

• u1 should play the same role for AT: 

  maximize {||ATy|| : ||y|| = 1} – but why u1?? 

• Fix conditions ||x|| = ||y|| = 1; 

       w1 = max {||Ax||} = max {(Ax) TAx} ≥ max {|yTAx|}, 

 and in fact equal as u1 is in the direction of Av1 

• We can have the same for xT ATy = (yTAx)T 

 max {|| ATy ||} = max {|yTAx|} = w1
 



Surprise: We Are Done! 

• We need to show UTAV=W (why?) 

• Use any orthonormal U*, V* orthogonal to    u1, v1 
and try to finish: 

 

 

• A*11 = w1 by the way we defined u1 

• A*.1 and A*1. is of form xAy and xATy, hence cannot 
be longer than w1 

• We have the first row and column, proceed by 
induction … 
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SVD with missing values 

• Most of the rating matrix is unknown 

• The Expectation Maximization algorithm: 

 

 

 

• Seems impossible as matrix A becomes dense, but … 

• For example, the Lanczos algorithm multiplies this or 
transpose with vector x: imputation result is cheap operation 

 

 

• Seemed promising but badly overfits – no way to „regularize” 
the elements of U and V (keep them small) 

• The imputed values will quickly dominate the matrix 
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General overview of MF approaches 

• Model 

o How we approximate user preferences 

o 𝑟 𝑢,𝑖 = 𝑝𝑢
𝑇𝑞𝑖 

• Objective function (error function) 

o What we want to minimize or optimize? 

o E.g. optimize for RMSE with regularization 

L =  𝑟 𝑢,𝑖 − 𝑟𝑢,𝑖
2

(𝑢,𝑖)∈𝑇𝑟𝑎𝑖𝑛 + 𝜆𝑈  𝑃𝑢
2𝑆𝑈

𝑢=1 +𝜆𝐼  𝑄𝑖
2𝑆𝐼

𝑖=1  

• Learning method 

o How we improve the objective function? 

o E.g. stochastic gradient descent (SGD) 

Learning 

≈ 𝑆𝐼 

𝑆𝐼 

𝑆𝑈 𝑆𝑈 

𝐾 

𝐾 



M x N M x k 

k x N  

≈ 

Stochastic Gradient Descent 

In our case: 
M: number of users 
N: number of items 
R: the original (sparse) rating matrix  
 
In comparison to SVD, the SGD factors are not ranked 
Ranked factors: iterative SGD optimize only on a single factor at a time  

M x N M x M M x N  = N x 
N  

Singular Value Decomposition 

R = UT S V R = PT Q 

U S V 

P Q 

R 

R 

Matrix Factorization Recommenders 



M x N 
M 
x 
1 

1 x N  

≈ M x N 
M x 

2 

2 x N  

≈ 

M x N M x k 

k x N  

≈ 

Iteration 1 Iteration 2 

Iteration k 

Fix factor 1 
Optimize only 
for factor 2 

Fix factors 1..k-1  
Optimize only 
for factor k 

… 

Iterative Stochastic Gradient Descent  („Simon Funk”) 
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Simplest SGD: Perceptron Learning 

• Compute a 0-1 or a graded function of the weighted sum of 
the inputs 

• g is the activation function 

i iw x w x 
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nw

2w

1x

2x

nx

( )g w x
g



Perceptron Algorithm 

Input: dataset D, int number_of_iterations,  

 float learning_rate 

1. initialize weights w1, …, wn randomly 

2. for (int i=0; i<number_of_iterations; i++) do 

3.   for each instance x(j) in D do 

4.     y‘ = ∑ x(j)k wk 

5.     err = y(j) – y‘ 

6.     for each wk do 

7.       dj,k = learning_rate*err*xk
(j) 

8.       wk = wk + dj,k 

9.     end for 

10.  end foreach 

11.end for 



The learning step is a derivative 

• Squared error target function 

 

  err 2 = ( y - ∑wixi )
2 

 

• Derivative 

 

 2 wi ( y - ∑wixi ) = 2 wi err 

 

 



Matrix factorization 

• We estimate matrix M as the product of two matrices U and V.   

