Recommender Systems: Tutorial

Andras Benczur

Insitute for Computer Science and Control

Hungarian Academy of Sciences

Supported by the EC FET Open project "New tools and algorithms for directed network analysis" (NADINE No 288956)

Overview

- INTRODUCTION
- Recommender use cases (Amazon, Netflix, Gravity)
- Classes of algorithms - Collaborative filtering, Matrix factorization, Similarity; Content and side information based
- ALGORITHMS
- Singular Value Decomposition and a hidden connection to graph spectrum
- Stochastic gradient descent and the Factorization Machine
- User and item similarity based recommendation
- Alternating Least Squares
- COMPARISON, SUMMARY, NEW TOPICS
- Netflix Prize lessons learned
- Temporal, online and geographical recommendation
- Scalability, Distributed methods and Software

About the presenter

András Benczúr

 benczur@sztaki.hu- Head of a large young team
- Research
- Web (spam) classification
- Hyperlink and social network analysis
- Distributed software, Stratosphere Streaming
- Collaboration- EU
- NADINE
- European Data Science research - EIT ICTLabs

Berlin, Stockholm, INRIA, Aalto, ...

- Future Internet Research

Virtual Web Observatory with Marc

- Collaboration- Hungary
- Gravity, the recommender company
- AEGON Hungary
- Search engine for Telekom etc.
- Ericsson mobile logs

Introduction

Recommender use cases

Classes of algorithms
Evaluation metrics

Amazon Recommendations

Case Study - Amazon.com

- Customers who bought this item also bought:
- Item-to-item collaborative filtering
- Find similar items rather than similar customers.
- Record pairs of items bought by the same customer and their similarity.
- This computation is done offline for all items.
- Use this information to recommend similar or popular books bought by others.
- This computation is fast and done online.
- Needs no notion of the „content" (text, music, movies, metadata)
- Only uses the transaction data \rightarrow domain independent

Challenges for Collaborative Filtering

- Sparsity problem - when many of the items have not been rated by many people, it may be hard to find 'like minded' people.
- First rater problem - what happens if an item has not been rated by anyone.
- Privacy problems.
- Can combine collaborative filtering with content based:
- Use content based approach to score some unrated items.
- Then use collaborative filtering for recommendations.
- Serendipity - recommend something I do not know already
- Persian fairy tale The Three Princes of Serendip, whose heroes "were always making discoveries, by accidents and sagacity, of things they were not in quest of".

User-User vs. Item-Item Collaborative Filtering

- User-user: For user u, find other similar users
- Item-item: For item s, find other similar items
- Estimate rating based on ratings

For similar items / By similar users

- Can use same similarity metrics and prediction functions
- In practice, it has been observed that item-item often works better than user-user

Netflix Recommendations

- Netflix
- 100 million 1-5 stars
- 6 years (2000-2005)
- 480,000 users
- 17,770 "movies"
- \$1,000,000 prize given in 2009
- Runner up Gravity team coordinated by
Hungarians lost by 20 minutes
- Founded a startup with the same name

Netfilix Prize

COMMPLET

```
Home Rules Leaderboard Update
```


Leaderboard

Showing Test Score. Click here to show quiz score
Display top 20 - leaders.

Rank	Team Name	Best Test Score	\% Improvement	Best Submit Time
Grand Prize - RMSE $=0.8567$ - Winning Team: BellKor's Pragmatic Chaos				
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries !	0.8591	9.81	2009-07-10 00:32:20
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56

Prize - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos

BellKor's Pragmatic Chaos	0.8567	10.06	$2009-07-2618: 18: 28$
The Ensemble	0.8567	10.06	$2009-07-2618: 38: 22$

More Recommender Research Data

- MovieLens 43,000 users 3500 movies 100,000 ratings of users who rated 20 or more movies.
- Jester: small joke ratings data set
- Yelp! data release last Spring greater Phoenix, AZ metropolitan area including:

11,537	businesses
8,282	check-in sets.
43,873	users
229,907	reviews

Review of the Day

Borrowed from these presentations

- Anand Rajaraman, Jeffrey D. Ullman book \& Stanford slides
- Gravity slides
- Yehuda Koren’s slides (Netflix prize winner - everyone is using his slides, hard to note all re-uses)
- Danny Bickson's GraphLab presentation
- ... and from my students, colleagues

CS345 Data Mining (2009)

Recommendation Systems Netflix Challenge

Recommender Systems: Content-based Systems \& Collaborative Filtering

CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu

sense learn GraphLab algorithms

Alternating Least CoEM Squares

Lasso
Belief Propagation
SVD Splash Sampler
Bayesian Tensor Factorization

LDA GraphLab cancien ellon PageRank

Gibbs Sampling

> Dynamic Block Gibbs Sampling

K-Means
...Many others...
Linear Solvers

Factorization

Practical considerations of recommendation systems

Gravity R\&D
Domonkos Tikk, CEO/CSO

Facing with real needs

What we may learn
－rating prediction algorithms
－coded in various languages
－blending mechanism
－accuracy oriented

R	I	\bigcirc	E		图	P	
蟼	1	4	3．3	3	2.4		
僉	－0．5	3．5	4	4	1.5	∞	，
然	4	4.9	2	1.1	4	${ }^{2}$	as
Q	10	${ }^{21}$	，	${ }_{8}^{\circ}$	$\begin{aligned} & 10 \\ & \infty \end{aligned}$		

What clients want

－recommendations that bring revenue
－robustness
－low response time
－easy integration
－reporting

What does Gravity do?

recommender

content of service provider

Time requirements

- Response time: few ms (max 200)
- Training time: maximum few hours
- regular retraining
- incremental training
- Newsletters:
- nightly batch run

拥若GRAVITY

The 5\% question - Importance of UI

Francisco Martin (Strands): „the algorithm is only 5\% in the success of the recommender system"

- placement
- below or above the fold
- scrolling
- easy to recognize
- floating in
- title
- not misleading
- explanation like
- widget
- carrousel
- static

Marketing channels

További ajánlataink a Jófogásról:

Dell Latitude D630 Üzleti Laptop

Ár: $\mathbf{3 2 0 0 0 ~ F t ~}$

Dell laptop táska

Ár: $\mathbf{3} 000 \mathrm{Ft}$

Notebook, Laptop Dell D600

Ár: $\mathbf{3 3 0 0 0 ~ F t}$

Notebook, Laptop Dell D620 2magos

Ár: 48000 Ft
laptop - kapcsolódó hirdetések
Miért jelentek meg ezek a hirdetések?
Laptop - A legjobb laptopok, akciós áron | Grando.hu
www.grando.hu/Laptop
Vásároljon olcsóbban a Grando.hu-n!
Laptopok árengedménnyel - Népszerũ laptopok
Laptopok és tartozékok - Hatalmas laptop választék
www.edigital.hu/
Olcsón, gyors házhozszállítással.
Changing the order of two boxes: 25% CTR increase

Cannibalization

- Goal: increase user engagement
- Measurements
- average visit length
- average page views
- Effect of accurate recommendations:
- use of listing page \downarrow
- use of item page \uparrow
- Overall page view: remains the same
- Secondary measurements
- Contacting
- CTR increase

Data sources - transactions

- Transaction: interaction between users and items
- Transaction types
- Numerical ratings
- E.g.: „On a scale of 1-5 how do you rate this book?"
- Ordinal ratings
- E.g.: „How good do you think this book is?

Recommend item X to user A

- Unary ratings (events)
- E.g.: The user bought this book.
- Textual reviews, opinions
- E.g.: „I liked this book because..., but the author should have made a different ending because it was really bad."

