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 Networks 

->Recent field: study of complex networks.Tools and models  
   have been created;  
 
->Many networks are scale-free with power-law distribution of links 
    difference between directed and non directed networks  
 
->Important examples from recent technological developments: 
  internet, World Wide Web, social networks... 
 
->Can be applied also to less recent objects 
in particular, study of human behavior: languages, friendships… 



 Networks for games 

-> Network theory never applied to 
games 
 
-> Games are nevertheless a very 
ancient activity, with a mathematical 
theory attached to the more complex 
ones 
 
-> Games represent a privileged 
approach to human decision-making 
 
->Can be very difficult to modelize or 
simulate 



 The game of go 

àGame of go: very ancient 
Asian game, probably originated 
in China in Antiquity  (image on 
the left from VIIIth century) 
 
-> Go is the Japanese name; 
Weiqi in Chinese, Baduk in 
Korean  
 
 
 



 The game of go 
-> Go is a very popular game 
played by many parts of the 
population (ex. right) on a board 
called Goban (see below) 
 
 



Rules of  go 
->White and black stones 
alternatively put at 
intersections of 
19 x19 lines 
 
->Stones without liberties are 
removed 
 
->A chain with only one liberty 
is said in atari 
 
->Handicap stones can be 
placed 
 
->Aim of the game: construct 
protected territories 



 Beginnings: Fuseki and Joseki 



 During the game-Ko and ladders 



 Endgames-life and death 



 Player rankings 
àThere are nine levels (dans) of 
professionals (top players) followed 
by nine levels of amateurs 
->A handicap stone can compensate 
for roughly one dan: like in golfing, 
players of different levels can play 
evenly thanks to handicaps  
->There are regular tournaments of 
go since very long times 



 Computer simulations 

-->While Deep Blue famously beat the  world chess champion 
Kasparov in 1997,  no computer program has beaten a very good 
go player even in recent times. Why? 
 
->total number of legal positions 10171, vs “only” 1050 for chess  
 
-> Not easy to assign positional advantage to a move 
 
-> Best programs use Monte Carlo Go: play random games 
starting from one move and see the outcome until a value can be 
assigned to the move 
 
->Monte Carlo Go has beaten  all other programs, can beat 
professional players on 9x9 gobans, and with handicaps on 19x19  
 



 Databases 
->We use databases of expert and amateur games in order to  
construct networks from the different sequences of moves,  
and study the properties of these networks 
 
->Databases available at http://www.u-go.net/ 
 
->Whole available record, from 1941 onwards, of the  
most important historical professional Japanese go tournaments: 
 Kisei (143 games), Meijin (259 games), Honinbo (305 games),  
Judan (158 games) 
 
-Contains also 135 000 amateur games played online  
 
->Level of players is known,  mutually assessed according to  
    games played 



 Vertices of the network I 

->''plaquette’’ : square of 3 x3 intersections 
 
->We identify plaquettes related by symmetry 
->We identify plaquettes with colors swapped 
->1107 nonequivalent plaquettes with empty centers 
->vertices of our network 



 Vertices of the networks II 

->''plaquette’’ : square of 3 x3 intersections + atari status of  
     nearest-neighbors 
 
->We still identify plaquettes related by symmetry 
->Because of rules restrictions, only  
    2051 legal nonequivalent plaquettes with empty centers 



 Vertices of the networks III 

->''plaquette’’ : diamond of 3 x3 +4 intersections 
 
->We still identify plaquettes related by symmetry 
 
->193995  nonequivalent plaquettes with empty centers 
    (96771 actually never used in the database) 



 Zipf’s law 

->Zipf's law: empirical law 
observed in many natural 
distributions (word 
frequency, city sizes...)  
->If items are ranked 
according to their 
frequency, predicts a 
power-law decay of the 
frequency vs the rank.  
->integrated distribution of 
three network nodes clearly 
follows a Zipf's law, 
 with exponent close to 1 

Normalized integrated frequency 
distribution of three types of nodes. 
Thick dashed line is y=-x. 
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places in the algorithms of computer go, for instance to
improve the heuristic value function which initializes the
value of each move, or to get a faster estimate of the
exact value [13, 14].
There is therefore a clear interest in having a better

understanding of local features in the game of go. In
[2], two of us introduced a small network based on lo-
cal positional patterns and showed that it can be used
to extract information on the tactical sequences used in
real games. However, the small size of the plaquettes
made it difficult to disambiguate many strategically dif-
ferent moves. In the present paper, we construct three
networks based on positional patterns of different sizes,
and study their properties. The network size varies by a
factor one hundred, and the largest one enables to specify
more precise features that were difficult to disambiguate
in [2]. In particular, the community structure is much
easier to characterize and discuss. After presenting the
details of the construction of the networks (Section II)
we study their global properties such as ranking vectors
and spectra of the Google matrix, contrast them to other
types of networks, and relate them to specific features of
the game (Section III). In Section IV, we study in detail
the characterization of communities of nodes in the net-
works, a well-known subject in network theory, which in
our case enables to regroup tactical moves with common
features. In Section V we propose the construction of
different networks corresponding to specific phases of the
game or to different levels of players.