• Based on the known values of M, we search for U and V so that 
their product best estimates the (known) values of M  



Matrix factorization algorithm 

• Random initialization of U and V 

• While U x V does not approximate the values of M 
well enough 

o Choose a known value of M 

o Adjust the values of the corresponding row and 
column of U and V respectively, to improve 



Example for an adjustment step 

 (2*2)+(1*1) = 5 which equals to the selected value  we do 
not do anything 



Example for an adjustment step 

 (3*1)+(2*3) = 9 
9 > 4   we decrease the values of the corresponding rows so 
that their products will be closer to 4 



What is a good adjustment step? 

1. Adjustment proportional to error  

  let it be ε times the error 

o Example: error = 9 – 4 = 5 
with ε=0.1 decrease proportional to 0.1*5=0.5 

(3*1)+(2*3) = 9 



What is a good adjustment step? 

2. Take into account how much a value contributes to the error 

o For the selected row:  
3 is multiplied by 1  3 is adjusted by ε*5*1 = 0.5 
2 is multiplied by 3  2 is adjusted by ε*5*3 = 1.5 

o For the selected column respectively:  
ε*5*3=1.5 and ε*5*2=1.0  

 



Result of the adjustment step 

ε = 0.1 

• row values decrease by:  
ε*5*1 = 0.5 
ε*5*3 = 1.5 

• column values decrease by:  
ε*5*3=1.5 

 ε*5*2=1.0  

 

  2.5   0.5 
-0.5 

 
2 

(2.5*-0.5)+(0.5*2) = -0.25 



Gradient Descent 

• Why is the previously shown adjustment step a good 
one (at least in theory)?  

• Error function: sum of squared errors 

• Each value of U and V is a variable of the error 
function  partial derivatives 

  err2 = (u1v1 + u2v2 - m)2 

  d err2 / du1 = 

    = 2 (u1v1 + u2v2 - m) v1 

• Minimization of the error by gradient descent leads 
to the previously shown adjustment steps 



Gradient Descent Summary 

• We want to minimize RMSE 

o Same as minimizing MSE 

 

 

 

• Minimum place where its derivatives are zeroes 

o Because the error surface is quadratic 

• SGD optimization 
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BRISMF model 

• Biased Regularized Incremental Simultaneous Matrix 
Factorization 

• Applies regularization to prevent overfitting 

• To further decrease RMSE using bias values 

• Model: 
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BRISMF Learning 

• Loss function 

 

 

 

• SGD update rules 
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BRISMF – steps 

• Initialize 𝑃 and 𝑄 randomly 

• For each iteration 

o Get the next rating from 𝑅 

o Update 𝑃 and 𝑄 simultaneously using the update 
rules 

• Do until.. 

o The training error is below a threshold 

o Test error is decreasing 

o Other stopping criteria is also possible 



CS345 
Data Mining (2009) 

Recommendation Systems 

Netflix Challenge 

 

Anand Rajaraman, Jeffrey D. Ullman 



Content-based recommendations 

 Main idea: recommend items to 
customer C similar to previous items 
rated highly by C 

 Movie recommendations 

 recommend movies with same actor(s), 
director, genre, … 

 Websites, blogs, news 

 recommend other sites with “similar” 
content 

 



Plan of action 

likes 

Item profiles 

Red 

Circles 

Triangles 

User profile 

match 

recommend 
build 



Item Profiles 

 For each item, create an item profile 

 Profile is a set of features 

 movies: author, title, actor, director,… 

 text: set of “important” words in document 

 How to pick important words? 

