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Perron-Frobenius operators

Consider a physical system with NV statesz =1, ..., N and
probabilities p;(t) > 0 evolving by a discrete Markov process:

pilt+1 ZGwp]

The transition probabilities G;; provide a Perron-Frobenius matrix G

such that:
 Gy=1 ., G;>0.

Conservation of probability:
|G vy =||v]|iifv; € Randv; > 0 = ||p(t+1)||1 = [|p(t)]1 = 1.
|G v||1 < ||v]|; for any other (complex) vector

where ||v||; = > . |v;| is the usual 1-norm.
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In general G! # G and eigenvalues A\ may be complex.
If vis a (right) eigenvector of G:  Gv=Av = |\ <L

The vector el = (1, ..., 1) is left eigenvector with A\ = 1:

el G=1el

= existence of (at least) one right eigenvector P for A = 1 also
called PageRank in the context of Google matrices:

GP=1P

Biorthogonality between left and right eigenvectors:

Guv=MAv and w' G= ! = wlo=0 if A#£N\.




Expansion in terms of eigenvectors:

:Zij(j> = p(t ZC Ao
J

with \; = 1 and vV = P. If O} # 0 and |\;| < 1for j > 2

=  limp(t)=P.

t—00

=- Powermethod to compute P

Rate of convergence:

IUTIEPY)

-~ |>\2‘t _ et In(1—(1—|A2]))

= Problem if 1 — [\y] < 1 of eveniif [ A\y| = 1.



Complications if G is not diagonalizable

The eigenvectors do not constitute a full basis and further
generalized eigenvectors are required:

(A1 — @)oY = 0
(A1 — G)oli) = o)
(A1 — G) vl = Ul

= Contributions ~ ¢! ){; with [ =0, 1, ... in p(t) expansion.
However, for Ay = 1 only [ = 0 is possible since otherwise:

Ip(t)||; ~ const.t' — oo.



“Analogy” with hamiltonian

guantum systems

o,
Zh& W(t) = H(t)

where 1(t) quantum state and H = H' is a hermitian (or real
symmetric) operator.

Expansion in terms of eigenvectors: H oU) = E; pU)

()= Y G B )
J

e H is always diagonalizable with £, € R and (p*))? o) = 6.

e Eigenvectors ng) are valid physical states while for PF operators
only real vectors with positive entries are physical states and most
eigenvectors are complex.



Example hamilontian operators:

e Disorder Anderson model in 1 dimension:
Hijp = —(0j k411 0jk-1) + €505

with random on-site energies ¢; € [-W/2, W/2] =
localized eigenvectors ¢; ~ e~ I1=ll/€ with localization length

£~ W 2. General mesure of localization length by inverse
participation ratio :

1 B ZZSO?

1
PR (Zz %2)2 - E

e Gaussian Orthogonal Ensemble (GOE): H;;, = Hj; € Rand Hj;
independent random gaussian variables with:

(Hj) =0 , (Hj) = (1+ ;)0




Universal level statistics

Distribution of rescaled nearest level spacing s = (£, — E;)/A
with average level spacing A:

o . —
PwicS)

08}

p(s)

e Poisson statistics: Ppyis(s) = exp(—s)
Anderson model with ¢ < L (L = system size), integrable
systems, . ..

e Wigner surmise: Py, = (75/2) exp(—ms?/4)
GOE, Anderson model with & = L, generic (classically) chaotic
systems, . ..



PF Operators for directed networks

Consider a directed network with /NV nodes 1, ..., /N and /Ny links.

e Define the adjacency matrix by A;;, = 1 if thereis alink k — j
and A, = 0 otherwise. In certain cases, when explicitely
considering multiple links, one may have A;;, = m where m =
multiplicity of a a link (e. g. Network for integer numbers).

e Define a matrix Sy from A by sum-normalizing each non-zero
column to one and keeping zero columns.

e Define a matrix S from Sy by replacing each zero column with
1/N entries.

e Same procedure for inverted network: A* = A’ and S* is
obtained in the same way from A*. Note: in general: S* # S7.
Leading (right) eigenvector of S* is called CheiRank.
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The nodes with no out-going links, associated to zero columns in A,
are called dangling nodes. On can formally write:
1

S:SQ—FNGdT

with d = dangling vector with d; = 1 for dangling nodes and d; = 0
for other nodes and e = uniform unit vector with €; = 1 for all nodes.

Damping factor

Define for 0 < « < 1, typically oo = 0.89, the matrix:
1

Gla)=aS+ (1 —a)—ee"
N
e (5 is also PF operator with columns sum normalized.

e (7 has the eigenvalue \; = 1 with multiplicity m; = 1 and other
eigenvalues are a\; (for 5 > 2) with \; = eigenvalues of S. The
right eigenvectors for \; # 1 are not modified (since they are
orthogonal to the left eigenvector el for \; = 1).

e Similar expression for G*(«) using S*.
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Numerical diagonalization

e Powermethod to obtain P: rate of convergence for G(«) is better

than ~ o,

e Full “exact” diagonalization: possible for N < 10*:
memory usage ~ N? and computation time ~ N3,

e Arnoldi method to determine largest n4 ~ 10° — 10* eigenvalues:
memory usage ~ N n4 + C; Ny + Cyn? and
computation time ~ N n124 +C3Nyny+ Cy ni);l.