II. THE GO NETWORKS

The game of go is played on a board (goban) of 19×19
intersections of vertical and horizontal lines. Each player
alternately places a stone of his/her color (black or white)
at an empty intersection. Empty intersections next to a
group of connected stones of the same color are called
”liberties”. If only one liberty remains, the group of
stones is said to be in atari. When the last liberty is
occupied and the group is entirely surrounded by the op-
ponent, its stones must be removed. The aim of the game
is to surround large territories and to secure their pos-
session. Good players follow general strategies through
a series of local tactical fights. We construct the net-
works representing the game by connecting local moves
played in the same neighbourhood (note the similarity
with some language networks [15] which are also based
on local features). We describe a move by identifying the
empty intersection (h, v) (with 1 ≤ h, v ≤ 19) where the
new stone is placed.
The vertices of our networks are based on what we call

”plaquettes”, i. e. a part of the goban with a given shape
and size which depends on the network. Each plaquette
corresponds to a certain pattern of white and black stones
with an empty intersection at its center, on which black
will put a stone. We identify plaquettes which are related
by translation on the goban or by a symmetry of the

square, and additionally those with colors swapped.
The first network we consider (Network I) is made as

in [2] by taking as plaquettes squares of 3 × 3 inter-
sections, which are subparts of the goban of the form
{(h + r, v + s),−1 ≤ r, s ≤ 1} (edges and corners of
the board can be accounted for by imagining additional
dummy lines outside the board). Taking into account
borders and symmetries, we are left with 1107 nonequiv-
alent plaquettes with empty centers, which are the ver-
tices of network I.
Network II is made by also taking squares of 3 × 3

intersections and identifying plaquettes related by sym-
metry, but we also include the atari status of the four
nearest-neighbour points from the center. Atari status
assesses if the chain of stones to which a given stone be-
longs has only one liberty (one empty intersection con-
nected to it). Removing the last liberty of a chain in atari
entails the capture of the whole group. In this case, many
seemingly possible configurations are not legal since they
would contradict the atari status. This leaves 2051 legal
nonequivalent plaquettes with empty centers (the same
figure was found in [16]).
Network III is based on diamond-shape plaquettes: the

3 × 3 plaquettes discussed above plus the four at distance
two from the center in the four directions left, right, top,
down. We still identify plaquettes related by symme-
try, but do not take into account the atari status. This
gives us 193995 nonequivalent plaquettes with empty cen-
ters, which are the vertices of network III (96771 are so
rare that they are actually never used in our database of
games).
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FIG. 1: (Color online) Distribution of frequency of occur-
rences w(i) of different plaquettes for the three different net-
works (full lines), from left to right at the bottom: red:
square plaquettes (network I), green: square plaquettes with
atari status (network II), blue: diamond plaquettes (network
III)(see text)(data from networks I and II are undistinguish-
able over parts of the curves). The dashed straight lines are
power law fits with slopes −1.02 (black upper line, fit of net-
work II) and −0.94 (brown lower line, fit of network III).



 Links of the network 

->we connect vertices corresponding to moves a and b if 
b follows a in a game at a distance  < d.  
->Each choice of d defines a different network. The 
choice of d determines the distance beyond which two 
moves are considered nonrelated.  
->Sequences of moves follow Zipf's law (cf languages) 
Exponent decreases as longer sequences reflect 
individual strategies 
->move sequences are well hierarchized by d=5 
->amateur database departs from all professional ones, 
playing more often at shorter distances 
 



 Sizes of  the three networks 

-> Total number of links including degeneracies is 26 116 006, 
      the same for all networks 
 
->Network I: 1107 nodes, 558190 links without degeneracies 
 
->Network II: 2051 nodes, 852578 links without degeneracies 
 
->Network III: 193995 nodes, 7405395 links without       
                       degeneracies 
 
->Very dense networks, especially the smallest ones 
 
-> Very different from e.g. the World Wide Web 
 
 



 Link distribution 
->Tails of link distributions  
very close to power-law 
for all three networks 
  
->network displays the 
scale-free property 
 
->symmetry between 
ingoing and outgoing links 
is a peculiarity of this 
network 
 

