Large dictionaries

Paolo Boldi DSI LAW (Laboratory for Web Algorithmics) Università degli Studi di Milan

≣ >

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

While building the inverted index we build a map from terms to numbers.

イロン イヨン イヨン イヨン

- While building the inverted index we build a map from terms to numbers.
- The same kind of map is needed while building the graph: in that case it is a map from URLs to numbers:

http://pippo.pluto/x/y	0
http://topolino.minnie/w.htm	1
http://topolino.minnie/z.htm	2

- While building the inverted index we build a map from terms to numbers.
- The same kind of map is needed while building the graph: in that case it is a map from URLs to numbers:

http://pippo.pluto/x/y	0
http://topolino.minnie/w.htm	1
http://topolino.minnie/z.htm	2

The numbering used is arbitrary, but lexicographic numbering turns out to be convenient for many reasons...

Building the graph

Paolo Boldi Large dictionaries

・ロト ・回ト ・ヨト ・ヨト

From the map, one can build a graph by scanning the pages (one at a time), parsing them and determining outgoing links (anchors).

∄ ▶ ∢ ≣ ▶

- From the map, one can build a graph by scanning the pages (one at a time), parsing them and determining outgoing links (anchors).
- Given a link to, say, http://foo/bar/index.html, we just have to determine the number to which this URL corresponds.

- From the map, one can build a graph by scanning the pages (one at a time), parsing them and determining outgoing links (anchors).
- Given a link to, say, http://foo/bar/index.html, we just have to determine the *number* to which this URL corresponds.
- Keeping URLs in an array and doing a binary search is out of questions for reasons of time (1G nodes=30 comparisons) and space (1G nodes=300GB of data!).

- 4 回 🕨 - 4 回 🕨 - 4 回 🕨

The problem

Paolo Boldi Large dictionaries

・ロン ・四 と ・ ヨン ・ ヨン

X	f(x)
http://pippo.pluto/x/y	0
http://topolino.minnie/w.htm	1
http://topolino.minnie/z.htm	2

< 4 ₽ > < 2 >

æ

- ∢ ≣ ▶

X	f(x)
http://pippo.pluto/x/y	0
http://topolino.minnie/w.htm	1
http://topolino.minnie/z.htm	2

• with a data structure that can compute f(x) quickly given x.

X	f(x)
http://pippo.pluto/x/y	0
http://topolino.minnie/w.htm	1
http://topolino.minnie/z.htm	2

- with a data structure that can compute f(x) quickly given x.
- Construction time is not a problem (within reasonable limits)!

X	f(x)
http://pippo.pluto/x/y	0
http://topolino.minnie/w.htm	1
http://topolino.minnie/z.htm	2

- with a data structure that can compute f(x) quickly given x.
- Construction time is not a problem (within reasonable limits)!
- We don't need the inverse function.

・ロト ・回ト ・ヨト ・ヨト

Given a universe Ω and an integer m, a an m-bucket hash function for Ω is a function h : Ω → [m] = {0, 1, ..., m − 1}

- Given a universe Ω and an integer m, a an m-bucket hash function for Ω is a function h : Ω → [m] = {0, 1, ..., m − 1}
- It must be easy to compute and as "injective" as possible.

- Given a universe Ω and an integer m, a an m-bucket hash function for Ω is a function h : Ω → [m] = {0, 1, ..., m − 1}
- It must be easy to compute and as "injective" as possible.
- In particular, we are interested in its behaviour on a specific set S ⊆ Ω.

- Given a universe Ω and an integer m, a an m-bucket hash function for Ω is a function h : Ω → [m] = {0, 1, ..., m − 1}
- It must be easy to compute and as "injective" as possible.
- In particular, we are interested in its behaviour on a specific set S ⊆ Ω.
- Ideally, if |S| ≤ m, we would like h to be injective on S. In such a case we say that h is perfect for S.