e Strange numerical problems to determine accurately “small”

eigenvalues, in particular for (nearly) triangular network structure
due to large Jordan-blocks (= 3¢ lecture).
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Arnoldi method

to (partly) diagonalize large sparse non-symmetric N X /N matrices
(& such that the product “G xvecteur” can be computed efficiently (G
may contain some constant columns ~ e):

e choose an initial normalized vector &, (random or “otherwise”)

e determine the Krylov space of dimension n 4 (typically:
1 < n4 < N) spanned by the vectors: &, G &, ..., G,

e determine by Gram-Schmidt orthogonalization an orthonormal
basis {&, ..., &,_1} and the representation of G in this basis:

kE+1

G& =Y Hpg
=0

Note: if G = G! = H = tridiagonal symmetric and the Arnoldi
method is identical to the Lanczos method.
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e diagonalize the Arnoldi matrix /4 which has Hessenberg form:

7 0 *% -+ * %
00 --- % x
\00 - 0+

which provides the Ritz eigenvalues that are very good
aproximations to the “largest” eigenvalues of (5.

1 [ r v 1t
+5

0 500 1000 1500 1 05 0 os 1
Example: PF Operator for Ulam-Map (= ond lecture)
N = 16609, N, = 76058, ny = 1500
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Invariant subspaces

In realistic WWW networks invariant subspaces of nodes create large
degeneracies of \; (or Ay if & < 1) which is very problematic for the
Arnoldi method.

Therefore determine the invariant subspaces as follows:

Let V. = bNN a certain fraction of the network size NV (e.g. b = 0.1).

e For a given initial node 7 determine a sequence of node sets s,,
by so = {ig} and s, 1 is the set containing all nodes of s,, and
those which can be reached by a link from a node in s,,.

e If 5, = 5,,.1 with at most /N, elements for some n = s,, is an
invariant subspace.
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e If for some n the set s,, contains a dangling node (connected by
construction to any other node) or if s,, contains more than V.
elements = 1 is identified as a node belonging to the core
space (space of nodes not belonging to an invariant subspace).

e Repeat the procedure for every network node as potential initial
node except for those nodes which are already identified as
subspace nodes. If for some n the set s,, contains a previously
found core space node =- ¢ also belongs to the core space.

e Merge all subspaces with common members. In this way one
obtains a decomposition of the network in many separate
subspaces with N, nodes and a “big” core space.

This procedure can be efficiently implemented as a computer
program. It turns out that for most networks the exact choice of b is
not important (e.g. b = 0.1 orb = 0.9) aslong as b = O(1). Note
that a core space node may have a link to an invariant subspace but a
subspace node may not have a link to another subspace or the core

space.
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The decomposition in subspaces and a core space implies a block
structure of the matrix S:

SSS SSC
SZ( 0 SCC>

where S, is block diagonal according to the subspaces. The
subspace blocks of S, are all matrices of PF type with at least one
eigenvalue A\ = 1 explaining the high degeneracies.

To determine the spectrum of .S apply:

e Exact (or Arnoldi) diagonalization on each subspace.
e The Arnoldi method to .S, to determine the largest core space
eigenvalues A; (note: |>\j\ < 1). The largest eigenvalues of S,..

are no longer degenerate but other degeneracies are possible
(e.g. A; = 0.9 for Wikipedia).
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University Networks
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Cambridge 2006 (left),
N = 212710, Ny = 48239

Oxford 2006 (right),
N = 200823, N, = 30579

Spectrum of S (upper panels), S*
(middle panels) and dependence of
rescaled level number on || (lower
panels).

Blue: subspace eigenvalues
Red: core space eigenvalues (with
Arnoldi dimension n 4 = 20000)



PageRank for a« — 1 :
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Rescaled PageRank at v = 1 — 1075 ;

PNg, P N,

\

107 10 10°
KINg, K /Ng

Top: Cambridge, Oxford 2002-2006; middle: other universities; bottom: Wikipedia™;
black line o< K_2/3; N, = sum of all subspace dimensions.
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Distribution of dimensions of invariant subspaces

F'(x) = fraction of invariant subspaces with dimension larger than
x(d) where (d) = average subspace dimension.

Top: Cambridge, Oxford 2002-2006; middle: other universities; bottom: Wikipedia™;
black line: F(x) = 1/(1 + 2x)%/2.
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Numerical PageRank method for

a— 1

Combination of power method and Arnoldi diagonalization :
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Here: o = 1 — 1078
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Core space gap and quasi-subspaces
— .
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Left: Core space gap 1 — )\gcore) vs NN for certain british universities.

Red dots for gap > 10~; blue crosses (moved up by 10%) for gap < 10716,

Right: first core space eigenvecteur for universities with gap < 1079 or gap
= 2.91 x 10~ for Cambridge 2004.

Core space gaps < 10710 correspond to quasi-subspaces where it
takes quite many “iterations” to reach a dangling node.
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Spectrum Wikipedia

Wikipedia 2009 : NV = 3282257 nodes, [N, = 71012307 network links.

L | Wikipedia . [ Wikipedia
0.5 0.5
o} ol
0.5 0.5
N’ 1}
1 0.5 0 0.5 1 1 0.5 0 0.5 1
spectrum of S, N, = 515 spectrum of S*, N, = 21198

26



Twitter network
Twitter 2009 : N = 41652230 nodes, N, = 1468365182 network links.

Matrix structure in K-rank order:

Number N of non-empty matrix elements in & x K-square:

Ng /K2

0 500 1000 10° 102 10* 108 108
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Spectrum
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PageRank, CheiRank, eigenvectors
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Black line: F(x) = 1/(1 4 2x)%/2.
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