Normalized integrated 
distribution of links for  the 
three networks  
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We have identified the occurrence of these different pla-
quettes in games from a database available at [17]. This
database contains the sequence of moves of 135663 differ-
ent games corresponding to players of diverse levels (the
level of the players is marked by a number of dans, from
1 to 9). The games recorded have been played online,
and the dans have been mutually assessed according to
the results of these plays. The frequency of the differ-
ent plaquettes is shown in Fig. 1. It can be compared
to Zipf’s law, an empirical law observed in many natu-
ral distributions (word frequency, city sizes, chess open-
ings...) [18–21]. If items are ranked according to their
frequency, it predicts a power-law decay of the frequency
versus the rank. The data presented in Fig. 1 show that
the three different network choices all give rise to a dis-
tribution following Zipf’s law, although the slope varies
from ≈ −1 (networks I and II) to a slightly slower decay
for the largest network (network III).
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FIG. 2: Top 30 plaquettes in frequency of occurrences for the
network III (diamond plaquettes). Black plays at the black
cross. Dotted intersections are outside the diamond plaquette
and their status is unknown.

We display in Fig. 2 the top 30 moves in order of de-
creasing frequency of occurrences for network III. The
most common correspond to few stones on the plaque-
ttes, which is natural since these ones are present at the
beginning of almost all local fights, while the subsequent
moves differ from games to games.

To define links of our three networks, we connect ver-
tices corresponding to moves a and b played at (ha, va)
and (hb, vb) on the board respectively if b follows a in
a game and max{|hb − ha|, |vb − va|} ≤ d where d is
some distance. Here contrary to [2] we put a link only
between a an the first move following a in the specified
zone. Each integer d corresponds to a different network.
It determines the distance beyond which two moves are
considered nonrelated. In [2], different values of d were
considered and it was shown that the value d = 4 was
the most relevant, allowing a correct hierarchization of
moves: related local fights are kept while far away tac-
tical moves are not taken into account. In the following
we will thus retain this value d = 4. Two vertices are
thus connected by a number of directed links given by
the number of times the two corresponding moves follow
each other in the same neighbourhood of the goban in
the games of the database.

With this definition, the three networks are now de-
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FIG. 3: (Color online) Distribution of incoming links Pin
(black) and outgoing links Pout (red/grey) for the three differ-
ent networks; square plaquettes (network I) (squares), square
plaquettes with atari (network II) (triangles), diamond pla-
quettes (network III) (crosses). The dashed lines are power
law fits with slopes −1.47 (right) and −1.69 (left).

fined, with vertices connected by directed links. The to-
tal number of links including degeneracies is 26116006
links. The numbers without degeneracies are respectively
558190 (network I), 852578 (network II) and 7405395
(network III). The link distributions are shown in Fig. 3;
it is close to a power-law. This indicates that the net-
works display the scale-free property [1]. One can notice
a symmetry between ingoing and outgoing links, which is
a peculiarity of this problem, and is not seen in e.g. the
World Wide web, where the exponent for Pout (≈ 2.7) is
much larger than for Pin (≈ 1) [22]. Here exponents are
similar and close to 1.5, intermediate between these two
values. Our results indicate the presence of a symmetry
(at least at a statistical level) between moves that follow
many different others and moves which have many pos-
sible followers. This symmetry is natural, since in many
cases (i.e. in the course of a local fight) the occurrence of
a plaquette in the database implies the presence of both
an ingoing and an outgoing link.

III. RANKING VECTORS AND SPECTRA OF
GOOGLE MATRICES

We have presented up to now the construction of our
networks for the game of go, and their global statistical
properties. To get more insight into the organization of
the game, we use tools developed in the framework of
network theory, in order to hierarchize vertices of a net-
work. Such tools are routinely used by search engines to
determine the order of appearance of answers to queries.
The general strategy is to build a ranking vector, whose
value on each vertex will measure its importance. A fa-



 Matrix for directed networks Formalization: directed network

5

1

2

3

4

6 7

Weighted adjacency matrix

H =

0

BBBBBBBB@

0 0 0 0 0 0 0
1
3 0 0 0 0 0 0
1
3 0 0 1

2 0 0 0
1
3 0 0 0 1 1 1
0 0 0 1

2 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0

1

CCCCCCCCA
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 Google algorithm 
Google algorithm

Ranking pages {1, . . . ,N} according to their importance.
Idea:
• The importance of a page i depends on the importance of the pages j
pointing on it

• If a page has many outgoing links the importance it transmits is inversely
proportional to the number of pages it points to.

PageRank pi should thus verify

pi =
X

j→i

pj
nj

,

nj= number of outgoing links of page j .
With the (stochastic) matrix H introduced above,

p = Hp

.

