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Sensor hypotheS|s
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Sensor hypotheS|s
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A soluyion:
Friends as Sensors
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A soluyion:
Friends as Sensors

Why Your Friends Have More Friends
than You Do!

Scott L. Feld
State University of New York at Stony Brook
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It is reasonable to suppose that individuals use the number of
friends that their friends have as one basis for determining whether
they, themselves, have an adequate number of friends. This article
shows that, if individuals compare themselves with their friends, it
is likely that most of them will feel relatively inadequate. Data on
friendship drawn from James Coleman’s (1961) classic study 7The
Adolescent Society are used to illustrate the phenomenon that most
people have fewer friends than their friends have. The logic under-
lying the phenomenon is mathematically explored, showing that the YOU .
mean number of friends of friends is always greater than the mean .

e len)

number of friends of individuals. Further analysis shows that the

proportion of individuals who have fewer friends than the mean z eV d (U) 2| E |
number of friends their own friends have is affected by the exact — s —_——
arrangement of friendships in a social network. This disproportion- ,1’ V V :
ate experiencing of friends with many friends is related to a set of | | | |

abstractly similar “class size paradoxes” that includes such diverse .
phenomena as the tendencies for college students to experience the f d .
mean class size as larger than it actually is and for people to experi- YO Ur rle n S .

ence beaches and parks as more crowded than they usually are. 5
]
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Friendship is not only a source of satisfaction and security; it is also —_— p + _
a way that individuals evaluate themselves and others. People expect 2| El ?
themselves and others to have friends and wonder about the normality l‘l'

of those individuals who appear to have few or no friends. There has




A solution: FriendSensors
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Abstract

Current methods for the detection of contagious outbreal
epidemic at best. It is known that individuals near the center
course of an outbreak, on average, than those at the periphe
individuals who might be monitored for infection is typically
require ascertainment of global network structure, namely, si
Such individuals are known to be more central. To evalua
detection, we studied a flu outbreak at Harvard College in lat
a group of randomly chosen individuals or a group of thei
epidemic in the friend group occurred 13.9 days (95% Cl.
population as a whole). The friend group also showed a sign
days before the peak in daily incidence in the populatio
additional time to react to epidemics in small or large populaj
on features of the outbreak and the network at hand. The
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A solution: °Con’rrol
Friends as Sensors
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Detecting global contagious outbreaks in
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Density
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and the model holds...
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Results: _
Global view (ex post) contagious

outbreak?
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Results:

Early alarms (real time)
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how well FriendSensors work?

Results:

Twitter daily
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Who are the sensors in Twitter?

Yes, they are more

Central
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Who are the sensors in Twitter?

Better at transmitting
than at introducing new

one
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Who are the sensors in Twitter?

Sensors tweet more, use more hashtags, and tend to use a
greater variety of hashtag
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ViraLr
Broadcast?

Comparing the sensor and
control group may help
distinguishing between viral or
broadcasting spreading

Real At is compared to the
Shuffled At (were times of each
hashtag use are shuffled)
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Why not just choose hubs (highly
connected users)?

Yes, users with higher degree have lower (or about equal)
Infection time
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Friends vs Random
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Performance of friendsensors during
hurricane Sandy 1
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Vionitoring sociel BigData recuires a5 (g
different approach

* Local analysis for global conclusions
o [ake advantage of network structure

Our friendsensors method works on Twitter

Sensors act not only as social hubs (oy having more
connections) but also as faster responders (oy tweeting
more) and as information hubs (0y being involved In
more topics)

Difference petween control and sensors can pe used for
early detection

bit.ly/friendsensors




Friendsensors: a simple yet powerful
method to detect information outbreaks:

Plenty of room for improvement!
VWe just used the simplest way to choose sensors.

Can be used in other networks:
S based on network properties.

Can be used in highly dynamical scenarios:
ChoOse sensors dynamicaly.

Can be adapted for geographical filters,
languages, interests, etc:
Choose sensors accordingly.

bit.ly/friendsensors
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