

Spectral properties of Google matrix

Lecture 3

Klaus Frahm

Quantware MIPS Center

Université Paul Sabatier Laboratoire de Physique Théorique, UMR 5152, IRSAMC

A. D. Chepelianskii, Y. H. Eom, L. Ermann, B. Georgeot, D. L. Shepelyansky

Network analysis and applications Luchon, June 21 - July 5, 2014

Contents

Random Perron-Frobenius matrices .							3
Poisson statistics of PageRank							6
Physical Review network							8
Triangular approximation							11
Full Physical Review network		-					14
Fractal Weyl law							21
ImpactRank for influence propagation							22
Integer network							23
References							29

Random Perron-Frobenius matrices

Construct random matrix ensembles G_{ij} such that:

- $G_{ij} \ge 0$
- G_{ij} are (approximately) non-correlated and distributed with the same distribution $P(G_{ij})$ (of finite variance σ^2).

•
$$\sum_{j} G_{ij} = 1 \quad \Rightarrow \quad \langle G_{ij} \rangle = 1/N$$

- \Rightarrow average of *G* has one eigenvalue $\lambda_1 = 1$ (\Rightarrow "flat" PageRank) and other eigenvalues $\lambda_j = 0$ (for $j \neq 1$).
- degenerate perturbation theory for the fluctuations \Rightarrow circular eigenvalue density with $R=\sqrt{N}\sigma$ and one unit eigenvalue.

Different variants of the model:

- uniform full: P(G) = N/2 for $0 \le G \le 2/N$ $\Rightarrow R = 1/\sqrt{3N}$
- *uniform sparse* with Q non-zero elements per column: P(G) = Q/2 for $0 \le G \le 2/Q$ with probability Q/Nand G = 0 with probability 1 - Q/N $\Rightarrow R = 2/\sqrt{3Q}$
- constant sparse with Q non-zero elements per column: G = 1/Q with probability Q/Nand G = 0 with probability 1 - Q/N $\Rightarrow R = 1/\sqrt{Q}$
- **powerlaw** with $p(G) = D(1 + aG)^{-b}$ for $0 \le G \le 1$ and 2 < b < 3:

$$\Rightarrow \quad R = C(b) N^{1-b/2} \quad , \quad C(b) = (b-2)^{(b-1)/2} \sqrt{\frac{b-1}{3-b}}$$

Numerical verification:

Poisson statistics of PageRank

Identify PageRank values to "energy-levels":

$$P(i) = \exp(-E_i/T)/Z$$

with $Z = \sum_{i} \exp(-E_i/T)$ and an effective temperature T (can be choosen: T = 1).

Parameter dependance of $E_i = -\ln(P_i)$ on the damping factor α .

Physical Review network

 $N=463347 \ \mathrm{nodes}$ and $N_\ell=4691015 \ \mathrm{links}.$

Coarse-grained matrix structure (500×500 cells):

<u>left:</u> time ordered right: journal and then time ordered

"11" Journals of Physical Review: (Phys. Rev. Series I), Phys. Rev., Phys. Rev. Lett., (Rev. Mod. Phys.), Phys. Rev. A, B, C, D, E, (Phys. Rev. STAB and Phys. Rev. STPER).

 \Rightarrow nearly triangular matrix structure of adjacency matrix: most citations links $t \rightarrow t'$ are for t > t' ("past citations") but there is small number ($12126 = 2.6 \times 10^{-3} N_{\ell}$) of links $t \rightarrow t'$ with $t \le t'$ corresponding to *future citations*.

Spectrum by "double-precision" Arnoldi method with $n_A = 8000$:

Numerical problem: eigenvalues with $|\lambda| < 0.3 - 0.4$ are not reliable! <u>Reason:</u> large Jordan subspaces associated to the eigenvalue $\lambda = 0$. "very bad" Jordan perturbation theory: Consider a "perturbed" Jordan block of size D:

$$\left(\begin{array}{ccccc}
0 & 1 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 1 \\
\varepsilon & 0 & \cdots & 0 & 0
\end{array}\right)$$

characteristic polynomial: $\lambda^D - (-1)^D \varepsilon$ $\varepsilon = 0 \implies \lambda = 0$ $\varepsilon \neq 0 \implies \lambda_j = -\varepsilon^{1/D} \exp(2\pi i j/D)$ for $D \approx 10^2$ and $\varepsilon = 10^{-16} \implies$ "Jordan-cloud" of artifical eigenvalues due to rounding errors in the region $|\lambda| < 0.3 - 0.4$.

Triangular approximation

Remove the small number of links due to "future citations". **Semi-analytical diagonalization** is possible:

$$S = S_0 + e \, d^T / N$$

where $e_n = 1$ for all nodes n, $d_n = 1$ for dangling nodes n and $d_n = 0$ otherwise. S_0 is the pure link matrix which is *nil-potent*: $S_0^l = 0$ with l = 352.