Bertrand Georgeot (CNRS Toulouse) Google matrix methods for information ordering in complex networks built by independent agentsJournées COMUL, September 2011 4 / 33



 Computation of PageRank 
Computation of PageRank
p = Hp ⇒ p= stationary vector of H:
can be computed by iteration of H.

To remove convergence problems:
Replace columns of 0 (dangling nodes) by 1

N : H → matrix S

In our example, H =

0

BBBBBBBB@

0 0 1
7 0 0 0 0

1
3 0 1

7 0 0 0 0
1
3 0 1

7
1
2 0 0 0

1
3 0 1

7 0 1 1 1
0 0 1

7
1
2 0 0 0

0 1 1
7 0 0 0 0

0 0 1
7 0 0 0 0

1

CCCCCCCCA

.

To remove degeneracies of the eigenvalue 1, replace S by

G = αS + (1− α)
1
N

Bertrand Georgeot (CNRS Toulouse) Google matrix methods for information ordering in complex networks built by independent agentsJournées COMUL, September 2011 5 / 33



 PageRank and CheiRank PageRank vector and google search

• The PageRank algorithm gives the PageRank vector, with amplitudes pi ,
with 0 ≤ pi ≤ 1

• All webpages can then be ordered according to their PageRank value
• The PageRank value of a webpage can be understood as the average
time a random surfer will spend there

• It ranks websites according to the number of links pointing to them which
come from high-PageRank sites.

⇒ It is important for usefulness of this strategy that the PageRank vector is
not evenly spread, but sharply peaked around some preferred webpages

⇒ The PageRank vector should be localized to be useful

⇒What are the localization properties of eigenvectors of the google matrix?

Bertrand Georgeot (CNRS Toulouse) Google matrix methods for information ordering in complex networks built by independent agentsJournées COMUL, September 2011 6 / 33

 
->PageRank is associated to the largest eigenvalue of the matrix G. It 
is based on ingoing links 
 
->CheiRank corresponds to the PageRank of the network obtained by 
inverting all links. It can be associated to a new matrix G*, and is 
based on outgoing links 



 Ranking vectors: network I 
->PageRank: ingoing links  
->CheiRank: outgoing links 
->HITS algorithm:Authorities 
(ingoing links) and Hubs 
  (outgoing links) 
 
->Ranking vectors follow an  
algebraic law 
 
->Symmetry between 
distributions of ranking 
vectors based on ingoing 
links and outgoing links.   
 

B. Georgeot and O. Giraud

This may correspond to the fact that many short tactical
sequences can be played in a different order within several
different contexts. In order to analyze the dependence of
Pin and Pout on the choice of d, we plot these quantities
for a network constructed for various values of d in the
inset of Fig. 4. The distribution of ingoing and outgoing
links stabilizes at d = 4. Other databases give similar
results (data not shown). We now focus on d = 4.
Some properties can be extracted from the unweighted

adjacency matrix (i. e. without weighing the links accord-
ing to their frequency). The clustering coefficient (CC) de-
scribes the tendency of many real-world networks to form
local clusters of highly connected vertices. The CC of a
given vertex i is defined as the probability that two neigh-
bors of i be connected to each other, irrespective of the
direction of the link. The average CC for our networks is
displayed in Fig. 5 (inset). The CC depends on the num-
ber of games ng included to construct the network, but
almost not on the database. For large ng, the CC goes to
an asymptotic value which appears to be larger than 0.7,
indicating high clustering, larger than the WWW (where
the CC is ≈ 0.11 [1]) and comparable to social [1] or lan-
guage networks [11].
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Fig. 5: (Color online) Ranking vectors for matrices G with
α = 1. Same color code as in Fig. 1, d = 4. From top to
bottom, top bundle: PageRank. Second bundle: CheiRank.
Third bundle: Hubs. Fourth (bottom) bundle: Authorities.
Straight dashed line is y = −x. Inset: Clustering coefficient
(CC) as a function of the number of games ng included to
construct the network; blue squares: professional tournaments,
all games included; circles: amateur games.