 Usual heuristic is TF.IDF (Term Frequency 
times Inverse Doc Frequency) 

 



TF.IDF 

fij = frequency of term ti in document dj 

 

 

ni = number of docs that mention term i 

N = total number of docs 

 

 

TF.IDF score  wij = TFij x IDFi 

Doc profile = set of words with highest 
TF.IDF scores, together with their scores 



User profiles and prediction 

 User profile possibilities: 

 Weighted average of rated item profiles 

 Variation: weight by difference from average 
rating for item 

 … 

 Prediction heuristic 

 Given user profile c and item profile s, 
estimate u(c,s) = cos(c,s) = c.s/(|c||s|) 

 Need efficient method to find items with 
high utility: later 

 



Model-based approaches 

 For each user, learn a classifier that 
classifies items into rating classes 

 liked by user and not liked by user 

 e.g., Bayesian, regression, SVM 

 Apply classifier to each item to find 
recommendation candidates 

 Problem: scalability 

 Won’t investigate further in this class 

  



Limitations of content-based 
approach 

 Finding the appropriate features 

 e.g., images, movies, music 

 Overspecialization 

 Never recommends items outside user’s 
content profile 

 People might have multiple interests 

 Recommendations for new users 

 How to build a profile? 

 

 Recent result: 20 ratings more valuable 
than content 

 



Similarity based Collaborative 
Filtering 

 Consider user c 

 Find set D of other users whose ratings 
are “similar” to c’s ratings 

 Estimate user’s ratings based on ratings 
of users in D 

 



Similar users 

 Let rx be the vector of user x’s ratings 

 Cosine similarity measure 

 sim(x,y) = cos(rx , ry) 

 

 Pearson correlation coefficient 

 Sxy = items rated by both users x and y  



Rating predictions 

 Let D be the set of k users most similar to c 
who have rated item s 

 Possibilities for prediction function (item s): 

 rcs = 1/k d  D rds 

 

 rcs = (d  D sim(c,d) x rds)/(d  D
 sim(c,d)) 

 

 

 



Complexity 

 Expensive step is finding k most similar 
customers 

 O(|U|)  

 Too expensive to do at runtime 

 Need to pre-compute 

 Naïve precomputation takes time 
O(N|U|) 

 Tricks for some speedup 

 Can use clustering, partitioning as 
alternatives, but quality degrades 

 



The traditional similarity approach 

• One of the earliest algorithms 

• Warning: performance is very poor 

• Improved version next … 



















Factorization Machine (Steffen Rendle) 

• Model: linear regression and pairwise rank k interactions: 

 

 

• Substitution for traditional matrix factorization: 

 

 

 

 

• If items have attributes (e.g. content, tf.idf, …): 

 

 

• One (but not the only) way to train is by gradient descent 

 

 

 

 



Hierarchy of recommender algorithms 

 

 

 

 

 

Explicit feedback problems 

 

 

 

Implicit feedback problems 

Collaborative Filtering 

Memory based 

algorithms 
Model based algorithms 

 

iALS 
 

 

Matrix factorization 

 

SVD, ALS 
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Implicit feedback  
and  

Alternating Least Squares 



„Rating” matrix changes 

1 1 1 

1 

1 1 

1 

1 

0 0 

0 0 0 

0 0 



The task 

• 𝑅(𝑢, 𝑖): User 𝑢 viewed/purchased 𝑖 – 𝑅(𝑢, 𝑖) times 

o Most cases: most of the values in 𝑅 are zeros, there are some ones, 
the occurrence of other values is very low (e.g. movie recommender) 

o 𝑅 is dense 

• Recommend a (previously not viewed/purchased) item that 
the user will enjoy 

• We do not know if the user liked an item 
o We have to infer that → heuristics 

o Additional step: Predicting the preference? 

• We have no information about items that the user didn’t like 



Problem with explicit objective function 

• L =  𝑟 𝑢,𝑖 − 𝑟𝑢,𝑖
2

(𝑢,𝑖)∈𝑇 + 𝜆𝑈  𝑃𝑢
2𝑆𝑈

𝑢=1 +𝜆𝐼  𝑄𝑖
2𝑆𝐼

𝑖=1  

• The matrix to be factorized contains 0s and 1s 

o If we consider only the positive events (1s) 