- Given a universe Ω and an integer m, a an m-bucket hash function for Ω is a function h : Ω → [m] = {0, 1, ..., m − 1}
- It must be easy to compute and as "injective" as possible.
- In particular, we are interested in its behaviour on a specific set S ⊆ Ω.
- Ideally, if |S| ≤ m, we would like h to be injective on S. In such a case we say that h is perfect for S.
- If moreover |S| = m, we say that h is minimal perfect.

- Given a universe Ω and an integer m, a an m-bucket hash function for Ω is a function h : Ω → [m] = {0, 1, ..., m − 1}
- It must be easy to compute and as "injective" as possible.
- In particular, we are interested in its behaviour on a specific set S ⊆ Ω.
- Ideally, if |S| ≤ m, we would like h to be injective on S. In such a case we say that h is perfect for S.
- If moreover |S| = m, we say that *h* is *minimal perfect*.
- Usually, obtaining a minimal perfect hash function is impossible because S is unknown. Not in our case, though...

- Given a universe Ω and an integer m, a an m-bucket hash function for Ω is a function h : Ω → [m] = {0, 1, ..., m − 1}
- It must be easy to compute and as "injective" as possible.
- In particular, we are interested in its behaviour on a specific set S ⊆ Ω.
- Ideally, if |S| ≤ m, we would like h to be injective on S. In such a case we say that h is perfect for S.
- If moreover |S| = m, we say that *h* is *minimal perfect*.
- Usually, obtaining a minimal perfect hash function is impossible because S is unknown. Not in our case, though...
- We will present a technique introduced by Majewski, Wormald, Havas and Czech.

▲冊▶ ▲屋▶ ▲屋≯

Paolo Boldi Large dictionaries

(本部) (本語) (本語)

 As a concrete example: let Ω = Σ^{≤w} (the set of all strings of length ≤ w on an alphabet Σ);

- As a concrete example: let Ω = Σ^{≤w} (the set of all strings of length ≤ w on an alphabet Σ);
- Let m be an integer

- As a concrete example: let Ω = Σ^{≤w} (the set of all strings of length ≤ w on an alphabet Σ);
- Let m be an integer
- Let us draw w weights (at random) between 0 and m-1:

- As a concrete example: let Ω = Σ^{≤w} (the set of all strings of length ≤ w on an alphabet Σ);
- Let m be an integer
- Let us draw w weights (at random) between 0 and m-1:

• Given a string $x \in \Omega$

we look at it as a sequence of w numbers (padding it with zeroes at the end):

- As a concrete example: let Ω = Σ^{≤w} (the set of all strings of length ≤ w on an alphabet Σ);
- Let *m* be an integer
- Let us draw w weights (at random) between 0 and m-1:

• Given a string $x \in \Omega$

we look at it as a sequence of w numbers (padding it with zeroes at the end):

h(x) is defined multiplying each character to the corresponding weight, summing up and taking the result modulo m: (3 × 110 + 12 × 105 + ...) mod m.

・ロト ・回ト ・ヨト ・ヨト

► Take some m ≥ n, and choose uniformly at random two hash functions h₁ and h₂ from strings to {0,1,...,m-1}

- ► Take some m ≥ n, and choose uniformly at random two hash functions h₁ and h₂ from strings to {0, 1, ..., m − 1}
- ► For example

X	f(x)	$h_1(x)$	$h_2(x)$
http://pippo.pluto/x/y	0	231	3443
http://topolino.minnie/w.htm	1	32	5534
http://topolino.minnie/z.htm	2	231	32

- ► Take some m ≥ n, and choose uniformly at random two hash functions h₁ and h₂ from strings to {0, 1, ..., m − 1}
- ► For example

X	f(x)	$h_1(x)$	$h_2(x)$
http://pippo.pluto/x/y	0	231	3443
http://topolino.minnie/w.htm	1	32	5534
http://topolino.minnie/z.htm	2	231	32

▶ Build a graph whose vertices are $\{0, 1, ..., m-1\}$ and with an edge for every string: the edge for string x connects $h_1(x)$ and $h_2(x)$.