Explicit vs. implicit feedback

- Explicit types have a larger cognitive cost on the user and therefore more usable but it is harder to collect them
- Explicit feedback: rating information that explicitly tells us whether the user likes the item or not
- Implicit feedback: events that only indicate that the user may like the item, but the absence of the events does not mean that the user does not like the item
- E.g.: purchased it elsewhere, did not even know that the item existed, etc.
- Reverse problem is also possible: events indicate dislike, we have no information of like

Hierarchy of recommender algorithms

Collaborative Filtering (CF)

- Only uses the ratings (events)
- Does not need heterogeneous data sources
- We don't need to integrate different aspects of the items/users
- Minimal preprocessing is needed
- Accurate
- Best results of any „clean" methods
- Domain independent

Disadvantages of CF

- Cold start problem
- We can not recommend items that have no ratings
- We can not recommend to anyone who does not provide rating
o Our recommendation is inaccurate if there are only a few ratings for the given user

Recommendation Evaluation

- Single item rating prediction (typically, the explicit rating) VS.
- Top k problem (typically, the implicit binary relevance)
- $r_{u i}$: relevance, or rating for item i given by user u
- $\hat{r}_{u i}$: predicted rating or relevance
- Top- k recommendation task: retrieve the best k items for a given user u

1. Compute $\hat{r}_{u i}$ for all (unknown) items
2. Order the items
3. Return the top-k elements in the list

i_{k}	$\hat{r}\left(i_{k}\right)$	
	i_{k+1}	$\hat{r}\left(i_{k+1}\right)$

The explicit feedback model

- Rating matrix (R)
- Items (e.g. movies) rated by users (explicit feedback)
- Very sparse
- Task: predict missing ratings
- How would user \boldsymbol{U} rate item i ?
- Evaluation
- Test set: ratings not used for training
- Error metrics
- RMSE (Root Mean Squared Error)
- Most common metric
- Larger penalty on larger deviations

$$
R M S E=\sqrt{\frac{\sum_{(u, i, r) \in R_{\text {est }}}\left(r-\hat{r}_{u, i}\right)^{2}}{\left|R_{\text {test }}\right|}}
$$

- MAE (Mean Absolute Error) $\quad M A E=\frac{\sum_{(u, i, r) \in R_{\text {tet }}}\left|r-\hat{r}_{u, i}\right|}{\left|R_{\text {test }}\right|}$

Top-k Evaluation Metrics

Recall @ K: number of hits/number of relevant items

$$
\operatorname{Recall}(K)=\frac{1}{|U|} \sum_{u} \operatorname{Recall}_{u}(K)
$$

single user
Relevance $\mathrm{r}_{\mathrm{u}, \mathrm{i}}$:
Binary or real

$$
\operatorname{Recall}_{u}(K)=\frac{1}{\left|R_{u}\right|} \sum_{i=1}^{K} \operatorname{rel}_{u, i}
$$

Normalized Discounted Cumulative Gain @ K

$$
n D C G(K)=\frac{1}{|U|} \sum_{u} n D C G_{u}(K)
$$

single user

$$
n D C G_{u}(K)=\frac{D C G_{u}(K)}{i D C G_{u}(K)}
$$

where

Item	Rank for a user	Relevance to the user
item1	0	0
item2	1	1
\ldots	\ldots	0
		1
		0
		0
item K-1	K-2	0
item K	K-1	1

The DCG function for a single item

$\operatorname{DCG@K}(a)= \begin{cases}0 & \text { if rank }(a)>K ; \\ \frac{1}{\log _{2}(\operatorname{rank}(a)+1)} & \text { otherwise. }\end{cases}$

Recommender Methods

Singular Value Decomposition, Spectral analysis and graphs Stochastic gradient descent and the Factorization Machine User and item similarity based recommendation variants Alternating Least Squares

Implicit ratings case

Matrix Factorization

- We are searching for the unknown values of a matrix
- We know that the values of the matrix are correlated in some sort of sense
- But:

5	?	4	?	...
?	4	?	?	...
?	5	4	?	...
4	?	4	5	...
...

Latent factor models

- Items and users described by unobserved factors
- Each item is summarized by a d-dimensional vector P_{i}
- Similarly, each user summarized by Q_{u}
- Predicted rating for Item i by User u
- Inner product of P_{i} and Q_{u}

$$
\sum P_{u k} Q_{i k}
$$

Yehuda Bell’s Example

Warmup

- Hypertext-induced topic search (HITS)
- Connections to Singular Value Decomposition
- Ranking in Web Retrieval - not-so-well-known-to-be matrix factorization application

Motivation

http://recsys.acm.org/
http://icml.cc/2014/
http://www.kdd.org/kdd2014/

Authority
(content)

Neighborhood graph

- Subgraph associated to each query

Query Results

An edge for each hyperlink, but no edges within the same host

HITS [Kleinberg 98]

- Goal: Given a query find:
- Good sources of content (authorities)
o Good sources of links (hubs)

Intuition

- Authority comes from in-edges.

Being a good hub comes from out-edges.

- Better authority comes from in-edges from good hubs. Being a better hub comes from out-edges to good authorities.

HITS details

Repeat until h and a converge:
Normalize $\overrightarrow{\mathrm{h}}$ and $\overrightarrow{\mathrm{a}}$

$$
\begin{aligned}
& \mathrm{h}[\mathrm{v}]:=\vec{\Sigma} \mathrm{a}\left[\mathrm{u}_{\mathrm{i}}\right] \overrightarrow{\text { for all }} \mathrm{u}_{\mathrm{i}} \text { with } \operatorname{Edge}\left(\mathrm{v}, \mathrm{u}_{\mathrm{i}}\right) \\
& \mathrm{a}[\mathrm{v}]:=\Sigma \mathrm{h}\left[\mathrm{w}_{\mathrm{i}}\right] \text { for all } \mathrm{w}_{\mathrm{i}} \text { with } \operatorname{Edge}\left(\mathrm{w}_{\mathrm{i}}, \mathrm{v}\right)
\end{aligned}
$$

HITS and matrices

$a^{(k+1) T}=h^{(k) \top} A \quad A_{i j}=1$ if $i j$ is edge, 0 otherwise

$$
h^{(k+1)}{ }^{\top}=a^{(k+1) \top} A^{\top}
$$

$$
h^{(k+1) \top}=h^{(1) \top}\left(A A^{\top}\right)^{k}
$$

$$
a^{(k+1) \top}=a^{(1) \top}\left(A^{\top} A\right)^{k}
$$

HITS and matrices II

$$
a^{(k+1) \top}=h^{(k) \top} A
$$

Decomposition theorem:
$\mathrm{A}^{\top} \mathrm{A}=\mathrm{VW} \mathrm{V}^{\top}$
$A A^{\top}=U W U^{\top}$
$\mathrm{VV}^{\top}=U U^{\top}=I$
$h^{(k+1) T}=a^{(k+1)}{ }^{\top} A^{\top}$
$a^{(k+1) T}=a^{(1) T}\left(A^{\top} A\right)^{k}=a^{(1) T} V\left(\begin{array}{ccccc}w_{1}{ }^{2} & 0 & \ldots & 0 \\ 0 & w_{2}{ }^{2} & 0 & \ldots & 0 \\ 0 & \ldots & 0\end{array}\right)^{k} V^{\top}$

$$
h^{(k+1) T}=h^{(1) T}\left(A A^{\top}\right)^{k}=h^{(1) T} U\left(\begin{array}{cccc}
w_{1}{ }^{2} & 0 & \ldots & 0 \\
0 & w_{2}{ }^{2} & 0 & \ldots \\
0 \\
0 & \ldots & 0 & w_{n}{ }^{2}
\end{array}\right)^{k} U^{\top}
$$

$$
\mathrm{a}=\alpha_{1} \mathrm{v}_{1}+\ldots+\alpha_{\mathrm{n}} \mathrm{v}_{\mathrm{n}} ; \quad \mathrm{a}^{\mathrm{T}} \mathrm{v}_{\mathrm{i}}=\alpha_{\mathrm{i}}
$$

Hubs and Authorities example

Figure 5.18: Sample data used for HITS examples

$$
L=\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad L^{\mathrm{T}}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Figure 5.19: The link matrix for the Web of Fig. 5.18 and its transpose

Octave example

- octave:1>
- octave:2> h=[1,1,1,1,1]
- octave:3> a=h*L
- octave:4> h=a*transpose(L)
- octave:12> h=[0,0,1,0,0]
- octave:13>a=h*L
- octave:14> h=a*transpose(L)
- octave:15> [U,S,V]=svd(L)
- octave:16> A=U*S*transpose(V)
- octave:17> a=h*L/2.1889
- octave:4> h=a*transpose(L)/2.1889

Example

Compare the authority scores of node D to nodes B1, B2, and B3 (Despite two separate pieces, it is a single graph.)