• Predicting 1s everywhere trivially minimizes L 

• Some minor differences may occur due to regularization 

• Modified objective function (including zeros) 

o L =  𝑟 𝑢,𝑖 − 𝑟𝑢,𝑖
2𝑆𝑈,𝑆𝐼

𝑢=1,𝑖=1 + 𝜆𝑈  𝑃𝑢
2𝑆𝑈

𝑢=1 +𝜆𝐼  𝑄𝑖
2𝑆𝐼

𝑖=1  

o Number of terms increased 

o #zeros ≫ #ones 
• All zero prediction gives pretty good 𝐿 



Why „explicit” optimization suffers 

• Complexity of the best explicit method 

o 𝑂 𝑇 𝐾  

o Linear in the number of observed ratings 

• Implicit feedback 

o One should consider negative implicit feedback („missing 
rating”) 

o There is no real missing rating in the matrix 
• An element is either 0 or 1, no empty cells 

o Complexity: 𝑂 𝑆𝑈𝑆𝐼𝐾  

o Sparse data (< 1%, in general) 

o 𝑆𝑈𝑆𝐼 ≫ 𝑇  



iALS  
(Implicit Alternating Least 

Squares) 



Short detour: linear regression 

• 𝐴𝑥 = 𝑏 linear equation 

o 𝐴𝜖ℝ𝑁×𝑀, b𝜖ℝ𝑁 known 

o x𝜖ℝ𝑀 unknown 

• Meaning 

o Rows of 𝐴 are the training instances 

o Elements are the output for each instance 

o 𝑥 is a weighting vector 

o Assume output is obtained with linear combination of inputs 

• Objective function: MSE 

o 𝐿 = 𝑏 − 𝐴𝑥 2 =
1

𝑁
 𝑏𝑖 − 𝐴𝑇

𝑖
𝑇
𝑥

2
𝑁
𝑖=1  



Solution of the linear regression 

• Error function is convex, its minimum is attained 
where its derivative is zero 

• Gradient: 
𝜕𝐿

𝜕𝑥
= 2𝐴𝑇 𝑏 − 𝐴𝑥  

• 2𝐴𝑇 𝑏 − 𝐴𝑥 = 0 

• 𝐴𝑇𝑏 = 𝐴𝑇𝐴𝑥 

• 𝑥 = 𝐴𝑇𝐴 −1𝐴𝑇𝑏 

• The inverse of 𝐴𝑇𝐴  may not exist – pseudoinverse  



Alternating Least Squares (ALS) 

• 𝑅 ≈ 𝑅 = 𝑃𝑇𝑄 

• Fix one of the matrices, let’s pick 𝑃 

• Given a fixed 𝑃 the 𝑖-th column of 𝑅  depends only on the 𝑖-th 
column of 𝑄 

• Problem to solve: 𝑅𝑖 = 𝑃𝑇𝑄𝑖 

o Problem of linear regression 

• Error function 

o 𝐿 = 𝑅 − 𝑅 
𝑓𝑟𝑜𝑏

2
+ 𝜆𝑈 𝑃 𝑓𝑟𝑜𝑏

2
+ 𝜆𝐼 𝑄 𝑓𝑟𝑜𝑏

2
 

o The derivatives of 𝐿 by 𝑄 is a linear function of the 
columns of 𝑄, therefore each column of 𝑄 can be 
calculated separately 