- ► Take some m ≥ n, and choose uniformly at random two hash functions h₁ and h₂ from strings to {0, 1, ..., m − 1}
- ► For example

X	f(x)	$h_1(x)$	$h_2(x)$
http://pippo.pluto/x/y	0	231	3443
http://topolino.minnie/w.htm	1	32	5534
http://topolino.minnie/z.htm	2	231	32

- ▶ Build a graph whose vertices are $\{0, 1, ..., m-1\}$ and with an edge for every string: the edge for string x connects $h_1(x)$ and $h_2(x)$.
- Special cases: degenerate arcs? coincident arcs? cyclic graph?
 We throw h₁ and h₂ away and generate another pair.

- ► Take some m ≥ n, and choose uniformly at random two hash functions h₁ and h₂ from strings to {0, 1, ..., m − 1}
- ► For example

X	f(x)	$h_1(x)$	$h_2(x)$
http://pippo.pluto/x/y	0	231	3443
http://topolino.minnie/w.htm	1	32	5534
http://topolino.minnie/z.htm	2	231	32

- ▶ Build a graph whose vertices are {0, 1, ..., m − 1} and with an edge for every string: the edge for string x connects h₁(x) and h₂(x).
- Special cases: degenerate arcs? coincident arcs? cyclic graph?
 We throw h₁ and h₂ away and generate another pair.
- ► Theorem: if m is large enough (m ≥ 1.75n) with high probability (with an expected number of e^{4/5} ≈ 2 attempts) we will get a graph satisfying the constraints.

・ロト ・回ト ・ヨト ・ヨト

Let's go back to our example:

x	f(x)	$h_1(x)$	$h_2(x)$
http://pippo.pluto/x/y	0	231	3443
http://topolino.minnie/w.htm	1	32	5534
http://topolino.minnie/z.htm	2	231	32

< 4 ₽ > < 2 >

æ

- ∢ ≣ ▶
Let's go back to our example:

x	f(x)	$h_1(x)$	$h_2(x)$
http://pippo.pluto/x/y	0	231	3443
http://topolino.minnie/w.htm	1	32	5534
http://topolino.minnie/z.htm	2	231	32

We associate to every vertex a variable (the variable associated to 231 is x₂₃₁) and look at the graph as a system of modular equations:

$$(x_{231} + x_{3443}) \mod m = 0$$

$$(x_{32} + x_{5534}) \mod m = 1$$

$$(x_{231} + x_{32}) \mod m = 2$$

• Let's go back to our example:

x	f(x)	$h_1(x)$	$h_2(x)$
http://pippo.pluto/x/y	0	231	3443
http://topolino.minnie/w.htm	1	32	5534
http://topolino.minnie/z.htm	2	231	32

► We associate to every vertex a variable (the variable associated to 231 is x₂₃₁) and look at the graph as a system of modular equations:

$$(x_{231} + x_{3443}) \mod m = 0$$

$$(x_{32} + x_{5534}) \mod m = 1$$

$$(x_{231} + x_{32}) \mod m = 2$$

Theorem: If the graph is acyclic, this system admits a solution (it can be found with a DFS).

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

æ

More precisely, graph acyclicity implies that you can re-order the equations in such a way that every equation contains a variable that *never appear before*:

$$(x_{231} + x_{3443}) \mod m = 0$$

 $(x_{32} + x_{5534}) \mod m = 1$

 $(x_{231} + x_{32}) \mod m = 2$

More precisely, graph acyclicity implies that you can re-order the equations in such a way that every equation contains a variable that *never appear before*:

> $(x_{231} + x_{3443}) \mod m = 0$ $(x_{32} + x_{5534}) \mod m = 1$ $(x_{231} + x_{32}) \mod m = 2$

... becomes ...