- Values from running the 2-step hub-authority computation, starting from the all-ones vector.
- Formula for running the k-step hub-authority computation.
- Rank order, as k goes to infinity.
- Intuition: difference between pages that have multiple reinforcing endorsements and those that simply have high in-degree.

HITS and path concentration

- $\left[A^{2}\right]_{i j}=\sum_{k} A_{i k} A_{k j}$

Paths of length exactly 2 between i and j
Or maybe also less than 2 if $A_{\mathrm{ij}}>0$

- A^{k}
$=\mid\{$ paths of length k between endpoints\}|
- (AA $\left.{ }^{\top}\right)$
= |\{alternating back-and-forth routes\}|
- $\left(A A^{T}\right)^{k}$
= |\{alternating back-and-forth k times\}|

Guess best hubs and authorities!

- And the second best ones?
- HITS is instable, reverting the connecting edge completely changes the scores

Singular Value Decomposition (svd)

- Handy mathematical technique that has application to many problems
- Given any $m \times n$ matrix A, algorithm to find matrices \mathbf{U}, \mathbf{V}, and \mathbf{W} such that

$$
\mathbf{A}=\mathbf{U} \mathbf{W} \mathbf{V}^{\top}
$$

\mathbf{U} is $m \times m$ and orthonormal
\mathbf{W} is $m \times n$ and diagonal
\mathbf{V} is $n \times n$ and orthonormal

Notion of Orthonormality?

Orthonormal Basis

$$
\mathrm{a}=\alpha_{1} \mathrm{v}_{1}+\ldots+\alpha_{\mathrm{n}} \mathrm{v}_{\mathrm{n}} ; \quad \mathrm{a}^{\mathrm{T}} \mathrm{v}_{\mathrm{i}}=\alpha_{\mathrm{i}} \quad\left[\mathrm{a}^{\top} \mathrm{V}\right]_{\mathrm{i}}=\alpha_{\mathrm{i}}
$$

$$
\mathrm{a}^{\top} \mathrm{V}\left(\begin{array}{cccc}
w_{1}{ }^{2} & 0 & \ldots & 0 \\
0 & w_{2}{ }^{2} & 0 & \ldots \\
0 \\
0 & \ldots & 0 & 0 \\
0 & \ldots & w_{n}{ }^{2}
\end{array}\right)^{\mathrm{k}} \mathrm{~V}^{\top}
$$

SVD and PCA

- Principal Components Analysis (PCA): approximating a highdimensional data set with a lower-dimensional subspace

SVD and Ellipsoids

- $\{y=A x:||x||=1\}=\sum_{i} \frac{[U y]_{i}^{2}}{w_{i}^{2}}$
- ellipsoid with axes u_{i} of length w_{i}

Projection of graph nodes by $\underline{\mathbf{A}}$

First three singular components of a social network

When will two nodes be near?
If their Aij vectors are close - cosine distance

Recall the recommender example

SVD proof: Start with longest axis

- Select v_{1} to maximize $\{||\mathrm{Ax}||:||x||=1\}$
- Compute $u_{1}=A v_{1} / w_{1}$
- u_{1} should play the same role for A^{\top} : maximize $\left\{\left|\left|A^{\top} y\right|\right|:||y||=1\right\}$ - but why u_{1} ??
- Fix conditions $\|x\|=\|y\|=1$; $w_{1}=\max \{| | A x| |\}=\max \left\{(A x)^{\top} A x\right\} \geq \max \left\{\left|y^{\top} A x\right|\right\}$, and in fact equal as u_{1} is in the direction of $A v_{1}$
- We can have the same for $x^{\top} A^{\top} y=\left(y^{\top} A x\right)^{\top}$ $\max \left\{\left|\left|A^{\top} y\right|\right|\right\}=\max \left\{\left|y^{\top} A x\right|\right\}=w_{1}$

Surprise: We Are Done!

- We need to show $U^{\top} A V=W$ (why?)
- Use any orthonormal $\mathrm{U}^{*}, \mathrm{~V}^{*}$ orthogonal to $\mathrm{u}_{1}, \mathrm{v}_{1}$ and try to finish:

$$
A^{*}=\binom{u_{1}}{U^{*}} A\binom{v_{1}}{V^{*}}^{T}
$$

- $A^{*}{ }_{11}=w_{1}$ by the way we defined u_{1}
- $A^{*}{ }_{\cdot 1}$ and $A^{*}{ }_{1}$. is of form $x A y$ and $x A^{\top} y$, hence cannot be longer than w_{1}
- We have the first row and column, proceed by induction ...

SVD with missing values

- Most of the rating matrix is unknown
- The Expectation Maximization algorithm:
$\mathbf{A}^{(t+1)}{ }_{i j}=\left\{\begin{array}{cc}\mathbf{A}^{(t)}{ }_{i j} & \text { if rating known } \\ \sum_{k} \sigma_{k} \mathbf{U}_{k i} \mathbf{V}_{k j} & \text { otherwise }\end{array}=\sum_{k} \sigma_{k} \mathbf{U}_{k i} \mathbf{V}_{k j}+\operatorname{err}_{i j}\right.$
- Seems impossible as matrix A becomes dense, but ...
- For example, the Lanczos algorithm multiplies this or transpose with vector \mathbf{x} : imputation result is cheap operation
$\sum_{k} \sigma_{k} \mathbf{U}_{k i}\left(\mathbf{V}_{k j} \mathbf{x}_{j}\right)$
- Seemed promising but badly overfits - no way to „regularize" the elements of U and V (keep them small)
- The imputed values will quickly dominate the matrix

General overview of MF approaches

- Model

- Objective function (error function)
- What we want to minimize or optimize?
- E.g. optimize for RMSE with regularization

$$
\mathrm{L}=\sum_{(u, i) \in \operatorname{Train}}\left(\hat{r}_{u, i}-r_{u, i}\right)^{2}+\lambda_{U} \sum_{u=1}^{S_{U}}\left\|P_{u}\right\|^{2}+\lambda_{I} \sum_{i=1}^{S_{I}}\left\|Q_{i}\right\|^{2}
$$

- Learning method
- How we improve the objective function?
- E.g. stochastic gradient descent (SGD)

Matrix Factorization Recommenders

Singular Value Decomposition

$$
\mathrm{R}=\mathrm{U}^{\mathrm{T}} \mathrm{~S} \mathrm{~V}
$$

In our case:
M : number of users
N : number of items
R : the original (sparse) rating matrix

Stochastic Gradient Descent

R

P
$\mathrm{k} \times \mathrm{N}$

Q

In comparison to SVD, the SGD factors are not ranked Ranked factors: iterative SGD optimize only on a single factor at a time

Iterative Stochastic Gradient Descent („Simon Funk")

$2 \times \mathrm{N}$

Fix factor 1
Optimize only for factor 2

Iteration k

R图图图园

P

Simplest SGD: Perceptron Learning

- Compute a 0-1 or a graded function of the weighted sum of the inputs
- g is the activation function

Perceptron Algorithm

Input: dataset D, int number_of_iterations, float learning_rate

1. initialize weights w_{1}, \ldots, w_{n} randomly
2. for (int $i=0 ; i<n u m b e r _o f$ _iterations; $i++$) do
3. for each instance $\mathrm{x}^{(j)}$ in D do
4. $y^{\prime}=\sum x^{(j)}{ }_{k} W_{k}$
5. err $=y^{(j)}-y^{\prime}$
6. for each w_{k} do
7.
8. $\quad w_{k}=w_{k}+d_{j, k}$
9. end for
10. end foreach
11.end for

The learning step is a derivative

- Squared error target function

$$
\operatorname{err}^{2}=\left(\mathrm{y}-\sum \mathrm{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)^{2}
$$

- Derivative

$$
2 w_{i}\left(y-\sum w_{i} x_{i}\right)=2 w_{i} \text { err }
$$

Matrix factorization

- We estimate matrix M as the product of two matrices U and V.
- Based on the known values of M, we search for U and V so that their product best estimates the (known) values of M

Matrix factorization algorithm

- Random initialization of U and V
- While $U \times V$ does not approximate the values of M well enough
- Choose a known value of M
\circ Adjust the values of the corresponding row and column of U and V respectively, to improve

Example for an adjustment step

$\left(2^{*} 2\right)+\left(1^{*} 1\right)=5$ which equals to the selected value \rightarrow we do not do anything

Example for an adjustment step

$(3 * 1)+(2 * 3)=9$
$9>4 \rightarrow$ we decrease the values of the corresponding rows so that their products will be closer to 4

What is a good adjustment step?