Ranking vectors for the go network. – In order to
get an insight into how our network captures aspects of the
strategy of the game, we now use the weighted adjacency
matrix (links are weighted according to their frequency
in the database) and apply tools developed to rank ver-
tices in order of importance, used e.g. to determine the
order of appearance of answers to queries by search en-
gines. These methods generally build a ranking vector,
whose value on each vertex enables to determine its im-

portance. The most famous such vector is the PageRank
vector [18, 19], which was the basis of the Google search
engine. It is built from the Google matrix G, defined as
Gij = αSij+(1−α) tee/N , where e = (1, ..., 1), N = 1107,
0 < α ≤ 1, S is the weighted adjacency matrix with any
column of 0 replaced by a column of 1, and the sum of
each column normalized to 1. The PageRank vector is the
right eigenvector of G associated with the largest eigen-
value λ = 1, and singles out vertices with many incoming
links from important nodes. From its definition, its com-
ponents are real and nonnegative, and therefore can be
used to rank nodes according to the value of these com-
ponents. Other ranking vectors built from G include the
CheiRank vector [20] (which is the PageRank of the net-
work with all links inverted), and the Hubs and Authori-
ties of the HITS algorithm [21]. They all share the prop-
erties of being real nonnegative vectors, and thus can be
used to rank the nodes of the network. While PageRanks
and Hubs reflect properties of vertices depending on their
incoming links, CheiRanks and Authorities are based on
outgoing links. In Fig. 5 we show these ranking vectors
for our networks. They follow an algebraic law with slope
≈ −1 (PageRank and CheiRank) and ≈ −1.5 (Hubs and
Authorities). A similar distribution of the PageRank was
observed in e.g. the WWW [17, 22], but in contrast with
the WWW and other systems there is a marked symmetry
between distributions of ranking vectors based on ingoing
links and those of vectors based on outgoing links.
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Fig. 6: (Color online) K* vs K where K (resp. K*) is the rank
of a vertex when ordered according to PageRank vector (resp
CheiRank) for Honinbo (black squares), Meijin (red circles),
Judan (green diamonds), Kisei (blue crosses) and amateur (vi-
olet stars) databases.

In order to further shed light on this symmetry, we plot
in Fig. 6 the correlation between the PageRank and the
CheiRank for the five databases considered. In all these
cases, there is a remarkably strong correlation between
these rankings based respectively upon ingoing and out-
going links. In the WWW, there is a difference of nature
between ingoing and outgoing links: webmasters are free

p-4



 Ranking vectors: other networks 
->Still symmetry 
between distributions 
of ranking vectors 
based on ingoing links 
and outgoing links.   
 
->Power law different 
for the largest network 
 

->Ranking vectors of G and G* for the three networks 
red: size 1107, green: size 2051, blue: size 193995. 

4

mous vector of this type is the PageRank [23, 24], which
has been at the basis of the Google search engine. It
can be obtained from the Google matrix G, defined as
Gij = αSij +(1−α) tee/N , where e = (1, ..., 1), N is the
size of the network, α is a parameter such that 0 < α ≤ 1
(we chose α = 1 in the computations in this paper), and
S is the weighted adjacency matrix. The latter starts
from the adjacency matrix where the value of the entry
(i, j) corresponds to the number of links from vertex j
to vertex i; then one replaces any column of 0 by a col-
umn of 1, and one normalizes the sum of each column to
1. This ensures that the matrix G has the mathematical
property of stochasticity. The PageRank vector is defined
as the right eigenvector of the matrix G associated with
the largest eigenvalue λ = 1. It singles out as important
vertices the ones with many incoming links from other
important nodes. Equivalently, it can be seen as giving
the average time a random surfer on the network will
spend on each vertex. Indeed, the process of iterating
G can be seen as the action of a random surfer choos-
ing randomly at each node to follow a link to another
node. The largest eigenvalue corresponds to the equi-
librium distribution of the surfer, and gives the average
time spent on each node. Other ranking vectors which
can be built from the matrix G include the CheiRank
vector [25], and the Hubs and Authorities of the HITS
algorithm [26]. While PageRanks and Hubs attribute im-
portance to vertices depending on their incoming links,
CheiRanks and Authorities are based on outgoing links.
In particular, CheiRank can be defined as the PageRank
of the “dual” network where all links are inverted. We
denote the Google matrix of this dual network by G∗.
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FIG. 4: (Color online) Distribution of ranking vectors (nor-
malized by

∑
K
P (K) =

∑
K∗

P ∗(K∗) = 1) for the three dif-
ferent networks: PageRank P (K) (solid lines) and CheiRank
P ∗(K∗) (dashed lines), same color code for the networks as
in Fig. 1 (data from networks I and II are undistinguishable
over parts of the curves). The dotted lines are power law fits
with slopes −1.03 (orange upper line, fit of network II) and
−0.89 (black lower line, fit of network III).