$$\begin{array}{rcl} (x_{231} + x_{3443}) \bmod m &=& 0\\ (x_{231} + x_{32}) \bmod m &=& 2\\ (x_{32} + x_{5534}) \bmod m &=& 1 \end{array}$$

More precisely, graph acyclicity implies that you can re-order the equations in such a way that every equation contains a variable that *never appear before*:

> $(x_{231} + x_{3443}) \mod m = 0$ $(x_{32} + x_{5534}) \mod m = 1$ $(x_{231} + x_{32}) \mod m = 2$

... becomes ...

$$\begin{array}{rcl} (x_{231}+x_{3443}) \bmod m &=& 0\\ (x_{231}+x_{32}) \bmod m &=& 2\\ (x_{32}+x_{5534}) \bmod m &=& 1 \end{array}$$

The "new" variable that appears in every equation is called the "hinge" of that equation.

・同・ ・ヨ・ ・ヨ・

More precisely, graph acyclicity implies that you can re-order the equations in such a way that every equation contains a variable that *never appear before*:

 $\begin{array}{rcl} (x_{231}+x_{3443}) \bmod m & = & 0 \\ (x_{32}+x_{5534}) \bmod m & = & 1 \\ (x_{231}+x_{32}) \bmod m & = & 2 \end{array}$

... becomes ...

$$\begin{array}{rcl} (x_{231}+x_{3443}) \bmod m &=& 0\\ (x_{231}+x_{32}) \bmod m &=& 2\\ (x_{32}+x_{5534}) \bmod m &=& 1 \end{array}$$

- The "new" variable that appears in every equation is called the "hinge" of that equation.
- Hinges are free! (So you find a solution to the system by assigning to every hinge the value you need to make the equation right)

・ロト ・回ト ・ヨト ・ヨト

æ

We store an array x[] with the solution found: this array has the property that, for every string x:

 $(x[h_1(x)] + x[h_2(x)]) \mod m = f(x).$

/⊒ ▶ < ≣ ▶

We store an array x[] with the solution found: this array has the property that, for every string x:

 $(x[h_1(x)] + x[h_2(x)]) \mod m = f(x).$

So to compute f(x) we just need x[] (m ≈ 2n integers, 2n log n bits) and the two weight vectors for computing the two hash functions (the size of this is *independent* from n, it just depends on the string length)

We store an array x[] with the solution found: this array has the property that, for every string x:

 $(x[h_1(x)] + x[h_2(x)]) \mod m = f(x).$

- So to compute f(x) we just need x[] (m ≈ 2n integers, 2n log n bits) and the two weight vectors for computing the two hash functions (the size of this is *independent* from n, it just depends on the string length)
- Remarks:
 - ▶ we are not storing the strings, so it will be IMPOSSIBLE to compute f⁻¹

・ 回 ト ・ ヨ ト ・

We store an array x[] with the solution found: this array has the property that, for every string x:

 $(x[h_1(x)] + x[h_2(x)]) \mod m = f(x).$

- So to compute f(x) we just need x[] (m ≈ 2n integers, 2n log n bits) and the two weight vectors for computing the two hash functions (the size of this is *independent* from n, it just depends on the string length)
- Remarks:
 - ▶ we are not storing the strings, so it will be IMPOSSIBLE to compute f⁻¹
 - Observe that the MWHC construction gives much more than a simple minimal perfect hash: it is an *order preserving* one (OPMPH)!

・同 ・ ・ ヨ ・ ・ ヨ ・ ・

Paolo Boldi Large dictionaries

・ロト ・回ト ・ヨト ・ヨト

æ

The same idea can be applied to more than two hash functions, working with hypergraphs instead of graphs.

- The same idea can be applied to more than two hash functions, working with hypergraphs instead of graphs.
- The advantage is that we can get acyclicity with *less* vertices (in the case of graphs, we need $m \ge 1.75n$).

