o | Wikipedia =~ | | [ Physca Review = | UNIVERSITE
: TOULOUSEIII =d
05 e l o5 ] PAUL SABATIER wmitk

Spectral properties of Google matrix

Lecture 3

Klaus Frahm

Quantware MIPS Center
Université Paul Sabatier
Laboratoire de Physique Théorique, UMR 5152, IRSAMC

A. D. Chepelianskii, Y. H. Eom, L. Ermann, B. Georgeot, D. L. S  hepelyansky

Network analysis and applications Luchon, June 21 - July 5, 2014



Contents

Random Perron-Frobenius matrices . . . . . . . . . . . .. 3
Poisson statistics of PageRank . . . . . . . . ... ... .. 6
Physical Review network . . . . . . . . . . . .. ... ... 8
Triangular approximation . . . . . . . . . ... ... .... 11
Full Physical Review network . . . . . . . . . .. ... ... 14
Fractal Weyllaw . . . . . . . . ... ... ... ...... 21
ImpactRank for influence propagation . . . . . . . ... .. 22
Integernetwork . . . . . .. ..o 23
References . . . . . . . . . . . ... 0L 29



Random Perron-Frobenius
matrices

Construct random matrix ensembles G; such that:
e G;j >0

e (5;; are (approximately) non-correlated and distributed with the
same distribution P(G};) (of finite variance o).

'ZjGijzl = <GZ]>:1/N

e = average of GG has one eigenvalue \; = 1 (= “flat” PageRank)
and other eigenvalues \; = 0 (for j # 1).

e degenerate perturbation theory for the fluctuations = circular
eigenvalue density with R = v/ /N o and one unit eigenvalue.



Different variants of the model:
e uniform full: P(G) = N/2for0 < G < 2/N

= R=1/V3N

e uniform sparse with () non-zero elements per column:
P(G)=Q/2for 0 < G < 2/Q with probability Q) /N
and GG = ( with probability 1 — QQ/N
= R=2//30

e constant sparse with () non-zero elements per column:
G = 1/Q) with probability Q) /N
and G = 0 with probability 1 — /N
= R=1/VQ

e powerlaw with p(G) = D(1 + aG) " for 0 < G < 1 and
2<b<3:

= R=CO)N2 | Cb)=(b-2)0t02, /=]
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Numerical verification:

uniform full:
N = 400

uniform sparse:
N = 400,
Q=20

power law:
b=2.5
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constant sparse.:
N = 400,
Q =20

power law case:
Rth ~ N—O.25



Poisson statistics of PageRank
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|dentify PageRank values to “energy-levels”:
P(i) = exp(—=E;/T)/Z

with Z = ) exp(—F;/T) and an effective temperature 7" (can be
choosen: 1" = 1).
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Physical Review network

N = 463347 nodes and Ny = 4691015 links.
Coarse-grained matrix structure (500 x 500 cells):

left: time ordered
right: journal and then time ordered

“11” Journals of Physical Review: (Phys. Rev. Series 1), Phys. Rev., Phys. Rev. Lett.,
(Rev. Mod. Phys.), Phys. Rev. A, B, C, D, E, (Phys. Rev. STAB and
Phys. Rev. STPER).




= nearly triangular matrix structure of adjacency matrix: most
citations links ¢ — ¢’ are for ¢ > t’ (“past citations”) but there is small
number (12126 = 2.6 x 1073 Ny) of links t — ¢/ with t < ¢/
corresponding to future citations.

Spectrum by “double-precision” Arnoldi method with n 4 = 8000:

1t 1t

-1 -05 0 0.5 1 -1 -05 0 0.5 1

Numerical problem: eigenvalues with |A| < 0.3 — 0.4 are not reliable!
Reason: large Jordan subspaces associated to the eigenvalue A = 0.



“very bad” Jordan perturbation theory:
Consider a “perturbed” Jordan block of size D:

01l1---00
(00---00\

00--- 01
\c0--00)
characteristic polynomial: \” — (—1)"e
e=0 = AX=0

e£0 = N\ =—e/Pexp(2mij/D)
for D~ 10°ande = 10710 = “Jordan-cloud” of artifical
eigenvalues due to rounding errors in the region |A| < 0.3 — 0.4.
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Triangular approximation

Remove the small number of links due to “future citations”.
Semi-analytical diagonalization is possible:

S=5+e dT/N
where ¢,, = 1 for all nodes n, d,, = 1 for dangling nodes n and

d,, = 0 otherwise. .Sy is the pure link matrix which is nil-potent:
SL =0 with [ = 352,

Let 7/ be an eigenvector of S with eigenvalue A and C' = d ).

o If C' =0 = 9 eigenvector of S, = A\ = 0 since .Sy nil-potent.

These eigenvectors belong to large Jordan blocks and are responsible for the
numerical problems.

Note: Similar situation as in network of integer numbers where [ = [log,(N)]
and numerical instability for |A| < 0.01.
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o If C #0 = ) # 0 since the equation Syi) = —C'e/N does not
have a solution = A1 — .S, invertible.

. [—1 g g
= zp:C(Al—SO)‘le/N:XZ(Y()) e/N
=

From X' = (d74/C)\ P.(A) =0
with the reduced polynomial of degree [ = 352 :
-1
Pr(N) = )\Z—Z)\l_l_j ci=0 , ¢ :deg e/N .