Let ψ be an eigenvector of S with eigenvalue λ and $C = d^T \psi$.

• If $C = 0 \Rightarrow \psi$ eigenvector of $S_0 \Rightarrow \lambda = 0$ since S_0 nil-potent.

These eigenvectors belong to large Jordan blocks and are responsible for the numerical problems.

Note: Similar situation as in *network of integer numbers* where $l = [\log_2(N)]$ and numerical instability for $|\lambda| < 0.01$.

• If $C \neq 0 \Rightarrow \lambda \neq 0$ since the equation $S_0\psi = -C e/N$ does not have a solution $\Rightarrow \lambda \mathbf{1} - S_0$ invertible.

$$\Rightarrow \psi = C \left(\lambda \mathbf{1} - S_0\right)^{-1} e/N = \frac{C}{\lambda} \sum_{j=0}^{l-1} \left(\frac{S_0}{\lambda}\right)^j e/N$$

From $\lambda^l = (d^T \psi/C) \lambda^l \Rightarrow \left[\mathcal{P}_r(\lambda) = 0\right]$

with the *reduced polynomial* of degree l = 352:

$$\mathcal{P}_r(\lambda) = \lambda^l - \sum_{j=0}^{l-1} \lambda^{l-1-j} c_j = 0 \quad , \quad c_j = d^T S_0^j e/N \; .$$

 \Rightarrow at most l = 352 eigenvalues $\lambda \neq 0$ which can be numerically determined as the zeros of $\mathcal{P}_r(\lambda)$.

However: still numerical problems:

- $c_{l-1} \approx 3.6 \times 10^{-352}$
- alternate sign problem with a strong loss of significance.
- big sensitivity of eigenvalues on c_j

Solution:

Using the multi precision library GMP with 256 binary digits the zeros of $\mathcal{P}_r(\lambda)$ can be determined with accuracy $\sim 10^{-18}$.

Furthermore the Arnoldi method can also be implemented with higher and precision.

 $\underline{\rm red\ crosses}:$ zeros of $\mathcal{P}_r(\lambda)$ from 256 binary $_{\rm \tiny -0.5}$ digits calculation

<u>blue squares</u>: eigenvalues from Arnoldi method $_{0.5}$ with 52, 256, 512, 1280 binary digits. In the last $_{0}$ case: \Rightarrow break off at $n_A = 352$ with vanishing _ $_{0.5}$ coupling element.

Full Physical Review network

High precision Arnoldi method for <u>full</u> Physical Review network (including the "future citations") for 52, 256, 512, 768 binary digits and $n_A = 2000$:

Degeneracies

High precision in Arnoldi method is "bad" to count the degeneracy of certain degenerate eigenvalues.

In theory the Arnoldi method cannot find several eigenvectors for degenerate eigenvalues, a shortcoming which is (partly) "repaired" by rounding errors.

Q: How are highly degenerate core space eigenvalues possible ?

Semi-analytical argument for the full PR network:

$$S = S_0 + e \, d^T / N$$

There are *two groups of eigenvectors* ψ with: $S\psi = \lambda\psi$

1. Those with $d^T \psi = 0 \implies \psi$ is also an eigenvector of S_0 . Generically an arbitrary eigenvector of S_0 is **not** an eigenvector of S **unless** the eigenvalue is degenerate with degeneracy m > 1. Using linear combinations of different eigenvectors for the same eigenvalue one can construct m - 1 eigenvectors ψ respecting $d^T \psi = 0$ which are therefore eigenvectors of S.

Pratically: determine degenerate subspace eigenvalues of S_0 (and also of S_0^T) which are of the form: $\lambda = \pm 1/\sqrt{n}$ with $n = 1, 2, 3, \ldots$ due to 2×2 -blocks:

$$\begin{pmatrix} 0 & 1/n_1 \\ 1/n_2 & 0 \end{pmatrix} \quad \Rightarrow \quad \lambda = \pm \frac{1}{\sqrt{n_1 n_2}}$$

2. Those with $d^T \psi \neq 0 \implies \mathcal{R}(\lambda) = 0$ with the rational function:

$$\mathcal{R}(\lambda) = 1 - d^T \frac{1}{\lambda \mathbf{1} - S_0} e/N = 1 - \sum_{j,q} \frac{C_{jq}}{(\lambda - \rho_j)^q}$$

Here
$$C_{jq}$$
 and ρ_j are unknown, except for
 $\rho_1 = 2 \operatorname{Re} \left[(9 + i\sqrt{119})^{1/3} \right] / (135)^{1/3} \approx 0.9024$ and
 $\rho_{2,3} = \pm 1/\sqrt{2} \approx \pm 0.7071$.