1. Adjustment proportional to error
\rightarrow let it be ε times the error

- Example: error = 9-4 = 5
with $\varepsilon=0.1$ decrease proportional to $0.1 * 5=0.5$

What is a good adjustment step?

2. Take into account how much a value contributes to the error
o For the selected row:
3 is multiplied by $1 \rightarrow 3$ is adjusted by $\varepsilon^{*} 5^{*} 1=0.5$
2 is multiplied by $3 \rightarrow 2$ is adjusted by $\varepsilon * 5 * 3=1.5$

- For the selected column respectively:

$$
\varepsilon^{*} 5 * 3=1.5 \text { and } \varepsilon^{*} 5 * 2=1.0
$$

Result of the adjustment step

$$
\varepsilon=0.1
$$

- row values decrease by:

$$
\begin{aligned}
& \varepsilon^{*} 5^{*} 1=0.5 \\
& \varepsilon^{*} 5^{*} 3=1.5
\end{aligned}
$$

- column values decrease by:

$$
\begin{aligned}
& \varepsilon * 5 * 3=1.5 \\
& \varepsilon * 5 * 2=1.0
\end{aligned}
$$

\approx| 5 | $?$ | 4 | $?$ | \ldots |
| :---: | :---: | :---: | :---: | :---: |
| $?$ | 4 | $?$ | $?$ | \ldots |
| | 5 | 4 | $?$ | \ldots |
| 4 | $?$ | 4 | 5 | \ldots |
| | \ldots | \ldots | \ldots | \ldots |

$\mathrm{U}\left(2.5^{*}-0.5\right)+\left(0.5^{*} 2\right)=-0.25 \quad \mathrm{M}$

Gradient Descent

- Why is the previously shown adjustment step a good one (at least in theory)?
- Error function: sum of squared errors
- Each value of U and V is a variable of the error function \rightarrow partial derivatives

$$
\begin{aligned}
\operatorname{err}^{2}=\left(u_{1} v_{1}\right. & \left.+u_{2} v_{2}-m\right)^{2} \\
d e r r^{2} / d u_{1} & = \\
& =2\left(u_{1} v_{1}+u_{2} v_{2}-m\right) v_{1}
\end{aligned}
$$

- Minimization of the error by gradient descent leads to the previously shown adjustment steps

Gradient Descent Summary

- We want to minimize RMSE
- Same as minimizing MSE

$$
M S E=\frac{1}{\left|R_{\text {test }}\right|} \sum_{(u, i) \in R_{\text {test }}}\left(r_{u i}-\hat{r}_{u i}\right)^{2}=\frac{1}{\left|R_{\text {test }}\right|} \sum_{(u, i) \in R_{\text {test }}}\left(r_{u i}-\sum_{k=1}^{K} p_{u k} q_{k i}\right)^{2}
$$

- Minimum place where its derivatives are zeroes
- Because the error surface is quadratic
- SGD optimization

BRISMF model

- Biased Regularized Incremental Simultaneous Matrix Factorization
- Applies regularization to prevent overfitting
- To further decrease RMSE using bias values
- Model:

$$
\hat{r}_{u i}=\vec{p}_{u} \vec{q}_{i}+b_{u}+c_{i}=\sum_{k=1}^{K} p_{u k} q_{k i}+b_{u}+c_{i}
$$

BRISMF Learning

- Loss function
$\sum_{(u, i) \in R_{\text {Nusit }}}\left(r_{u i}-\sum_{k=1}^{K} p_{u k} q_{k i}-b_{u}-c_{i}\right)^{2}+\lambda \sum_{(u, k)} p_{u k}^{2}+\lambda \sum_{(i, k)} q_{k i}^{2}+\lambda \sum_{u} b_{u}^{2}+\lambda \sum_{i} c_{i}^{2}$
- SGD update rules

$$
\begin{array}{ll}
\Delta p_{u k}=\eta\left(e_{u i} q_{k i}-\lambda p_{u k}\right) & \Delta q_{k i}=\eta\left(e_{u i} p_{u k}-\lambda q_{k i}\right) \\
\Delta b_{u}=\eta\left(e_{u i}-\lambda b_{u}\right) & \Delta c_{i}=\eta\left(e_{u i}-\lambda c_{i}\right)
\end{array}
$$

BRISMF - steps

- Initialize P and Q randomly
- For each iteration
- Get the next rating from R
- Update P and Q simultaneously using the update rules
- Do until..
- The training error is below a threshold
- Test error is decreasing
- Other stopping criteria is also possible

CS345 Data Mining (2009)

Recommendation Systems Netflix Challenge

Content-based recommendations

\square Main idea: recommend items to customer C similar to previous items rated highly by C
\square Movie recommendations

- recommend movies with same actor(s), director, genre, ...
\square Websites, blogs, news
- recommend other sites with "similar" content

Plan of action

Item Profiles

\square For each item, create an item profile
\square Profile is a set of features
■ movies: author, title, actor, director,...
■ text: set of "important" words in document
\square How to pick important words?
■ Usual heuristic is TF.IDF (Term Frequency times Inverse Doc Frequency)

TF.IDF

$f_{i j}=$ frequency of term t_{i} in document d_{j}

$$
T F_{i j}=\frac{f_{i j}}{\max _{k} f_{k j}}
$$

$\mathrm{n}_{\mathrm{i}}=$ number of docs that mention term i
$N=$ total number of docs

$$
I D F_{i}=\log \frac{N}{n_{i}}
$$

TF.IDF score $w_{i j}=T F_{i j} \times I D F_{i}$
Doc profile $=$ set of words with highest
TF.IDF scores, together with their scores

User profiles and prediction

\square User profile possibilities:

- Weighted average of rated item profiles
- Variation: weight by difference from average rating for item
\square Prediction heuristic
- Given user profile \mathbf{c} and item profile \mathbf{s}, estimate $u(\mathbf{c}, \mathbf{s})=\cos (\mathbf{c}, \mathbf{s})=\mathbf{c . s} /(|\mathbf{c}||\mathbf{s}|)$
- Need efficient method to find items with high utility: later

Model-based approaches

\square For each user, learn a classifier that classifies items into rating classes

- liked by user and not liked by user
- e.g., Bayesian, regression, SVM
\square Apply classifier to each item to find recommendation candidates
\square Problem: scalability
- Won't investigate further in this class

Limitations of content-based approach

\square Finding the appropriate features

- e.g., images, movies, music
\square Overspecialization
■ Never recommends items outside user's content profile
- People might have multiple interests
\square Recommendations for new users
■ How to build a profile?
\square Recent result: 20 ratings more valuable than content

Similarity based Collaborative Filtering
\square Consider user c
\square Find set D of other users whose ratings are "similar" to c's ratings
\square Estimate user's ratings based on ratings of users in D

Similar users

\square Let r_{x} be the vector of user x's ratings
\square Cosine similarity measure

- $\operatorname{sim}(x, y)=\cos \left(r_{x}, r_{y}\right)$
\square Pearson correlation coefficient
- $S_{x y}=$ items rated by both users x and y
$\operatorname{sim}(x, y)=\frac{\sum_{s \in S_{x y}}\left(r_{x s}-\overline{r_{x}}\right)\left(r_{y s}-\overline{r_{y}}\right)}{\sqrt{\sum_{s \in S_{x y}}\left(r_{x s}-\overline{r_{x}}\right)^{2}\left(r_{y s}-\overline{r_{y}}\right)^{2}}}$

