Graph distance distribution for social network mining

Plan of the talk

- Computing distances in large graphs (using HyperBall)
- Running HyperBall on Facebook (the largest Milgram-like experiment ever performed)
- Other uses of distances (in particular: robustness)

Prelude
Milgram's experiment is 45

Where it all started...

- M. Kochen, I. de Sola Pool: Contacts and influences. (Manuscript, early 50s)
- A. Rapoport, W.J. Horvath: A study of a large sociogram. (Behav.Sci. 196r)
- S. Milgram, An experimental study of the small world problem. (Sociometry, 1969)

Milgram's experiment

- 300 people (starting population) are asked to dispatch a parcel to a single individual (target)
- The target was a Boston stockbroker
- The starting population is selected as follows:
- 100 were random Boston inhabitants (group A)
- Ioo were random Nebraska strockbrokers (group B)
- Ioo were random Nebraska inhabitants (group C)

Milgram's experiment

- Rules of the game:
- parcels could be directly sent only to someone the sender knows personally
- 453 intermediaries happened to be involved in the experiments (besides the starting population and the target)

Milgram's experiment

- Questions Milgram wanted to answer:
- How many parcels will reach the target?
- What is the distribution of the number of hops required to reach the target?
- Is this distribution different for the three starting subpopulations?

Milgram's experiment

- Answers:
- How many parcels will reach the target? $\mathbf{2 9 \%}$
- What is the distribution of the number of hops required to reach the target? Avg. was 5.2
- Is this distribution different for the three starting subpopulations? Yes: avg. for groups $\mathbf{A} / \mathbf{B} / \mathbf{C}$ was $4.6 / 5 \cdot 4 / 5 \cdot 7$, respectively

Chain lengths

Milgram's popularity

- Six degrees of separation slipped away from the scientific niche to enter the world of popular immagination:
- "Six degrees of separation" is a play by John Guare...
- ...a movie by Fred Schepisi...
- ...a song sung by dolls in their national costume at Disneyland in a heart-warming exhibition celebrating the connectedness of people all

Milgram's criticisms

- "Could it be a big world after all? (The six-degrees-of-separation myth)" (Judith S. Kleinfeld, 2002)
- The vast majority of chains were never completed
- Extremely difficult to reproduce

Measuring what?

- But what did Milgram's experiment reveal, after all?
i) That the world is small
ii) That people are able to exploit this smallness

HyperBall

A tool to compute distances in large graphs

Introduction

- You want to study the properties of a buge graph (typically: a social network)
- You want to obtain some information about its global structure (not simply triangle-counting/degree distribution/etc.)
- A natural candidate: distance distribution

Graph distances and distribution

- Given a graph, $d(x, y)$ is the length of the shortest path from x to y (∞ if one cannot go from x to y)
- For undirected graphs, $d(x, y)=d(y, x)$
- For every t, count the number of pairs (x, y) such that $d(x, y)=t$
- The fraction of pairs at distance t is (the density function of) a distribution

Exact computation

- How can one compute the distance distribution?
- Weighted graphs: Dijkstra (single-source: $\mathrm{O}\left(n^{2}\right)$), Floyd-Warshall (all-pairs: $\mathrm{O}\left(n^{3}\right)$)
- In the unweighted case:
- a single BFS solves the single-source version of the problem: $\mathrm{O}(m)$
- if we repeat it from every source: $\mathrm{O}(\mathrm{nm})$

Sampling pairs

- Sample at random pairs of nodes (x, y)
- Compute $d(x, y)$ with a BFS from x
- (Possibly: reject the pair if $d(x, y)$ is infinite)

Sampling pairs

- For every t, the fraction of sampled pairs that were found at distance t are an estimator of the value of the probability mass function
- Takes a BFS for every pair $O(m)$

Sampling sources

- Sample at random a source x
- Compute a full BFS from x

Sampling sources

- It is an unbiased estimator only for undirected and connected graphs
- Uses anyway BFS...
- ...not cache friendly
- ...not compression friendly

Cohen's sampling

- Edith Cohen [JCSS 1997] came out with a very general framework for size estimation: powerful, but doesn't scale well, it is not easily parallelizable, requires direct access

Alternative: Diffusion

- Basic idea: Palmer et. al, KDD 'o2
- Let $B_{t}(x)$ be the ball of radius t about x (the set of nodes at distance $\leq t$ from x)
- Clearly $B_{\circ}(x)=\{x\}$
- Moreover $B_{t+1}(x)=\bigcup_{x \rightarrow y} B_{t}(y) \bigcup\{x\}$
- So computing B_{t+1} starting from B_{t} one just need a single (sequential) scan of the graph

A round of updates

Another round...

Easy but costly

- Every set requires $\mathrm{O}(n)$ bits, hence $\mathrm{O}\left(n^{2}\right)$ bits overall
- Too many!
- What about using approximated sets?
- We need probabilistic counters, with just two primitives: add and size?
- Very small!