Idea: Expand the geometric matrix series \Rightarrow

$$\mathcal{R}(\lambda) = 1 - \sum_{j=0}^{\infty} c_j \lambda^{-1-j} , \quad c_j = d^T S_0^j e / N$$

which converges for $|\lambda| > \rho_1 \approx 0.9024$ since $c_j \sim \rho_1^j$ for $j \to \infty$.

<u>Problem</u>: How to determine the zeros of $\mathcal{R}(\lambda)$ with $|\lambda| < \rho_1$?

Analytic continuation by rational interpolation:

Use the series to evaluate $\mathcal{R}(z)$ at n_S support points $z_j = \exp(2\pi i j/n_S)$ with a given precision of p binary digits and determine the rational function $R_I(z)$ which interpolates $\mathcal{R}(z)$ at these support points. Two cases:

$$n_{S} = 2n_{R} + 1 \quad \Rightarrow \quad R_{I}(z) = \frac{P_{n_{R}}(z)}{Q_{n_{R}}(z)}$$
$$n_{S} = 2n_{R} + 2 \quad \Rightarrow \quad R_{I}(z) = \frac{P_{n_{R}}(z)}{Q_{n_{R}+1}(z)}$$

The n_R zeros of $P_{n_R}(z)$ are approximations of the eigenvalues of S (of the 2nd group).

For a given precision, e. g. p = 1024 binary digits one can obtain a certain number of reliable eigenvalues, e. g. $n_R = 300$. The method can be pushed up to p = 16384 and $n_R = 2500$ which is better than the high precision Arnoldi method with $n_A = 2000$.

Examples:

Some "artificial zeros" for $n_R = 340_{0}$ and p = 1024 (*left top and middle* -0.5 panels) where both variants of the method differ.

For $n_R = 300$ and p = 1024 most zeros coincide with HP Arnoldi method (*right top and middle panels*) and both variants of the method coincide.

Lower panels: comparison for $n_R = 2000$, p = 12288 (left) or for $n_R = 2500$, p = 16384 with HP Arnoldi method.

Accurate eigenvalue spectrum for the full Physical Review network by the rational interpolation method (left) and the HP Arnoldi method

Fractal Weyl law

 N_{λ} = number of complex eigenvalues with $\lambda_c \leq |\lambda| \leq 1$. N_t = reduced network size of Physical Review at time t.

$$N_{\lambda} = a N_t^b$$

ImpactRank for influence propagation

 $v_f =$ "PageRank" of \tilde{G} with:

$$\tilde{G} = \gamma \, G + (1 - \gamma) \, v_0 \, e^T$$

Integer network

Consider the integers $n \in \{1, ..., N\}$ and construct an adjacency matrix by $A_{mn} = k$ where k is the largest integer such that m^k is a divisor of n if 1 < m < n and $A_{mn} = 0$ if m = 1 or m = n (note $A_{mn} = k = 0$ if m is not a divisor of n). Construct S and G in the usual way from A.

PageRank

Semi-analytical determination of spectrum, PageRank and eigenvectors

Matrix structure:

where v = e/N, $d_j = 1$ for dangling nodes (primes and 1) and $d_j = 0$ otherwise. S_0 is the pure link matrix which is *nil-potent*:

$$S_0^l = 0$$

with $l = [\log_2(N)] \ll N$

 \Rightarrow same theory as for the Phys.-Rev. Network.

Spectrum I

blue dots: semi-analytical eigenvalues as zeros from $\mathcal{P}_r(\lambda)$ (or eigenvalues of \overline{S}). red crosses: Arnoldi method with random initial vector and $n_A = 1000$. light blue boxes: Arnoldi method with constant initial vector v = e/N and $n_A = 1000$.

Spectrum II

 $\gamma_j = -2 \ln |\lambda_j|$ Large N limit of γ_1 with the scaling parameter: $1/\ln(N)$. Note:

$$c_0 = d^T v = \frac{1}{N} \sum_{j=1}^N d_j = \frac{1 + \pi(N)}{N} \approx \frac{1}{\ln(N)}$$

where $\pi(N)$ is the number of primes below N.

References

- 1. K. M. Frahm, A. D. Chepelianskii and D. L. Shepelyansky, *PageRank of integers*, Phys. A: Math. Theor. **45**, 405101 (2012).
- K. M. Frahm, and D. L. Shepelyansky, Poisson statistics of PageRank probabilities of Twitter and Wikipedia networks, Eur. Phys. J. B, 87, 93 (2014).
- K. M. Frahm, Y. H. Eom, and D. L. Shepelyansky, Google matrix of the citation network of Physical Review, Phys. Rev. E 89, 052814 (2014).