Rating predictions

\square Let D be the set of k users most similar to c who have rated item s
\square Possibilities for prediction function (item s):
■ $r_{\mathrm{cs}}=1 / \mathrm{k} \sum_{\mathrm{d} \varepsilon \mathrm{D}} \mathrm{r}_{\mathrm{ds}}$
■ $r_{\mathrm{cs}}=\left(\sum_{\mathrm{d} \varepsilon \mathrm{D}} \operatorname{sim}(\mathrm{c}, \mathrm{d}) \times \mathrm{r}_{\mathrm{ds}}\right) /\left(\sum_{\mathrm{d} \varepsilon \mathrm{D}} \operatorname{sim}(\mathrm{c}, \mathrm{d})\right)$

Complexity

\square Expensive step is finding k most similar customers

- O(IUI)
\square Too expensive to do at runtime
- Need to pre-compute
\square Naïve precomputation takes time O(N|U|)
- Tricks for some speedup
\square Can use clustering, partitioning as alternatives, but quality degrades

The traditional similarity approach

- One of the earliest algorithms
- Warning: performance is very poor
- Improved version next ...

Recommender Systems: Content-based Systems \& Collaborative Filtering

CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu

Modeling Local \& Global Effects

- Global:
- Mean movie rating: 3.7 stars
- The Sixth Sense is 0.5 stars above avg.

- Joe rates 0.2 stars below avg.
\Rightarrow Baseline estimation: Joe will rate The Sixth Sense 4 stars
- Local neighborhood (CF/NN):
- Joe didn't like related movie Signs
- \Rightarrow Final estimate: Joe will rate The Sixth Sense 3.8 stars

Modeling Local \& Global Effects

- In practice we get better estimates if we model deviations:

$$
\hat{r}_{x i}=b_{x i}+\frac{\sum_{j \in N(i ; x)} s_{i j} \cdot\left(r_{x j}-b_{x j}\right)}{\sum_{j \in N(i ; x)} s_{i j}}
$$

baseline estimate for $r_{x i}$

$$
b_{x i}=\mu+b_{x}+b_{i}
$$

$\mu=$ overall mean rating
$\boldsymbol{b}_{\boldsymbol{x}}=$ rating deviation of user \boldsymbol{x}
$=($ avg. rating of user $\boldsymbol{x})-\mu$
$b_{i}=($ avg. rating of movie $i)-\mu$

Problems/Issues:

1) Similarity measures are "arbitrary"
2) Pairwise similarities neglect interdependencies among users
3) Taking a weighted average can be restricting
Solution: Instead of $s_{i j}$ use $w_{i j}$ that we estimate directly from data

Idea: Interpolation Weights wij $_{i j}$

- Use a weighted sum rather than weighted avg.:

$$
\widehat{r_{x i}}=b_{x i}+\sum_{j \in N(i ; x)} w_{i j}\left(r_{x j}-b_{x j}\right)
$$

- A few notes:
- $\boldsymbol{N}(\boldsymbol{i} ; \boldsymbol{x})$... set of movies rated by user \boldsymbol{x} that are similar to movie \boldsymbol{i}
- $\boldsymbol{w}_{i j}$ is the interpolation weight (some real number)
- We allow: $\sum_{j \in N(i, x)} w_{i j} \neq \mathbf{1}$
- $\boldsymbol{w}_{i j}$ models interaction between pairs of movies (it does not depend on user \boldsymbol{x})

Idea: Interpolation Weights wij

- $\widehat{r_{x i}}=b_{x i}+\sum_{j \in N(i, x)} w_{i j}\left(r_{x j}-b_{x j}\right)$
- How to set $w_{i j}$?
- Remember, error metric is: $\frac{1}{|R|} \sqrt{\sum_{(i, x) \in R}\left(\hat{r}_{x i}-r_{x i}\right)^{2}}$ or equivalently SSE: $\sum_{(i, x) \in R}\left(\hat{r}_{x i}-r_{x i}\right)^{2}$
- Find $w_{i j}$ that minimize SSE on training data!
- Models relationships between item \boldsymbol{i} and its neighbors \boldsymbol{j}
- $\boldsymbol{w}_{i j}$ can be learned/estimated based on \boldsymbol{x} and all other users that rated \boldsymbol{i}

Recommendations via Optimization

- Idea: Let's set values w such that they work well on known (user, item) ratings
- How to find such values w?
- Idea: Define an objective function and solve the optimization problem
- Find $w_{i j}$ that minimize SSE on training data!
- Think of \boldsymbol{w} as a vector of numbers

Interpolation Weights

- We have the optimization problem, now what?

$$
J(w)=\sum_{x}\left(\left[b_{x i}+\sum_{j \in N(i, x)} w_{i j}\left(r_{x j}-b_{x j}\right)\right]-r_{x i}\right)^{2}
$$

- Gradient decent:
- Iterate until convergence: $\boldsymbol{w} \leftarrow \boldsymbol{w}-\eta \boldsymbol{\nabla}_{\boldsymbol{w}} \boldsymbol{J} \quad \boldsymbol{\eta} \ldots$ learning rate
- where $\nabla_{w} \boldsymbol{J}$ is the gradient (derivative evaluated on data):

$$
\begin{aligned}
& \nabla_{w} J=\left[\frac{\partial J(w)}{\partial w_{i j}}\right]=2 \sum_{x, i}\left(\left[b_{x i}+\sum_{k \in N(i, x)} w_{i k}\left(r_{x k}-b_{x k}\right)\right]-r_{x i}\right)\left(r_{x j}-b_{x j}\right) \\
& \quad \text { for } \boldsymbol{j} \in\{\boldsymbol{N}(\boldsymbol{i} ; \boldsymbol{x}), \forall \boldsymbol{i}, \forall \boldsymbol{x}\} \\
& \text { else } \frac{\partial J(w)}{\partial w_{i j}}=\mathbf{0}
\end{aligned}
$$

- Note: We fix movie i, go over all $\boldsymbol{r}_{\text {xi }}$ for every movie $\boldsymbol{j} \in \boldsymbol{N}(\boldsymbol{i} ; \boldsymbol{x})$, we compute $\frac{\partial J(\boldsymbol{w})}{\partial w_{i j}}$

$$
\begin{aligned}
& \text { while }\left|w_{\text {new }}-w_{\text {old }}\right|>\varepsilon: \\
& w_{\text {old }}=w_{\text {new }} \\
& w_{\text {new }}=w_{\text {old }}-\eta \cdot \nabla w_{\text {old }}
\end{aligned}
$$

Interpolation Weights

- So far: $\widehat{x i}=b_{x i}+\sum_{j \in N(i ; x)} w_{i j}\left(r_{x j}-b_{x j}\right)$
- Weights $\boldsymbol{w}_{i j}$ derived based on their role; no use of an arbitrary similarity measure $\left(w_{i j} \neq s_{i j}\right)$
- Explicitly account for interrelationships among the neighboring movies
- Latent factor model
" Extract "regional" correlations

Factorization Machine (Steffen Rendle)

- Model: linear regression and pairwise rank k interactions:

$$
\hat{y}(\mathbf{x}):=w_{0}+\sum_{j=1}^{p} w_{j} x_{j}+\sum_{j=1}^{p} \sum_{j^{\prime}=j+1}^{p} x_{j} x_{j^{\prime}} \sum_{f=1}^{k} v_{j, f} v_{j^{\prime}, f}
$$

- Substitution for traditional matrix factorization:

$$
\begin{gathered}
(u, i) \rightarrow \mathbf{x}=(\underbrace{0, \ldots, 0,1,0, \ldots, 0}_{|U|}, \underbrace{0, \ldots, 0,1,0, \ldots, 0}_{|I|}) \\
\hat{y}(\mathbf{x})=\hat{y}(u, i)=w_{0}+w_{u}+w_{i}+\sum_{f=1}^{k} v_{u, f} v_{i, f}
\end{gathered}
$$