ALS 

• Initialize 𝑃 and 𝑄 randomly 

• Fix 𝑄 

• For each row of 𝑃 solve with linear regression 
𝑄′𝑇𝑝𝑢

𝑇 = 𝑟𝑢′ 

o The target vector consists of the ratings in the row of 𝑅 for 
user 𝑢 

o 𝑄’ contains only the columns for those items that are rated 
by the user  

• Fix 𝑃 

• For each column of 𝑄 solve with linear regression 

𝑃′𝑞𝑖 = 𝑟𝑖
′𝑇 



iALS – objective function 

• 𝐿 =  𝑤𝑢,𝑖 𝑟 𝑢,𝑖 − 𝑟𝑢,𝑖
2𝑆𝑈,𝑆𝐼

𝑢=1,𝑖=1 + 𝜆𝑈  𝑃𝑢
2𝑆𝑈

𝑢=1 + 𝜆𝐼  𝑄𝑖
2𝑆𝐼

𝑖=1  

• Weighted MSE 

• 𝑤𝑢,𝑖 =  
𝑤𝑢,𝑖 if (𝑢, 𝑖) ∈ 𝑇

𝑤0 otherwise
 𝑤0 ≪ 𝑤𝑢,𝑖 

• Typical weights: 𝑤0 = 1, 𝑤𝑢,𝑖 = 100 ∗ 𝑠𝑢𝑝𝑝 𝑢, 𝑖  

• What does it mean? 
o Create two matrices from the events 

o (1) Preference matrix 

• Binary  

• 1 represents the presence of an event 
o (2) Confidence matrix 

• Interprets our certainty on the corresponding values in the first 
matrix 

• Negative feedback is much less certain 



Effective optimization with ALS 

• Q-step, first column: 
𝜕𝐿

𝜕𝑄1
= 2 𝑤𝑢,1 𝑃𝑢

𝑇𝑄1 − 𝑟𝑢,1 𝑃𝑢
𝑆𝑈
𝑢=1 + 2𝜆𝐼𝑄1 

• The sum has 𝑆𝑈 terms; calculating this for every column of 𝑄 would 
require  𝑂 𝑆𝑈𝑆𝐼  
o Does not scale 

• Let 𝑤𝑢,𝑖 = 𝑤′𝑢,𝑖 + 𝑤0 

• After substituting and decomposition 
1

2

𝜕𝐿

𝜕𝐼1
= − 𝑤𝑢,1𝑟𝑢,1𝑃𝑢

𝑇𝑆𝑈
𝑢=1 +

 𝑤′
𝑢,1𝑃𝑢𝑃𝑢

𝑇𝑄1
𝑆𝑈
𝑢=1 +  𝑤0𝑃𝑢𝑃𝑢

𝑇 
𝑆𝑈
𝑢=1 𝑄1 + 𝜆𝐼𝑄1 

• First two sums scale with the positive implicit feedback of the first 
item in 𝑅 

• The sum in the third member does not depend on the column of 𝑄 
o can be pre-calculated 

• Cost of calculating one column of 𝑄 is the 𝐾 × 𝐾 matrix inversion 
 



iALS algorithm 

0. Random initialization of 𝑃 and 𝑄 

1. Stop, if the approximation is good 

2. Fix 𝑃 and calculate the columns of 𝑄 

o 𝐶(𝑄) =  𝑤0𝑃𝑢𝑃𝑢
𝑇𝑆𝑈

𝑢=1  

o For the 𝑖-th column 

• 𝐶(𝑄,𝑖) = 𝐶(𝑄) +  𝑤′
𝑢,1𝑃𝑢𝑃𝑢

𝑇𝑆𝑈
𝑢=1  

• 𝑂(𝑄,𝑖) =  𝑤𝑢,1𝑟𝑢,1𝑃𝑢
𝑇𝑆𝑈

𝑢=1  

• 𝑄𝑖 = 𝐶(𝑄,𝑖) + 𝜆𝐼𝐸
−1

𝑂(𝑄,𝑖) 

3. Fix 𝑄 and calculate the columns of 𝑃 

o Analogously 

4. GOTO: 1 



Complexity of iALS 

• One epoch (𝑃- and 𝑄-step) 