- The same idea can be applied to more than two hash functions, working with hypergraphs instead of graphs.
- The advantage is that we can get acyclicity with *less* vertices (in the case of graphs, we need $m \ge 1.75n$).
- ▶ It can be shown that the optimum is obtained with *three* hash functions, in which case we just need $m \ge 1.21n$.

- The same idea can be applied to more than two hash functions, working with hypergraphs instead of graphs.
- ▶ The advantage is that we can get acyclicity with *less* vertices (in the case of graphs, we need $m \ge 1.75n$).
- ▶ It can be shown that the optimum is obtained with *three* hash functions, in which case we just need $m \ge 1.21n$.
- ▶ With the latter technique, you need 1.21*n* log *n* bits to store a minimal order-preserving hash.

- The same idea can be applied to more than two hash functions, working with hypergraphs instead of graphs.
- ▶ The advantage is that we can get acyclicity with *less* vertices (in the case of graphs, we need $m \ge 1.75n$).
- ▶ It can be shown that the optimum is obtained with *three* hash functions, in which case we just need $m \ge 1.21n$.
- ▶ With the latter technique, you need 1.21*n* log *n* bits to store a minimal order-preserving hash.
- The same idea is actually more general: every function $h: S \subseteq \Omega \rightarrow \Psi$ can be represented using only $1.21n \log |\Psi|$ bits, with constant-time evaluation.

A perfect hash

If you just need a perfect hash...

▲ 御 ▶ → ミ ▶

æ

- ∢ ≣ ▶

A perfect hash

- If you just need a perfect hash...
- You proceed exactly like explained, and you get a system of equations, one per edge:

$$(x_{231} + x_{3443}) \mod ??? = ???$$

$$(x_{32} + x_{5534}) \mod ??? = ???$$

$$(x_{231} + x_{32111}) \mod ??? = ???$$

A perfect hash

- If you just need a perfect hash...
- You proceed exactly like explained, and you get a system of equations, one per edge:

 $(x_{231} + x_{3443}) \mod ??? = ???$

- $(x_{32} + x_{5534}) \mod ??? = ???$
- $(x_{231} + x_{32111}) \mod ??? = ???$
- Each equation is of the form

$$(x_{h_1(w)} + x_{h_2(w)}) \mod ??? = ???$$

for some $w \in S$. Acyclicity guarantees that it is possible to *reorder* these equations in some order so that every equation contains a variable (either $h_1(w)$ or $h_2(w)$) that never appeared before.

In other words, it is possible to write the system so that

$$(x_{h_1(w)} + x_{h_2(w)}) \mod 2 = 0 \text{ or } 1$$

depending on whether the hinge is $h_1(w)$ or $h_2(w)$.

In other words, it is possible to write the system so that

$$(x_{h_1(w)} + x_{h_2(w)}) \mod 2 = 0 \text{ or } 1$$

depending on whether the hinge is $h_1(w)$ or $h_2(w)$.

► The system has a solution (because of acyclicity). In other words, you can determine a vector x[] (of bits) such that, for every w ∈ S,

$$1 + (x[h_1(w)] + x[h_2(w)]) \mod 2$$

gives an index j(w) such that th $h_{j(w)}(w)$ are all distinct.

In other words, it is possible to write the system so that

$$(x_{h_1(w)} + x_{h_2(w)}) \mod 2 = 0 \text{ or } 1$$

depending on whether the hinge is $h_1(w)$ or $h_2(w)$.

► The system has a solution (because of acyclicity). In other words, you can determine a vector x[] (of bits) such that, for every w ∈ S,

$$1 + (x[h_1(w)] + x[h_2(w)]) \mod 2$$

gives an index j(w) such that th $h_{j(w)}(w)$ are all distinct.

In other words, the function g(w) := h_{j(w)}(w) is a perfect hash (not a minimal one).

▲冊▶ ▲屋▶ ▲屋≯

In other words, it is possible to write the system so that

$$(x_{h_1(w)} + x_{h_2(w)}) \mod 2 = 0 \text{ or } 1$$

depending on whether the hinge is $h_1(w)$ or $h_2(w)$.

