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Term map

I While building the inverted index we build a map from terms
to numbers.

I The same kind of map is needed while building the graph: in
that case it is a map from URLs to numbers:
http://pippo.pluto/x/y 0
http://topolino.minnie/w.htm 1
http://topolino.minnie/z.htm 2
. . . . . .

I The numbering used is arbitrary, but lexicographic numbering
turns out to be convenient for many reasons. . .
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Building the graph

I From the map, one can build a graph by scanning the pages
(one at a time), parsing them and determining outgoing links
(anchors).

I Given a link to, say, http://foo/bar/index.html, we just
have to determine the number to which this URL corresponds.

I Keeping URLs in an array and doing a binary search is out of
questions for reasons of time (1G nodes=30 comparisons) and
space (1G nodes=300GB of data!).
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The problem

I In other words, we want to represent a function like:
x f (x)

http://pippo.pluto/x/y 0
http://topolino.minnie/w.htm 1
http://topolino.minnie/z.htm 2
. . . . . .

I with a data structure that can compute f (x) quickly given x .

I Construction time is not a problem (within reasonable limits)!

I We don’t need the inverse function.
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Short interlude: hash functions

I Given a universe Ω and an integer m, a an m-bucket hash
function for Ω is a function h : Ω→ [m] = {0, 1, . . . ,m − 1}

I It must be easy to compute and as “injective” as possible.

I In particular, we are interested in its behaviour on a specific
set S ⊆ Ω.

I Ideally, if |S | ≤ m, we would like h to be injective on S . In
such a case we say that h is perfect for S .

I If moreover |S | = m, we say that h is minimal perfect.

I Usually, obtaining a minimal perfect hash function is
impossible because S is unknown. Not in our case, though. . .

I We will present a technique introduced by Majewski,
Wormald, Havas and Czech.
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Short interlude: string hashing

I As a concrete example: let Ω = Σ≤w (the set of all strings of
length ≤ w on an alphabet Σ);

I Let m be an integer

I Let us draw w weights (at random) between 0 and m − 1:

3 12 7 41 33 . . . 5

I Given a string x ∈ Ω

n i n o

we look at it as a sequence of w numbers (padding it with
zeroes at the end):

110 105 110 111 0 . . . 0

I h(x) is defined multiplying each character to the
corresponding weight, summing up and taking the result
modulo m: (3× 110 + 12× 105 + . . . ) mod m.
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The MWHC Algorithm: 1

I Take some m ≥ n, and choose uniformly at random two hash
functions h1 and h2 from strings to {0, 1, . . . ,m − 1}

I For example
x f (x) h1(x) h2(x)
http://pippo.pluto/x/y 0 231 3443
http://topolino.minnie/w.htm 1 32 5534
http://topolino.minnie/z.htm 2 231 32
. . . . . . . . . . . .

I Build a graph whose vertices are {0, 1, . . . ,m − 1} and with
an edge for every string: the edge for string x connects h1(x)
and h2(x).

I Special cases: degenerate arcs? coincident arcs? cyclic graph?
We throw h1 and h2 away and generate another pair.

I Theorem: if m is large enough (m ≥ 1.75n) with high
probability (with an expected number of e4/5 ≈ 2 attempts)
we will get a graph satisfying the constraints.
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The MWHC Algorithm: 2

I Let’s go back to our example:
x f (x) h1(x) h2(x)
http://pippo.pluto/x/y 0 231 3443
http://topolino.minnie/w.htm 1 32 5534
http://topolino.minnie/z.htm 2 231 32
. . . . . . . . . . . .

I We associate to every vertex a variable (the variable
associated to 231 is x231) and look at the graph as a system
of modular equations:

(x231 + x3443) mod m = 0

(x32 + x5534) mod m = 1

(x231 + x32) mod m = 2

I Theorem: If the graph is acyclic, this system admits a
solution (it can be found with a DFS).
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The MWHC Algorithm: 2 (bis)

I More precisely, graph acyclicity implies that you can re-order
the equations in such a way that every equation contains a
variable that never appear before:

(x231 + x3443) mod m = 0

(x32 + x5534) mod m = 1

(x231 + x32) mod m = 2

. . . becomes . . .

(x231 + x3443) mod m = 0

(x231 + x32) mod m = 2

(x32 + x5534) mod m = 1

I The “new” variable that appears in every equation is called
the “hinge” of that equation.