o 𝐶(𝑃) and 𝐶(𝑄)  𝑂 𝐾2 𝑆𝑈 + 𝑆𝐼  

o 𝐶(𝑄,𝑖) and 𝐶(𝑃,𝑢)  proportional to the #non-zeros  𝑂 𝐾2𝑁+  

o Matrix inversion for each column  𝑂 𝐾3 𝑆𝑈 + 𝑆𝐼  

• Total cost: 𝑂 𝐾3 𝑆𝑈 + 𝑆𝐼 + 𝐾2𝑁+  

o Linear in the number of events 

o Cubic in the number of features 

• In practice: 𝑆𝑈 + 𝑆𝐼 ≪ 𝑁+ so for small K the second term 
dominates 

o Quadratic in the number of features 



Performance, summary, 
additional topics 

COMPARISON, SUMMARY, NEW TOPICS 

Netflix Prize lessons learned  

Temporal, online and geographical recommendation 

SCALABILITY, DISTRIBUTED METHODS AND SOFTWARE 

30 June - 2 July 2014 Recommender Systems 





Data about the Netflix Movies 

Count Avg rating Most Loved Movies 

137812  4.593  The Shawshank Redemption  

133597  4.545  Lord of the Rings :The Return of the King 

180883  4.306  The Green Mile  

150676  4.460  Lord of the Rings :The Two Towers  

139050  4.415  Finding Nemo  

117456  4.504  Raiders of the Lost Ark  

Most Rated Movies 

Miss Congeniality   

Independence Day  

The Patriot  

The Day After Tomorrow  

Pretty Woman  

Pirates of the Caribbean 

Highest Variance 

The Royal Tenenbaums 

Lost In Translation  

Pearl Harbor  

Miss Congeniality  

Napolean Dynamite  

Fahrenheit 9/11 



Most Active Users 

User ID # Ratings Mean Rating 

  305344 17,651 1.90 

  387418 17,432 1.81 

2439493 16,560 1.22 

1664010 15,811 4.26 

2118461 14,829 4.08 

1461435   9,820 1.37 

1639792   9,764 1.33 

1314869   9,739 2.95 

















Social contacts as side information 

Slides: 
Robert Palovics 



Influence, or? 



Social Regularization I 

• Average-based regularization 
 
 
 
 
 
 

 
 

Minimize Ui’s taste with the average tastes of Ui’s friends. 
The similarity function Sim(i, f) allows the social 
regularization term to treat users’ friends differently. 

Ma, Zhou, Liu, Lyu, King. WSDM 2011 



Social Regularization II 

• Individual-based regularization 

This approach allows similarity of friends’ tastes to be 
individually considered.  It also indirectly models the 
propagation of tastes. 

Ma, Zhou, Liu, Lyu, King. WSDM 2011 



Catching the influence event 



Measuring the influence 

 



The influence recommender 



The influence recommender 



Online recommendation 

• Use SGD model update once for each new item 

• Challenge for evaluation 

o Model changes after each and every transaction 

o Needs an evaluation metric for single transactions: DCG 



Experiments over Last.fm 



 

    Datasets 
  
 Nomao:   France, mostly Paris 
   7605 locations 
   9471 users 
   97453 known ratings  
  
  
 
  
 Yelp:  Phoenix, AZ 
   45981 users  
   11537 locations 
   227906 known ratings 
   Text review 

 
 

    

Geographic side information 



The first 4 factors  
mapped over France 
 
 

Singular Value Decomposition 

 



Method 1: regularization (omitted) 
 
 
Method 2: imputation 
 
Let be E the set of known ratings and Nj the neighbors of the location j, 
than we can modify the training set as follows. For all (u,i) 

 
 
 
 
where f is function of Ru, the set of known ratings by user “u” and 
Nu,i, the set locations visited by “u” where “i” is a place of their 
neigborhood. 
 

- identifying neighbors: k-nearest vs. radius , travel time? 
- number of neighbors (n)? 

 

Recommend locations near already visited places 



Model 1: expand the list of locations per user with the neighbors of visited 
places 
 a) learn the ratings 
 
 
        or a constant  
 
 
 b) learn the occurrence 
 
 
Model 2: adaptive distance based expansion, smoothed with local density 
 a) learn the ratings 
 
 
   
 b) learn the occurrence 

Imputation models 



Users rate average at locations that they frequently visit. 
New locations get extreme (1 and 5) ratings 
 
 
 
 
 
 
 
 
 
 
Refine recommendation: regularization or re-ranking 
Location adaptive expansion by ratings of the nearby places 

Ratings by frequency of location 



Ratings by frequency: Yelp! 