► The system has a solution (because of acyclicity). In other words, you can determine a vector x[] (of bits) such that, for every w ∈ S,

$$1 + (x[h_1(w)] + x[h_2(w)]) \mod 2$$

gives an index j(w) such that th $h_{j(w)}(w)$ are all distinct.

- In other words, the function g(w) := h_{j(w)}(w) is a perfect hash (not a minimal one).
- Just needs m bits (besides the weights for the two hashes!). Actually, 2m for hypergraphs (because the possible hinges are three, so 1 bit is not enough).

Combining the construction explained (using 2m bits) with a bitvector of m bits for ranking, we obtain a minimal perfect hash.

- Combining the construction explained (using 2m bits) with a bitvector of m bits for ranking, we obtain a minimal perfect hash.
- ► This structure uses 2m + m + o(m) = 3m + o(m) = 3.63n bits, plus the (constant) bits needed to store the hash functions h₁ and h₂.

- Combining the construction explained (using 2m bits) with a bitvector of m bits for ranking, we obtain a minimal perfect hash.
- ► This structure uses 2m + m + o(m) = 3m + o(m) = 3.63n bits, plus the (constant) bits needed to store the hash functions h₁ and h₂.
- Note that it is minimal and perfect, but not order preserving.

▶ We can store a *perfect hash* (ph) in 1.21*n* bits

æ

- ▶ We can store a *perfect hash* (ph) in 1.21*n* bits
- ▶ A minimal perfect hash (mph) in 3.63n bits

▲ □ ► < □ ►</p>

문 문 문

- ▶ We can store a *perfect hash* (ph) in 1.21*n* bits
- A minimal perfect hash (mph) in 3.63n bits
- An order-preserving minimal perfect hash (opmph) in 1.21n log n bits

- ▶ We can store a *perfect hash* (ph) in 1.21*n* bits
- A minimal perfect hash (mph) in 3.63n bits
- An order-preserving minimal perfect hash (opmph) in 1.21n log n bits
- An arbitrary *r*-bit-valued function in 1.21*nr* bits

MapReduce is Google programming model to process large datasets. Although originally invented at Google, it has since got a number of free implementations, most notably Apache's Hadoop.

MapReduce is Google programming model to process large datasets. Although originally invented at Google, it has since got a number of free implementations, most notably Apache's Hadoop. It is based on two basic steps, called *map* and *reduce*. Both work on bags (i.e., multisets) of key/value pairs: MapReduce is Google programming model to process large datasets. Although originally invented at Google, it has since got a number of free implementations, most notably Apache's Hadoop. It is based on two basic steps, called *map* and *reduce*. Both work on bags (i.e., multisets) of key/value pairs:

$$\mathrm{map}: \quad (k,v) \mapsto \{(k_1,v_1),\ldots,(k_n,v_n)\}$$

MapReduce is Google programming model to process large datasets. Although originally invented at Google, it has since got a number of free implementations, most notably Apache's Hadoop. It is based on two basic steps, called *map* and *reduce*. Both work on bags (i.e., multisets) of key/value pairs:

$$\begin{array}{ll} \mathrm{map}: & (k,v) \mapsto \{(k_1,v_1),\ldots,(k_n,v_n)\} \\ \mathrm{reduce}: & (k,\{v_1,\ldots,v_p\}) \mapsto \{(k_1',v_1'),\ldots,(k_m',v_m')\} \end{array}$$
Every MapReduce iteration starts with a bag B_0 of key/values; the first step is applying

$$map: \quad (k,v) \mapsto \{(k_1,v_1),\ldots,(k_n,v_n)\}$$

to each key/value pair in the input set. The collection of all outputs so obtained is the bag B_1 on which the next phase will be applied.