I Hinges are free! (So you find a solution to the system by
assigning to every hinge the value you need to make the
equation right)
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The MWHC Algorithm: 3

I We store an array x [] with the solution found: this array has
the property that, for every string x :

(x [h1(x)] + x [h2(x)]) mod m = f (x).

I So to compute f (x) we just need x [] (m ≈ 2n integers,
2n log n bits) and the two weight vectors for computing the
two hash functions (the size of this is independent from n, it
just depends on the string length)

I Remarks:
I we are not storing the strings, so it will be IMPOSSIBLE to

compute f −1

I Observe that the MWHC construction gives much more than a
simple minimal perfect hash: it is an order preserving one
(OPMPH)!
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The real MWHC algorithm

I The same idea can be applied to more than two hash
functions, working with hypergraphs instead of graphs.

I The advantage is that we can get acyclicity with less vertices
(in the case of graphs, we need m ≥ 1.75n).

I It can be shown that the optimum is obtained with three hash
functions, in which case we just need m ≥ 1.21n.

I With the latter technique, you need 1.21n log n bits to store a
minimal order-preserving hash.

I The same idea is actually more general: every function
h : S ⊆ Ω→ Ψ can be represented using only 1.21n log |Ψ|
bits, with constant-time evaluation.

Paolo Boldi Large dictionaries



The real MWHC algorithm

I The same idea can be applied to more than two hash
functions, working with hypergraphs instead of graphs.

I The advantage is that we can get acyclicity with less vertices
(in the case of graphs, we need m ≥ 1.75n).

I It can be shown that the optimum is obtained with three hash
functions, in which case we just need m ≥ 1.21n.

I With the latter technique, you need 1.21n log n bits to store a
minimal order-preserving hash.

I The same idea is actually more general: every function
h : S ⊆ Ω→ Ψ can be represented using only 1.21n log |Ψ|
bits, with constant-time evaluation.

Paolo Boldi Large dictionaries



The real MWHC algorithm

I The same idea can be applied to more than two hash
functions, working with hypergraphs instead of graphs.

I The advantage is that we can get acyclicity with less vertices
(in the case of graphs, we need m ≥ 1.75n).

I It can be shown that the optimum is obtained with three hash
functions, in which case we just need m ≥ 1.21n.

I With the latter technique, you need 1.21n log n bits to store a
minimal order-preserving hash.

I The same idea is actually more general: every function
h : S ⊆ Ω→ Ψ can be represented using only 1.21n log |Ψ|
bits, with constant-time evaluation.

Paolo Boldi Large dictionaries



The real MWHC algorithm

I The same idea can be applied to more than two hash
functions, working with hypergraphs instead of graphs.

I The advantage is that we can get acyclicity with less vertices
(in the case of graphs, we need m ≥ 1.75n).

I It can be shown that the optimum is obtained with three hash
functions, in which case we just need m ≥ 1.21n.

I With the latter technique, you need 1.21n log n bits to store a
minimal order-preserving hash.

I The same idea is actually more general: every function
h : S ⊆ Ω→ Ψ can be represented using only 1.21n log |Ψ|
bits, with constant-time evaluation.

Paolo Boldi Large dictionaries



The real MWHC algorithm

I The same idea can be applied to more than two hash
functions, working with hypergraphs instead of graphs.

I The advantage is that we can get acyclicity with less vertices
(in the case of graphs, we need m ≥ 1.75n).

I It can be shown that the optimum is obtained with three hash
functions, in which case we just need m ≥ 1.21n.

I With the latter technique, you need 1.21n log n bits to store a
minimal order-preserving hash.

I The same idea is actually more general: every function
h : S ⊆ Ω→ Ψ can be represented using only 1.21n log |Ψ|
bits, with constant-time evaluation.

Paolo Boldi Large dictionaries



The real MWHC algorithm

I The same idea can be applied to more than two hash
functions, working with hypergraphs instead of graphs.

I The advantage is that we can get acyclicity with less vertices
(in the case of graphs, we need m ≥ 1.75n).

I It can be shown that the optimum is obtained with three hash
functions, in which case we just need m ≥ 1.21n.

I With the latter technique, you need 1.21n log n bits to store a
minimal order-preserving hash.

I The same idea is actually more general: every function
h : S ⊆ Ω→ Ψ can be represented using only 1.21n log |Ψ|
bits, with constant-time evaluation.

Paolo Boldi Large dictionaries



A perfect hash

I If you just need a perfect hash. . .