In Fig. 4 the distributions of PageRank and CheiRank
are shown for the three networks , showing that ranking
vectors follow an algebraic law, with a slightly different
exponent for the largest network. Similarly as for the link
distribution, there is a symmetry between distributions
of ranking vectors based on ingoing links and outgoing
links, again an original feature which can be related to
the statistical symmetry between ingoing and outgoing
links.
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FIG. 5: PageRank-CheiRank correlation plot of the three
different networks : square plaquettes (network I)(top left),
square plaquettes with atari status (network II)(top right)
and diamond plaquettes (network III)(bottom). PageRank
K is given in x-axis and CheiRank K∗ in y-axis, the plot of
network III is a zoom on the top 20000 moves in both K and
K∗.

In order to check to what extent this symmetry affects
the ranking vectors, we plot in Fig. 5 the CheiRank K∗

as a function of the PageRank K. It indeed shows that
the two quantities are not independent, and strong corre-
lations between PageRank and CheiRank do exist. This
symmetry is not visible in general for other networks (see
e. g. [27] where similar plots are shown in the context of
world trade, displaying much less correlation). Never-
theless, the symmetry is clearly not exact, especially for
the largest network (a perfect correlation will produce
points only on the diagonal); the plots are not even sym-
metric with respect to the diagonal. Thus PageRank and
CheiRank produce genuinely different information on the
network.

Fig. 6 shows the first 30 plaquettes in decreasing im-
portance in the PageRank and CheiRank vectors. The
correlation between the two sequences is clearly visible,
although it is again not perfect. We note that these se-
quences are also very similar to the one obtained by just
counting the move frequency (as in Zipf’s law): most
frequent moves tend to dominate the ranking vectors.



 Ranking vectors: correlations 

->Strong correlations  
between PageRank and 
CheiRank 
->Strong correlation between 
moves which open many 
possibilities of new moves 
and moves that can follow 
many other moves. 
->However, the symmetry is 
far from exact. 
->Correlation less strong for 
largest network 

Figure: K* vs K where K (resp. K*) is the rank of a vertex when ordered  
according to PageRank vector (resp CheiRank) for the three networks (sizes 
1107, 2051, 193995) 

4

mous vector of this type is the PageRank [23, 24], which
has been at the basis of the Google search engine. It
can be obtained from the Google matrix G, defined as
Gij = αSij +(1−α) tee/N , where e = (1, ..., 1), N is the
size of the network, α is a parameter such that 0 < α ≤ 1
(we chose α = 1 in the computations in this paper), and
S is the weighted adjacency matrix. The latter starts
from the adjacency matrix where the value of the entry
(i, j) corresponds to the number of links from vertex j
to vertex i; then one replaces any column of 0 by a col-
umn of 1, and one normalizes the sum of each column to
1. This ensures that the matrix G has the mathematical
property of stochasticity. The PageRank vector is defined
as the right eigenvector of the matrix G associated with
the largest eigenvalue λ = 1. It singles out as important
vertices the ones with many incoming links from other
important nodes. Equivalently, it can be seen as giving
the average time a random surfer on the network will
spend on each vertex. Indeed, the process of iterating
G can be seen as the action of a random surfer choos-
ing randomly at each node to follow a link to another
node. The largest eigenvalue corresponds to the equi-
librium distribution of the surfer, and gives the average
time spent on each node. Other ranking vectors which
can be built from the matrix G include the CheiRank
vector [25], and the Hubs and Authorities of the HITS
algorithm [26]. While PageRanks and Hubs attribute im-
portance to vertices depending on their incoming links,
CheiRanks and Authorities are based on outgoing links.
In particular, CheiRank can be defined as the PageRank
of the “dual” network where all links are inverted. We
denote the Google matrix of this dual network by G∗.
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FIG. 4: (Color online) Distribution of ranking vectors (nor-
malized by

∑
K
P (K) =

∑
K∗

P ∗(K∗) = 1) for the three dif-
ferent networks: PageRank P (K) (solid lines) and CheiRank
P ∗(K∗) (dashed lines), same color code for the networks as
in Fig. 1 (data from networks I and II are undistinguishable
over parts of the curves). The dotted lines are power law fits
with slopes −1.03 (orange upper line, fit of network II) and
−0.89 (black lower line, fit of network III).

In Fig. 4 the distributions of PageRank and CheiRank
are shown for the three networks , showing that ranking
vectors follow an algebraic law, with a slightly different
exponent for the largest network. Similarly as for the link
distribution, there is a symmetry between distributions
of ranking vectors based on ingoing links and outgoing
links, again an original feature which can be related to
the statistical symmetry between ingoing and outgoing
links.
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FIG. 5: PageRank-CheiRank correlation plot of the three
different networks : square plaquettes (network I)(top left),
square plaquettes with atari status (network II)(top right)
and diamond plaquettes (network III)(bottom). PageRank
K is given in x-axis and CheiRank K∗ in y-axis, the plot of
network III is a zoom on the top 20000 moves in both K and
K∗.