- If items have attributes (e.g. content, tf.idf, ...):

$$
\left(u, a_{1}^{i}, \ldots, a_{m}^{i}\right) \rightarrow \mathbf{x}=(\underbrace{0, \ldots, 0,1,0, \ldots, 0}_{|U|}, \underbrace{a_{1}^{i}, \ldots, a_{m}^{i}}_{\text {attributes of item } i})
$$

- One (but not the only) way to train is by gradient descent

Hierarchy of recommender algorithms

Memory based algorithms

Model based algorithms

linplicit feedback problems

Implicit feedback

 and
Alternating Least Squares

„Rating" matrix changes

	1	1	0	1	0
頜	0	0	1	1	0
)	1	0	1	0	1

The task

- $R(u, i)$: User u viewed/purchased $i-R(u, i)$ times
- Most cases: most of the values in R are zeros, there are some ones, the occurrence of other values is very low (e.g. movie recommender)

○ R is dense

- Recommend a (previously not viewed/purchased) item that the user will enjoy
- We do not know if the user liked an item
- We have to infer that \rightarrow heuristics
- Additional step: Predicting the preference?
- We have no information about items that the user didn't like

Problem with explicit objective function

- $\mathrm{L}=\sum_{(u, i) \in T}\left(\hat{r}_{u, i}-r_{u, i}\right)^{2}+\lambda_{U} \sum_{u=1}^{S_{U}}\left\|P_{u}\right\|^{2}+\lambda_{I} \sum_{i=1}^{S_{I}}\left\|Q_{i}\right\|^{2}$
- The matrix to be factorized contains 0s and 1 s
- If we consider only the positive events (1s)
- Predicting 1s everywhere trivially minimizes L
- Some minor differences may occur due to regularization
- Modified objective function (including zeros)
$\circ \mathrm{L}=\sum_{u=1, i=1}^{S_{U}, S_{I}}\left(\hat{r}_{u, i}-r_{u, i}\right)^{2}+\lambda_{U} \sum_{u=1}^{S_{U}}\left\|P_{u}\right\|^{2}+\lambda_{I} \sum_{i=1}^{S_{I}}\left\|Q_{i}\right\|^{2}$
- Number of terms increased
- \#zeros >> \#ones
- All zero prediction gives pretty good L

Why „explicit" optimization suffers

- Complexity of the best explicit method
- $O(|T| K)$
- Linear in the number of observed ratings
- Implicit feedback
- One should consider negative implicit feedback („missing rating")
- There is no real missing rating in the matrix
- An element is either 0 or 1 , no empty cells
- Complexity: $O\left(S_{U} S_{I} K\right)$
- Sparse data (< 1\%, in general)
- $S_{U} S_{I} \gg|T|$

iALS

(Implicit Alternating Least Squares)

Short detour: linear regression

- $A x=b$ linear equation

○ $A \in \mathbb{R}^{N \times M}, \mathrm{~b} \in \mathbb{R}^{N}$ known

- $\mathrm{X} \in \mathbb{R}^{M}$ unknown
- Meaning
- Rows of A are the training instances
- Elements are the output for each instance
- x is a weighting vector
- Assume output is obtained with linear combination of inputs
- Objective function: MSE

○ $L=\|b-A x\|^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(b_{i}-\left(A^{T}\right)_{i}{ }^{T} x\right)^{2}$

Solution of the linear regression

- Error function is convex, its minimum is attained where its derivative is zero
- Gradient: $\frac{\partial L}{\partial x}=2 A^{T}(b-A x)$
- $2 A^{T}(b-A x)=0$
- $A^{T} b=A^{T} A x$
- $x=\left(A^{T} A\right)^{-1} A^{T} b$
- The inverse of $\left(A^{T} A\right)$ may not exist - pseudoinverse

Alternating Least Squares (ALS)

- $R \approx \hat{R}=P^{T} Q$
- Fix one of the matrices, let's pick P
- Given a fixed P the i-th column of \hat{R} depends only on the i-th column of Q
- Problem to solve: $R_{i}=P^{T} Q_{i}$
- Problem of linear regression
- Error function
$\circ L=\|R-\hat{R}\|_{\text {frob }}{ }^{2}+\lambda_{U}\|P\|_{\text {frob }}{ }^{2}+\lambda_{I}\|Q\|_{\text {frob }}{ }^{2}$
- The derivatives of L by Q is a linear function of the columns of Q, therefore each column of Q can be calculated separately

ALS

- Initialize P and Q randomly
- Fix Q
- For each row of P solve with linear regression

$$
Q^{\prime T} p_{u}^{T}=r_{u}^{\prime}
$$

- The target vector consists of the ratings in the row of R for user u
- Q' contains only the columns for those items that are rated by the user
- Fix P
- For each column of Q solve with linear regression

$$
P^{\prime} q_{i}=r_{i}^{\prime T}
$$

iALS - objective function

- $L=\sum_{u=1, i=1}^{S_{U}, S_{I}} w_{u, i}\left(\hat{r}_{u, i}-r_{u, i}\right)^{2}+\lambda_{U} \sum_{u=1}^{S_{U}}\left\|P_{u}\right\|^{2}+\lambda_{I} \sum_{i=1}^{S_{I}}\left\|Q_{i}\right\|^{2}$
- Weighted MSE
- $w_{u, i}=\left\{\begin{array}{ll}w_{u, i} & \text { if }(u, i) \in T \\ w_{0} & \text { otherwise }\end{array} \quad w_{0} \ll w_{u, i}\right.$
- Typical weights: $w_{0}=1, w_{u, i}=100 * \operatorname{supp}(u, i)$
- What does it mean?
- Create two matrices from the events
- (1) Preference matrix
- Binary
- 1 represents the presence of an event
- (2) Confidence matrix
- Interprets our certainty on the corresponding values in the first matrix
- Negative feedback is much less certain

Effective optimization with ALS

- Q-step, first column: $\frac{\partial L}{\partial Q_{1}}=2 \sum_{u=1}^{S_{U}} w_{u, 1}\left(P_{u}{ }^{T} Q_{1}-r_{u, 1}\right) P_{u}+2 \lambda_{I} Q_{1}$
- The sum has S_{U} terms; calculating this for every column of Q would require $O\left(S_{U} S_{I}\right)$
- Does not scale
- Let $w_{u, i}=w_{u, i}^{\prime}+w_{0}$
- After substituting and decomposition $\frac{1}{2} \frac{\partial L}{\partial I_{1}}=-\sum_{u=1}^{S_{U}} w_{u, 1} r_{u, 1} P_{u}^{T}+$ $\sum_{u=1}^{S_{U}} w^{\prime}{ }_{u, 1} P_{u} P_{u}{ }^{T} Q_{1}+\left(\sum_{u=1}^{S_{U}} w_{0} P_{u} P_{u}{ }^{T}\right) Q_{1}+\lambda_{I} Q_{1}$
- First two sums scale with the positive implicit feedback of the first item in R
- The sum in the third member does not depend on the column of Q
- can be pre-calculated
- Cost of calculating one column of Q is the $K \times K$ matrix inversion

iALS algorithm

0 . Random initialization of P and Q

1. Stop, if the approximation is good
2. Fix P and calculate the columns of Q
$\bigcirc C^{(Q)}=\sum_{u=1}^{S_{U} w_{0} P_{u} P_{u}{ }^{T}}$

- For the i-th column
- $C^{(0, i)}=C^{(Q)}+\sum_{u=1}^{S_{U}^{U} W^{\prime}}{ }_{u, 1} P_{u} P_{u}{ }^{T}$
- $O^{(0, i)}=\sum_{u=1}^{S_{U}} w_{u, 1} r_{u, 1} P_{u}{ }^{T}$
- $Q_{i}=\left(C^{(Q, i)}+\lambda_{I} E\right)^{-1} O^{(Q, i)}$