I You proceed exactly like explained, and you get a system of
equations, one per edge:

(x231 + x3443)mod??? = ???

(x32 + x5534)mod??? = ???

(x231 + x32111)mod??? = ???

I Each equation is of the form

(xh1(w) + xh2(w))mod??? =???

for some w ∈ S . Acyclicity guarantees that it is possible to
reorder these equations in some order so that every equation
contains a variable (either h1(w) or h2(w)) that never
appeared before.
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A perfect hash (cont’d)

I In other words, it is possible to write the system so that

(xh1(w) + xh2(w)) mod 2 = 0 or 1

depending on whether the hinge is h1(w) or h2(w).

I The system has a solution (because of acyclicity). In other
words, you can determine a vector x [] (of bits) such that, for
every w ∈ S ,

1 + (x [h1(w)] + x [h2(w)]) mod 2

gives an index j(w) such that th hj(w)(w) are all distinct.

I In other words, the function g(w) := hj(w)(w) is a perfect
hash (not a minimal one).

I Just needs m bits (besides the weights for the two hashes!).
Actually, 2m for hypergraphs (because the possible hinges are
three, so 1 bit is not enough).
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A minimal perfect hash

I Combining the construction explained (using 2m bits) with a
bitvector of m bits for ranking, we obtain a minimal perfect
hash.

I This structure uses 2m + m + o(m) = 3m + o(m) = 3.63n
bits, plus the (constant) bits needed to store the hash
functions h1 and h2.

I Note that it is minimal and perfect, but not order preserving.
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All in all. . .

I We can store a perfect hash (ph) in 1.21n bits

I A minimal perfect hash (mph) in 3.63n bits

I An order-preserving minimal perfect hash (opmph) in
1.21n log n bits

I An arbitrary r -bit-valued function in 1.21nr bits
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MapReduce primer

MapReduce is Google programming model to process large
datasets. Although originally invented at Google, it has since got a
number of free implementations, most notably Apache’s Hadoop.

It is based on two basic steps, called map and reduce. Both work
on bags (i.e., multisets) of key/value pairs:

map : (k , v) 7→ {(k1, v1), . . . , (kn, vn)}
reduce : (k , {v1, . . . , vp}) 7→ {(k ′1, v ′1), . . . , (k ′m, v

′
m)}
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MapReduce: map phase

Every MapReduce iteration starts with a bag B0 of key/values; the
first step is applying

map : (k , v) 7→ {(k1, v1), . . . , (kn, vn)}

to each key/value pair in the input set. The collection of all
outputs so obtained is the bag B1 on which the next phase will be
applied.

Note that all maps are independent, so they can be executed by
many machines (potentially, one per pair!).
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MapReduce: intermediate phase

The key/value pairs obtained in the map phase B1 are then
shuffled: all pairs with the same key are put together, and mapped
to a single pair whose value component collects all the values

(k, v1), . . . , (k , vn) 7→ (k , {v1, . . . , vn}).

The new set of key/value pairs will be called B ′1.
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MapReduce: reduce phase

The key/value pairs in the set B ′1 (of the form (k, {v1, . . . , vn})
because of the intermediate phase) are then passed to the reduce
function

reduce : (k , {v1, . . . , vp}) 7→ {(k ′1, v ′1), . . . , (k ′m, v
′
m)}

The collection of all outputs so obtained is the bag B2 which is the
final output of the MapReduce iteration.

Note that all reduces are independent, so they can be executed by
many machines (potentially, one per key!).
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MapReduce example

A classical example of usage is the construction of inverted indices.
Here we show how to count word occurrences in a document
collection.

Input. Pairs (docId,doc) where docId is a document id (a
number) and doc is a document.

Map. Map maps the pair (x , d) to the set of pairs (w , x), w being
a word that occurs in d .

Reduce. Reduce maps the pair (w , {d1, . . . , dn}) to the single pair
(w , n).
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Using MapReduce to peel a graph

Peeling a (hyper)graph with MapReduce is possible. You start with
the set of edges and count the degree:

map : (x , y) 7→ {(x , y), (y , x)}
reduce : (x , {y1, . . . , yd}) 7→ {(x , d)}

Then you can remove all arcs that insist on a node of degree 1.
And proceed. This is obtained as a join (a primitive that can be
easily implemented in MapReduce).

Arcs should be peeled in reverse order w.r.t. removal.
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