J=0

= at most [ = 352 eigenvalues A # 0 which can be numerically
determined as the zeros of P,.(\).
However: still numerical problems:

o1 ~3.6x107%?
e alternate sign problem with a strong loss of significance.

e big sensitivity of eigenvalues on ¢;
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Solution:

Using the multi precision library GMP

iy
with 256 binary digits the zeros of P,.(\) *

can be determined with accuracy ~
1018,
Furthermore the Arnoldi method can

also be implemented with higher ,

precision.

red crosses: zeros of P.(\) from 256 binary _

digits calculation

blue squares: eigenvalues from Arnoldi method
with 52, 256, 512, 1280 binary digits. In the last

case: = break off at ny = 352 with vanishing

coupling element.
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Full Physical Review network

High precision Arnoldi method for full Physical Review network
(including the “future citations”) for 52, 256, 512, 768 binary digits and
n4 = 2000: - —— 04

0.2 |




Degeneracies
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High precision in Arnoldi method is “bad” to count the degeneracy of certain
degenerate eigenvalues.

In theory the Arnoldi method cannot find several eigenvectors for degenerate
eigenvalues, a shortcoming which is (partly) “repaired” by rounding errors.

Q: How are highly degenerate core space eigenvalues possible ?
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Semi-analytical argument for the full PR network:

S =5+ €dT/N
There are two groups of eigenvectors ¥ with: Sv = A

1. Those with d’v) =0 = 1 is also an eigenvector of Sy
Generically an arbitrary eigenvector of Sy is not an eigenvector of
S unless the eigenvalue is degenerate with degeneracy m > 1.
Using linear combinations of different eigenvectors for the same
eigenvalue one can construct m — 1 eigenvectors 1) respecting
d ) = 0 which are therefore eigenvectors of S.

Pratically: determine degenerate subspace eigenvalues of .S,

(and also of S') which are of the form: A = £1/./n with
n=1,2 3,... dueto 2 x 2-blocks:

0 1/%1 1
= A== .
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2. Those with d’¢p £0 = R(\) = 0 with the rational function:

1 C.
=1—d N=1-)
R d )\1—506/ (A —p;j)1

J4q

Here C;, and p; are unknown, except for
p1 = 2Re [(9 + iv/119)1/3]/(135)Y/3 ~ 0.9024 and
pa3 = F1/v/2 ~ 40.7071.

|ldea: Expand the geometric matrix series =

RN =1=> A7 | ¢=d" Se/N

7=0

which converges for |A\| > p; ~ 0.9024 since ¢; ~ p{ for ) — oo.

Problem: How to determine the zeros of R(\) with |A| < p; ?
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Analytic continuation by rational interpolation:

Use the series to evaluate R(z) at ng support points

z; = exp(2mij /ng) with a given precision of p binary digits and
determine the rational function R;(z) which interpolates R(z) at
these support points. Two cases:

ng=2nrg+1 = Ri(z)= g;zz;
ng=2ng+2 = Ri(z)= Qiii(f()@

The ng zeros of PnR(z) are approximations of the eigenvalues of
S (of the 2nd group).

For a given precision, e. g. p = 1024 binary digits one can obtain
a certain number of reliable eigenvalues, e. g. np = 300. The
method can be pushed up to p = 16384 and np = 2500 which is
better than the high precision Arnoldi method with n 4 = 2000.

18



Examples:

Some ‘“artificial zeros” for ng = 340

and p = 1024 (left top and middle

panels) where both variants of the
method differ.

For np = 300 and p = 1024 most
zeros coincide with HP Arnoldi method

(right top and middle panels) and both ™

variants of the method coincide.

Lower panels: comparison for np =
2000, p = 12288 (left) or for np =
2500, p = 16384 with HP Arnoldi

method.
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Accurate eigenvalue spectrum for the full Physical Review network by
the rational interpolation method (left) and the HP Arnoldi method

(right):
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Fractal Weyl law
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N = number of complex eigenvalues with A, < |A| < 1.
N; = reduced network size of Physical Review at time .

Ny = aN;
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ImpactRank for influence
propagation
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Integer network

Consider the integers n € {1,..., N} and construct an adjacency
matrix by A,,, = k where £k is the largest integer such that m”is a
divisorof nif 1 < m <nand A,,, = 0if m =1 orm = n (note
A,., = k = 0if m is not a divisor of n). Construct .S and ( in the

usual way from A.
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PageRank
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Dependence of n on K-index
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“New order” of Ii<ntegers: K=1 2 ..., 32 = n = 2,3,0, 7,4, 11,
13,17,6,19,9, 23, 29, 8, 31, 10, 37, 41, 43, 14, 47, 15, 53, 59, 61, 25,
67,12, 71,73, 22, 21.
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Semi-analytical determination of spectrum,
PageRank and eigenvectors
Matrix structure:

S:SQ—I—’UdT

where v = ¢/N, d; = 1 for dangling nodes (primes and 1) and
d; = 0 otherwise. Sy is the pure link matrix which is nil-potent:

S =0

with [ = [logy(N)] < N
= same theory as for the Phys.-Rev. Network.
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Spectrum |
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blue dots: semi-analytical eigenvalues as zeros from Pr()\) (or eigenvalues of 5).
red crosses: Arnoldi method with random initial vector and n4 = 1000.

light blue boxes: Arnoldi method with constant initial vector v = ¢/N and n4 = 1000.
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Spectrum I
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where 7(N) is the number of primes below N.
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