3. Fix Q and calculate the columns of P

- Analogously

4. GOTO: 1

Complexity of iALS

- One epoch (P - and Q-step)
- $C^{(P)}$ and $C^{(Q)} \rightarrow O\left(K^{2}\left(S_{U}+S_{I}\right)\right)$
- $C^{(Q, i)}$ and $C^{(P, u)} \rightarrow$ proportional to the \#non-zeros $\rightarrow O\left(K^{2} N^{+}\right)$
- Matrix inversion for each column $\rightarrow O\left(K^{3}\left(S_{U}+S_{I}\right)\right)$
- Total cost: $O\left(K^{3}\left(S_{U}+S_{I}\right)+K^{2} N^{+}\right)$
- Linear in the number of events
- Cubic in the number of features
- In practice: $S_{U}+S_{I} \ll N^{+}$so for small K the second term dominates
- Quadratic in the number of features

Performance, summary, additional topics

COMPARISON, SUMMARY, NEW TOPICS
Netflix Prize lessons learned
Temporal, online and geographical recommendation
SCALABILITY, DISTRIBUTED METHODS AND SOFTWARE

The Netflix Prize

- Training data
- 100 million ratings, 480,000 users, 17,770 movies
- 6 years of data: 2000-2005
- Test data
- Last few ratings of each user (2.8 million)
- Evaluation criterion: Root Mean Square Error (RMSE)
$=\frac{1}{|R|} \sqrt{\sum_{(i, x) \in R}\left(\hat{r}_{x i}-r_{x i}\right)^{2}}$
- Netflix's system RMSE: 0.9514
- Competition
- 2,700+ teams
- \$1 million prize for 10% improvement on Netflix

Data about the Netflix Movies

Most Loved Movies	Avg rating	Count
The Shawshank Redemption	4.593	137812
Lord of the Rings :The Return of the King	4.545	133597
The Green Mile	4.306	180883
Lord of the Rings :The Two Towers	4.460	150676
Finding Nemo	4.415	139050
Raiders of the Lost Ark	4.504	117456

Most Rated Movies
Miss Congeniality
Independence Day
The Patriot
The Day After Tomorrow
Pretty Woman
Pirates of the Caribbean

Highest Variance

The Royal Tenenbaums
Lost In Translation
Pearl Harbor
Miss Congeniality
Napolean Dynamite
Fahrenheit 9/11

Most Active Users

User ID	\# Ratings	Mean Rating
305344	17,651	1.90
387418	17,432	1.81
2439493	16,560	1.22
1664010	15,811	4.26
2118461	14,829	4.08
1461435	9,820	1.37
1639792	9,764	1.33
1314869	9,739	2.95

Performance of Various Methods

Performance of Various Methods

Global average: 1.1296

User average: 1.0651
Movie average: 1.0533
Netflix: 0.9514
Basic Collaborative filtering: 0.94
Collaborative filtering++: 0.91
Latent factors: 0.90
Latent factors+Biases: 0.89

Latent factors+Biases+Time: 0.876

Standing on June 26 ${ }^{\text {th }} 2009$

NETFIIX

Netfilis Prize

Home Rules Leaderboard Register Update Submit Download

Leaderboard

Display top 20 leaders.

Rank	Team Name		\% Improvement	
1	BelliKor's Pragmatic Chaos	0.8558	10.05	2009-06-26 18:42:37
Grand Prize - RMSE $<=0.8563$				
2	PragmaticTheory	0.8582	9.80	2009-06-25 22:15:51
3	Bellkor in Bicchaos	0.8590	9.71	2009-05-13 08:14:09
4	Grand Prize Team	0.8593	9.68	2009-06-12 08:20:24
5	Dace	0.8604	9.56	2009-04-22 05:57:03
6	BigCh3os	0.8613	9.47	2009-06-23 23:06:52
Pronress Prize2008 - RMSE $=0.8616$ - Winning Team: BellKor in BigChaos				
7	Bellikor	0.8620	9.40	2009-06-24 07:16:02
8	Gravity	0.8634	9.25	2009-04-22 18:31:32
9	Opera Solutions	0.8638	9.21	2009-06-26 23:18:13
10	BruceDenoDanciritou	0.8638	9.21	2009-06-27 00:55:55
11	penapenazhou	0.8638	9.21	2009-06-27 01:06:43
12	xlvector	0.8639	9.20	2009-06-26 13:49:04
13	xiangliang	0.8639	9.20	2009-06-26 07:47:34

June $\mathbf{2 6}^{\text {th }}$ submission triggers $\mathbf{3 0}$-day "last call"

The Last 30 Days

- Ensemble team formed
- Group of other teams on leaderboard forms a new team
- Relies on combining their models
- Quickly also get a qualifying score over 10%
- BellKor
- Continue to get small improvements in their scores
- Realize that they are in direct competition with Ensemble
- Strategy
- Both teams carefully monitoring the leaderboard
- Only sure way to check for improvement is to submit a set of predictions
- This alerts the other team of your latest score

24 Hours from the Deadline

- Submissions limited to 1 a day
- Only 1 final submission could be made in the last 24 h
- 24 hours before deadline...
- BellKor team member in Austria notices (by chance) that Ensemble posts a score that is slightly better than BellKor's
- Frantic last 24 hours for both teams
- Much computer time on final optimization
- Carefully calibrated to end about an hour before deadline
- Final submissions
- BellKor submits a little early (on purpose), 40 mins before deadline
- Ensemble submits their final entry 20 mins later
-and everyone waits....

WETFLJX

Leaderboard

Showing Test Score. Click here to show quiz score
Display top $20 \geqslant$ leaders.

Million \$ Awarded Sept 21 ${ }^{\text {st }} 2009$

Social contacts as side information

- Characterize information diffusion, or information spreading by investigating online social networks
- Create an online, social network based recommendation system

Slides:
Robert Palovics

Influence, or?

- Social influence: Action of individuals induce their friends to act in a similar way
- Homophily: The tendency of individuals to associate and bond with similar others
- Burst: Herding, following the crowd

- N. Christakis and J. Fowler, "The spread of obesity in a large social network over 32 years," New England Journal of Medicine, 357(4):370-379, 2007.
- M. McPherson, L. Smith-Lovin, and J. M. Cook, "Birds of a Feather: Homophily in Social Networks," in Annual Review of Sociology, 27:415-444, 2001.
- A. Goyal, F. Bonchi, and L. V. Lakshmanan, "Learning influence probabilities in social networks," in WSDM, pp. 241-250, ACM, 2010.
- F. Bonchi, "Influence propagation in social networks: A data mining perspective," IEEE Intelligent Informatics Bulletin, 12(1):8-16, 2011.

Social Regularization I

- Average-based regularization

$$
\begin{aligned}
\min _{U, V} \mathcal{L}_{1}(R, U, V) & =\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{i j}\left(R_{i j}-U_{i}^{T} V_{j}\right)^{2} \\
& +\frac{\alpha}{2} \sum_{i=1}^{m}\left\|U_{i}-\frac{\sum_{f \in \mathcal{F}+(i)}}{\sum_{f \in \mathcal{F}+(i)} \operatorname{Sim}(i, f) \times U_{f}}\right\|_{F}^{2} \\
& +\frac{\lambda_{1}}{2}\|U\|_{F}^{2}+\frac{\lambda_{2}}{2}\|V\|_{F}^{2} .
\end{aligned}
$$

Minimize Ui's taste with the average tastes of Ui's friends.
The similarity function $\operatorname{Sim}(i, f)$ allows the social regularization term to treat users' friends differently.

Social Regularization II

- Individual-based regularization

$$
\begin{aligned}
\min _{U, V} \mathcal{L}_{2}(R, U, V) & =\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{i j}\left(R_{i j}-U_{i}^{T} V_{j}\right)^{2} \\
& +\frac{\beta}{2} \sum_{i=1}^{m} \sum_{f \in \mathcal{F}+(i)} \operatorname{Sim}(i, f)\left\|U_{i}-U_{f}\right\|_{F}^{2} \\
& +\lambda_{1}\|U\|_{F}^{2}+\lambda_{2}\|V\|_{F}^{2}
\end{aligned}
$$

This approach allows similarity of friends' tastes to be individually considered. It also indirectly models the propagation of tastes.