Yelp!, log scale 



Distributed algorithms, 
parallelization, scalability, 

software 



Carnegie Mellon University 

Danny Bickson 

Yucheng 
Low 

Aapo 
Kyrola 

Carlos  
Guestrin 

Joe 
Hellerstein 

Alex 
Smola 

Parallel Machine Learning for Large-Scale Graphs 

Jay 
Gu 

Joseph 
Gonzalez 

The GraphLab Team: 



Parallelism is Difficult 

Wide array of different parallel architectures: 

 

 

 

 

 

 

Different challenges for each architecture 

GPUs Multicore Clusters Clouds Supercomputers 

High Level Abstractions to make things easier 



Belief 
Propagation 

Label Propagation 

Kernel 
Methods 

Deep Belief 
Networks 

Neural 
Networks 

Tensor  
Factorization 

PageRank 

Lasso 

Map-Reduce for Data-Parallel ML 

Excellent for large data-parallel tasks! 

Data-Parallel                       Graph-Parallel 

Cross 
Validation 

Feature  
Extraction 

Map Reduce 

Computing Sufficient 
Statistics  



Map – Shuffle/Sort – Reduce 

Input Splitting           Mapping                          Shuffling      Reducing      Output 

data luchon 
network 

science data 
science 
network 

luchon science 

data 
luchon 

network 

science 
data 

science 

network 
luchon 
science 

data,1  
luchon,1 

 network,1 

data,1  
science,1 
 science,1 

luchon,1  
network,1 
 science,1 

luchon,1 
luchon,1 

network,1 
network,1 

data,1 
data,1 

science,1  
 science,1 
 science,1 

luchon,2 

network,2 

data,2 

science,3 

luchon,2 
network,2 

data,2 
science,3 



SGD, ALS implementations in Mahout 

• ALS single iteration is easy: 
o 𝑞𝑖 = 𝑃𝑇𝑃 −1𝑃𝑇 𝑅𝑖 =  𝑃𝑇𝑃 −1𝑃𝑗

𝑇  𝑅𝑖𝑗
𝑁
𝑗=1  

o Partition by i 

o Broadcast 𝑃𝑇𝑃, just a kxk matrix 

• SGD? 
o Updates affect both the user AND the item models 

o Partitioning neither for users nor for items is sufficient 

o Efficient shared memory implementations but no real nice distributed 

• More iterations? 
o Hadoop will write all information to disk, we may re-partition before 

writing to have it ready for the next iteration 

o Should we consider this efficient?? 



PageRank in MapReduce 

• MAP: 
o Read out-edge list of node n 

o p  out-edge (n): emit (p, PageRank(n)/outdegree(n)) 

• Reduce  
o Grouped by p 

o Add up emitted values as new PageRank (p) 

o Write all results to disk and restart 

 

• Something is missing to start the next iteration! 



MapReduce PageRank code 

public static void main(String[] args) { 
String[] value = {  
// key | PageRank| points-to 
 "1|0.25|2;4", 
 "2|0.25|3;4", 
 "3|0.25|2", 
 "4|0.25|3", 
}; 
 
mapper(value); 
reducer(collect.entrySet()); 

} 
 

   | 1 2 3 4 

--+---------- 

1 | 0 1 0 1 

2 | 0 0 1 1 

3 | 1 0 0 0 

4 | 0 0 1 0  

Result (𝜀 = 0): 
„1|0.25”, 
„2|0.125”, 
„3|0.25”, 
„4|0.375” 

Where are the edges?? 

Edges from node i need to be joined with new PageRank (i) 



ALS: a very expensive example 

• 𝑞𝑖 = 𝑃𝑇𝑃 −1𝑃𝑇 𝑅𝑖 =  𝑃𝑇𝑃 −1𝑃𝑗
𝑇 𝑅𝑖𝑗

𝑁
𝑗=1  

• For each nonzero 𝑅𝑖𝑗 we have an „edge” 

• We need to emit 𝑃𝑇𝑃 −1 of dimension k2 

• Join by using i as key, to compute Q 

• If we have a predefined partition, we should not emit the 
same data for ALL edges from partition x to partition y 
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