In order to check to what extent this symmetry affects
the ranking vectors, we plot in Fig. 5 the CheiRank K∗

as a function of the PageRank K. It indeed shows that
the two quantities are not independent, and strong corre-
lations between PageRank and CheiRank do exist. This
symmetry is not visible in general for other networks (see
e. g. [27] where similar plots are shown in the context of
world trade, displaying much less correlation). Never-
theless, the symmetry is clearly not exact, especially for
the largest network (a perfect correlation will produce
points only on the diagonal); the plots are not even sym-
metric with respect to the diagonal. Thus PageRank and
CheiRank produce genuinely different information on the
network.

Fig. 6 shows the first 30 plaquettes in decreasing im-
portance in the PageRank and CheiRank vectors. The
correlation between the two sequences is clearly visible,
although it is again not perfect. We note that these se-
quences are also very similar to the one obtained by just
counting the move frequency (as in Zipf’s law): most
frequent moves tend to dominate the ranking vectors.



Ranking vectors vs most common moves 

Figure: Top 30 most common 
moves of network III; right: top 
30 PageRank and CheiRank 
for same network 

3

We have identified the occurrence of these different pla-
quettes in games from a database available at [17]. This
database contains the sequence of moves of 135663 differ-
ent games corresponding to players of diverse levels (the
level of the players is marked by a number of dans, from
1 to 9). The games recorded have been played online,
and the dans have been mutually assessed according to
the results of these plays. The frequency of the differ-
ent plaquettes is shown in Fig. 1. It can be compared
to Zipf’s law, an empirical law observed in many natu-
ral distributions (word frequency, city sizes, chess open-
ings...) [18–21]. If items are ranked according to their
frequency, it predicts a power-law decay of the frequency
versus the rank. The data presented in Fig. 1 show that
the three different network choices all give rise to a dis-
tribution following Zipf’s law, although the slope varies
from ≈ −1 (networks I and II) to a slightly slower decay
for the largest network (network III).
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FIG. 2: Top 30 plaquettes in frequency of occurrences for the
network III (diamond plaquettes). Black plays at the black
cross. Dotted intersections are outside the diamond plaquette
and their status is unknown.

We display in Fig. 2 the top 30 moves in order of de-
creasing frequency of occurrences for network III. The
most common correspond to few stones on the plaque-
ttes, which is natural since these ones are present at the
beginning of almost all local fights, while the subsequent
moves differ from games to games.
To define links of our three networks, we connect ver-

tices corresponding to moves a and b played at (ha, va)
and (hb, vb) on the board respectively if b follows a in
a game and max{|hb − ha|, |vb − va|} ≤ d where d is
some distance. Here contrary to [2] we put a link only
between a an the first move following a in the specified
zone. Each integer d corresponds to a different network.
It determines the distance beyond which two moves are
considered nonrelated. In [2], different values of d were
considered and it was shown that the value d = 4 was
the most relevant, allowing a correct hierarchization of
moves: related local fights are kept while far away tac-
tical moves are not taken into account. In the following
we will thus retain this value d = 4. Two vertices are
thus connected by a number of directed links given by
the number of times the two corresponding moves follow
each other in the same neighbourhood of the goban in
the games of the database.

With this definition, the three networks are now de-
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FIG. 3: (Color online) Distribution of incoming links Pin
(black) and outgoing links Pout (red/grey) for the three differ-
ent networks; square plaquettes (network I) (squares), square
plaquettes with atari (network II) (triangles), diamond pla-
quettes (network III) (crosses). The dashed lines are power
law fits with slopes −1.47 (right) and −1.69 (left).

fined, with vertices connected by directed links. The to-
tal number of links including degeneracies is 26116006
links. The numbers without degeneracies are respectively
558190 (network I), 852578 (network II) and 7405395
(network III). The link distributions are shown in Fig. 3;
it is close to a power-law. This indicates that the net-
works display the scale-free property [1]. One can notice
a symmetry between ingoing and outgoing links, which is
a peculiarity of this problem, and is not seen in e.g. the
World Wide web, where the exponent for Pout (≈ 2.7) is
much larger than for Pin (≈ 1) [22]. Here exponents are
similar and close to 1.5, intermediate between these two
values. Our results indicate the presence of a symmetry
(at least at a statistical level) between moves that follow
many different others and moves which have many pos-
sible followers. This symmetry is natural, since in many
cases (i.e. in the course of a local fight) the occurrence of
a plaquette in the database implies the presence of both
an ingoing and an outgoing link.