Catching the influence event

- User u is influenced by user v
- User u scrobbles a at the first time at t
- If v scrobbles a at time $t-\Delta t$
- Compute $\overline{\Delta t}$ in case of friends and all user pairs
- $\operatorname{CDF}(t)=$ fraction of influences with delay $\Delta t \leq t$ among all influences
- Friends vs. all pairs

Users scrobbled a before t

Measuring the influence

The influence recommender

- Recommend artists scrobbled by her friends in the recent past
- Monotonically decreasing (logarithmic) dependence on time: $\Gamma(\Delta t(v, u, a))$
- Dependence of observed influence in the past: $\omega(v, u, t)$
- Score is the product of the two, for all friends

$$
\hat{r}(u, a, t)=\sum_{v \in n(u)} \Gamma(\Delta t(v, u, a)) \omega(v, u, t)
$$

The influence recommender

Online recommendation

- Use SGD model update once for each new item
- Challenge for evaluation
- Model changes after each and every transaction
- Needs an evaluation metric for single transactions: DCG

$\operatorname{DCG@K}(a)= \begin{cases}0 & \text { if rank }(a)>K ; \\ \frac{1}{\log _{2}(\operatorname{rank}(a)+1)} & \text { otherwise. }\end{cases}$

Experiments over Last.fm

$$
\begin{aligned}
& \text {------ lrate= } 0.01 \\
& -- \text {---- lrate }=0.05 \\
& \text {------- lrate=0.1 }
\end{aligned}
$$

-■ lrate $=0.01$ combined

- lrate $=0.05$ combined
$\times \quad$ lrate $=0.1$ combined

Geographic side information

Datasets

Nomao:
France, mostly Paris 7605 locations
9471 users
97453 known ratings

Yelp:
Phoenix, AZ
45981 users
11537 locations
227906 known ratings
Text review

Singular Value Decomposition

The first 4 factors mapped over France

Recommend locations near already visited places

Method 1: regularization (omitted)

Method 2: imputation
Let be E the set of known ratings and N_{j} the neighbors of the location j , than we can modify the training set as follows. For all (u, i)
$\hat{r}_{u, i}= \begin{cases}r_{u, i} & \text { if }(u, i) \in \mathrm{E} \\ f\left(R_{u}, N_{u, i}\right) & \text { if }(u, i) \notin \mathrm{E} \text { and } \exists j \text { with }(u, j) \in \mathrm{E} \text { and } i \in N_{j} \\ 0 \text { or don't care } & \text { otherwise }\end{cases}$
where f is function of R_{u}, the set of known ratings by user " u " and $\mathrm{N}_{\mathrm{u}, \mathrm{i}}$ the set locations visited by " u " where " i " is a place of their neigborhood.

- identifying neighbors: k-nearest vs. radius, travel time?
- number of neighbors (n)?

Imputation models

Model 1: expand the list of locations per user with the neighbors of visited places
a) learn the ratings

$$
\begin{gathered}
f\left(R_{u}, N_{u, i}\right)=\frac{1}{\left|N_{u, i}\right|} \sum_{j \in N_{u, i}} r_{u, j} \\
\text { or a constant } \\
f\left(R_{u}, N_{u, i}\right)=c
\end{gathered}
$$

b) learn the occurrence

$$
f\left(R_{u}, N_{u, i}\right)=1
$$

Model 2: adaptive distance based expansion, smoothed with local density
a) learn the ratings

$$
f\left(R_{u}, N_{u, i}\right)=\frac{1}{\left|N_{u, i}\right|} \sum_{j \in N_{u, i}} \hat{r}_{u, j} \mathrm{e}^{-\frac{d_{L 2}(i, j)}{\hat{d}_{L 2}(j)}}
$$

b) learn the occurrence

$$
f\left(R_{u}, N_{u, i}\right)=\mathrm{e}^{-\frac{d_{L 2}(i, j)}{d_{L 2}(j)}}
$$

Ratings by frequency of location

Users rate average at locations that they frequently visit. New locations get extreme (1 and 5) ratings

Refine recommendation: regularization or re-ranking Location adaptive expansion by ratings of the nearby places

Ratings by frequency: Yelp!

Yelp!, log scale

拾

Distributed algorithms, parallelization, scalability, software

Parallel Machine Learning for Large-Scale Graphs

Danny Bickson

The GraphLab Team:

Yucheng
Low Gonzalez

Aapo
Kyrola

Jay
Gu

Carlos
Guestrin

Joe
Hellerstein

Alex Smola

sense
 learn Parallelism is Difficult

- Wide array of different parallel architectures:

- Different challenges for each architecture High Level Abstractions to make things easier
- Excellent for large data-parallel tasks!

Data-Parallel

Map Reduce

Feature	Cross	Lasso
Extraction	Validation	

Label Propagation

Kernel
Methods

Tensor

 FactorizationPageRank
Computing Sufficient Statistics

Map - Shuffle/Sort - Reduce

Input Splitting Mapping Shuffling Reducing Output

SGD, ALS implementations in Mahout

- ALS single iteration is easy:

○ $q_{i}=\left(P^{T} P\right)^{-1} P^{T} R_{i}=\sum_{j=1}^{N}\left(P^{T} P\right)^{-1} P_{j}^{T} R_{i j}$

- Partition by i
- Broadcast $P^{T} P$, just a kxk matrix
- SGD?
- Updates affect both the user AND the item models
- Partitioning neither for users nor for items is sufficient
- Efficient shared memory implementations but no real nice distributed
- More iterations?
o Hadoop will write all information to disk, we may re-partition before writing to have it ready for the next iteration
- Should we consider this efficient??

PageRank in MapReduce

- MAP:
- Read out-edge list of node n
- $\forall p \in$ out-edge (n): emit (p, PageRank(n)/outdegree(n))
- Reduce
- Grouped by p
- Add up emitted values as new PageRank (p)
- Write all results to disk and restart
- Something is missing to start the next iteration!

MapReduce PageRank code

public static void main(String[] args) \{
String[] value = \{
// key | PageRank| points-to
"1|0.25|2;4",
"2|0.25|3;4",
"3|0.25|2",
"4|0.25|3",

\};
mapper(value);
reducer(collect.entrySet());

$$
\begin{gathered}
\text { Result }(\varepsilon=0): \\
\text { " } 1 \mid 0.25^{\prime \prime}, \\
" 2 \mid 0.125^{\prime \prime}, \\
" 3 \mid 0.25^{\prime \prime} \\
" 4 \mid 0.375^{\prime \prime}
\end{gathered}
$$

Where are the edges??
Edges from node i need to be joined with new PageRank (i)

ALS: a very expensive example

- $q_{i}=\left(P^{T} P\right)^{-1} P^{T} R_{i}=\sum_{j=1}^{N}\left(P^{T} P\right)^{-1} P_{j}{ }^{T} R_{i j}$
- For each nonzero $R_{i j}$ we have an „edge"
- We need to emit $\left(P^{T} P\right)^{-1}$ of dimension k^{2}
- Join by using i as key, to compute Q
- If we have a predefined partition, we should not emit the same data for ALL edges from partition x to partition y

References

- Rajaraman, Anand, and Jeffrey David Ullman. Mining of massive datasets. Cambridge University Press, 2011.
- Koren, Yehuda, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender systems. Computer 42.8 (2009): 30-37.
- Rendle, Steffen. Factorization machines. ICDM, 2010
- Bell, Robert M., and Yehuda Koren. Improved neighborhood-based collaborative filtering. KDD Cup and Workshop at SIGKDD, 2007.
- Pilászy, István, Dávid Zibriczky, and Domonkos Tikk. Fast ALS-based matrix factorization for explicit and implicit feedback datasets. RecSys 2010.
- Pilászy, István, and Domonkos Tikk. Recommending new movies: even a few ratings are more valuable than metadata. RecSys 2009.
- Ma, H., Zhou, D., Liu, C., Lyu, M. R., \& King, I. Recommender systems with social regularization. WSDM 2011
- Pálovics, Benczúr. Temporal influence over the Last.fm social network. IEEE ASONAM 2013
- Gemulla, Rainer, et al. Large-scale matrix factorization with distributed stochastic gradient descent. KDD 2011.