HyperBall

- We used HyperLogLog counters [Flajolet et al., 2007]
- With 40 bits you can count up to 4 billion with a standard deviation of 6%
- Remember: one set per node!

Observe that

- Every single counter has a guaranteed relative standard deviation (depending only on the number of registers per counter)
- This implies a guarantee on the summation of the counters
- This gives in turn precision bounds on the estimated distribution with respect to the real one

Other tricks

- We use broadword programming to compute efficiently unions
- Systolic computation for on-demand updates of counters
- Exploited microparallelization of multicore architectures

Footprint

- Scalability: a minimum of 20 bytes per node
- On a 2 TiB machine, roo billion nodes
- Graph structure is accessed by memory-mapping in a compressed form (WebGraph)
- Pointer to the graph are store using succinct lists (Elias-Fano representation)

Performance

- On a 177 K nodes / 2B arcs graph
- Hadoop: 2875s per iteration [Kang, Papadimitriou, Sun and H. Tong, 2OII]
- HyperBall on this laptop: 7os per iteration
- On a 32^{-}core workstation: 23 s per iteration
- On ClueWebos (4.8G nodes, 8G arcs) on a 40^{-}core workstation: I4Im (avg. 40s per iteration)

Try it!

- HyperBall is available within the webgraph package
- Download it from
- http://webgraph.di.unimi.it/
- Or google for webgraph

Running it on Facebook!

 [with Sebastiano Vigna, Marco Rosa, Lars Backstrom and Johan Ugander]
Facebook

- Facebook opened up to non-college students on September 26, 2006
- So, between I Jan 2007 and I Jan 2008 the number of users exploded

Experiments (time)

- We ran our experiments on snapshots of facebook
- Jan I, 2007
- Jan I, 2008 ...
- Jan I, 20 II
- [current] May, 20 Ir

Experiments (dataset)

- We considered:
- fb: the whole facebook
- it / se: only Italian / Swedish users
- it+se: only Italian \& Swedish users
- us: only US users
- Based on users' current geo-IP location

Active users

- We only considered active users (users who have done some activity in the 28 days preceding 9 Jun 201I)
- So we are not considering "old" users that are not active any more
- For fb [current] we have about 750 M nodes

Distance distribution (fb)

flffe200:nt

Distance distribution (it)

ititro0:

Distance distribution (se)

see Realht

Average distance

Effective diameter (@90\%)

	2008	CUMTM
it	C	5,2
se	5,0	5,3
it +se	$6,8$	$5,8$
US		$5,8$
Ab	7	$0,2$

Harmonic diameter

	2008	curp
it	23,7	3,4
se	4,5	4
it	5,8	3,8
+se	4,0	4,4
us	4,0	4,0
fb	5,7	4

Average degree vs. density (fb)

	Avg. degree	Density
2009	88,7	6.4 * 10
2010	113	3.4 * 10
2011	169	3.0 * 10
curr	190,4	2.6 * 10

Actual diameter

Used the fringe/double-sweep
technique for "="

	2008	curr
it	>29	$=25$
se	>16	$=25$
it+se	>21	$=27$
us	>17	$=30$
fb	>16	>58

Other applications

Spid, network robustness and more...

What are distances good for?

- Network models are usually studied on the base of the local statistics they produce
- Not difficult to obtain models that behave correctly locally (i.e., as far as degree distribution, assortativity, clustering coefficients... are concerned)

Global = more informative!

An application

- An application: use the distance distribution as a graph digest
- Typical example: if I modify the graph with a certain criterion, how much does the distance distribution change?

Node elimination

- Consider a certain ordering of the vertices of a graph
- Fix a threshold ϑ, delete all vertices (and all incident arcs) in the specified order, until ϑm arcs have been deleted
- Compute the "difference" between the graph you obtained and the original one

Experiment

Deleting nodes in order of (syntactic) depth

Experiment (cont.)

Distribution divergence (various measures)

Removal strategies compared

Removal in social networks

Findings

- Depth-order, PR etc. are strongly disruptive on web graphs
- Proper social networks are much more robust, still being similar to web graphs under many respects

Another application: Spid

- We propose to use spid (shortest-paths index of dispersion), the ratio between variance and average in the distance distribution
- When the dispersion index is $<\mathrm{I}$, the distribution is subdispersed; >1, is superdispersed
- Web graphs and social networks are different under this viewpoint!

Spid plot

Spid conjecture

- We conjecture that spid is able to tell social networks from web graphs
- Average distance alone would not suffice: it is very changeable and depends on the scale
- Spid, instead, seems to have a clear cutpoint at I
- What is Facebook spid?

$$
\text { [Answer: } 0.093 \text {] }
$$

Average distance \propto Effective diameter

That's all, folks!