向下 イヨト イヨト

Every MapReduce iteration starts with a bag B_0 of key/values; the first step is applying

$$map: \quad (k,v) \mapsto \{(k_1,v_1),\ldots,(k_n,v_n)\}$$

to each key/value pair in the input set. The collection of all outputs so obtained is the bag B_1 on which the next phase will be applied.

Note that all maps are independent, so they can be executed by many machines (potentially, one per pair!).

(4回) (4回) (4回)

The key/value pairs obtained in the map phase B_1 are then shuffled: all pairs with the same key are put together, and mapped to a single pair whose value component collects all the values

$$(k, v_1), \ldots, (k, v_n) \mapsto (k, \{v_1, \ldots, v_n\}).$$

The key/value pairs obtained in the map phase B_1 are then shuffled: all pairs with the same key are put together, and mapped to a single pair whose value component collects all the values

$$(k, v_1), \ldots, (k, v_n) \mapsto (k, \{v_1, \ldots, v_n\}).$$

The new set of key/value pairs will be called B'_1 .

The key/value pairs in the set B'_1 (of the form $(k, \{v_1, \ldots, v_n\})$) because of the intermediate phase) are then passed to the reduce function

The key/value pairs in the set B'_1 (of the form $(k, \{v_1, \ldots, v_n\})$) because of the intermediate phase) are then passed to the reduce function

$$\text{reduce}: \quad \left(k, \{v_1, \dots, v_p\}\right) \mapsto \left\{(k'_1, v'_1), \dots, (k'_m, v'_m)\right\}$$

The collection of all outputs so obtained is the bag B_2 which is the final output of the MapReduce iteration.

The key/value pairs in the set B'_1 (of the form $(k, \{v_1, \ldots, v_n\})$) because of the intermediate phase) are then passed to the reduce function

$$\text{reduce}: \quad \left(k, \{v_1, \dots, v_p\}\right) \mapsto \left\{(k'_1, v'_1), \dots, (k'_m, v'_m)\right\}$$

The collection of all outputs so obtained is the bag B_2 which is the final output of the MapReduce iteration.

Note that all reduces are independent, so they can be executed by many machines (potentially, one per key!).

Input. Pairs (docId, doc) where docId is a document id (a number) and doc is a document.

Input. Pairs (docId, doc) where docId is a document id (a number) and doc is a document.

Map. Map maps the pair (x, d) to the set of pairs (w, x), w being a word that occurs in d.

Input. Pairs (docId, doc) where docId is a document id (a number) and doc is a document.

Map. Map maps the pair (x, d) to the set of pairs (w, x), w being a word that occurs in d.

Reduce. Reduce maps the pair $(w, \{d_1, \ldots, d_n\})$ to the single pair (w, n).

| 4 回 2 4 U = 2 4 U =

 $\mathrm{map}: \quad (x,y)\mapsto \{(x,y),(y,x)\}$

$$\begin{array}{ll} \mathrm{map}: & (x,y) \mapsto \{(x,y),(y,x)\}\\ \mathrm{reduce}: & (x,\{y_1,\ldots,y_d\}) \mapsto \{(x,d)\} \end{array}$$

$$\begin{array}{ll} \mathrm{map}: & (x,y) \mapsto \{(x,y),(y,x)\}\\ \mathrm{reduce}: & (x,\{y_1,\ldots,y_d\}) \mapsto \{(x,d)\} \end{array}$$

Then you can remove all arcs that insist on a node of degree 1. And proceed. This is obtained as a join (a primitive that can be easily implemented in MapReduce).

$$\begin{array}{ll} \mathrm{map}: & (x,y) \mapsto \{(x,y),(y,x)\}\\ \mathrm{reduce}: & (x,\{y_1,\ldots,y_d\}) \mapsto \{(x,d)\} \end{array}$$

Then you can remove all arcs that insist on a node of degree 1. And proceed. This is obtained as a join (a primitive that can be easily implemented in MapReduce).

Arcs should be peeled in reverse order w.r.t. removal.