III. RANKING VECTORS AND SPECTRA OF
GOOGLE MATRICES

We have presented up to now the construction of our
networks for the game of go, and their global statistical
properties. To get more insight into the organization of
the game, we use tools developed in the framework of
network theory, in order to hierarchize vertices of a net-
work. Such tools are routinely used by search engines to
determine the order of appearance of answers to queries.
The general strategy is to build a ranking vector, whose
value on each vertex will measure its importance. A fa-
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FIG. 6: Top 30 plaquettes for first eigenvector of G (PageR-
ank)(top) and G∗ (CheiRank)(bottom) of the network III.
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FIG. 7: Correlation plot of PageRank-CheiRank vs frequency
of moves for network III (diamond plaquettes) (only first 1000
moves in K are shown); blue squares: PageRank K, red
crosses: CheiRank K∗.

However, as Fig. 7 shows, the correlation between
ranking vectors and frequency ordering is far from per-
fect, especially for the PageRank, which can be extremely
different from the rank obtained by frequency. This
shows that the ranking vectors present an information ob-
tained from the network construction, which differs from
the mere frequency count of moves in the database. In-
deed, as explained above the frequency count is related
to the link distribution due to the construction process of
the network. It is known in general that the PageRank
has some relation with the distribution of ingoing links,
but with the significant difference that it highlights nodes
whose ingoing links come from (recursively defined) other
important nodes. This was the basis of the fortune of
Google and in our case means that highlighted moves
correspond to plaquettes with ingoing links coming from
other important plaquettes. Thus the PageRank under-

lines moves to which converge many well-trodden paths
of history in the different games of the database. The
CheiRank does the same in the reverse direction, high-
lighting moves which open many such paths.
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FIG. 8: (Color online) Spectrum in the complex plane of G
(black squares) and G∗ (red/grey crosses) for the three differ-
ent networks : I (top), II (middle) and III (bottom).

The ranking vectors discussed above are just one eigen-
vector of the matrices associated with a given network.
However, other eigenvalues and their associated eigen-
vectors also contain information about the network. We
have computed the spectrum of the Google matrix for
the three networks; they are shown in Fig. 8. For square
plaquettes (network I) and square plaquettes plus atari
status (network II) all eigenvalues are computed. In
the case of the largest network, standard diagonaliza-
tion techniques could not be used and therefore we used
an Arnoldi-type algorithm to compute the largest few
thousands eigenvalues in the complex plane. For the G



Ranking vectors vs most common moves 

->There are correlations  between PageRank, CheiRank, and 
most common moves 
->However, there are also many differences, which mark the 
importance of specific moves in the network even if they are 
not that common 
->Genuinely new information, which can be obtained only from 
the network approach 

Figure: frequency rank vs 
PageRank (blue) and 
CheiRank (red) for network III 
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FIG. 6: Top 30 plaquettes for first eigenvector of G (PageR-
ank)(top) and G∗ (CheiRank)(bottom) of the network III.
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FIG. 7: Correlation plot of PageRank-CheiRank vs frequency
of moves for network III (diamond plaquettes) (only first 1000
moves in K are shown); blue squares: PageRank K, red
crosses: CheiRank K∗.

However, as Fig. 7 shows, the correlation between
ranking vectors and frequency ordering is far from per-
fect, especially for the PageRank, which can be extremely
different from the rank obtained by frequency. This
shows that the ranking vectors present an information ob-
tained from the network construction, which differs from
the mere frequency count of moves in the database. In-
deed, as explained above the frequency count is related
to the link distribution due to the construction process of
the network. It is known in general that the PageRank
has some relation with the distribution of ingoing links,
but with the significant difference that it highlights nodes
whose ingoing links come from (recursively defined) other
important nodes. This was the basis of the fortune of
Google and in our case means that highlighted moves
correspond to plaquettes with ingoing links coming from
other important plaquettes. Thus the PageRank under-

lines moves to which converge many well-trodden paths
of history in the different games of the database. The
CheiRank does the same in the reverse direction, high-
lighting moves which open many such paths.

-0.8 -0.4 0 0.4 0.8

-0.4

-0.2

0

0.2

0.4

-0.4

-0.2

0

0.2

0.4

-0.4

-0.2

0

0.2

0.4

FIG. 8: (Color online) Spectrum in the complex plane of G
(black squares) and G∗ (red/grey crosses) for the three differ-
ent networks : I (top), II (middle) and III (bottom).

The ranking vectors discussed above are just one eigen-
vector of the matrices associated with a given network.
However, other eigenvalues and their associated eigen-
vectors also contain information about the network. We
have computed the spectrum of the Google matrix for
the three networks; they are shown in Fig. 8. For square
plaquettes (network I) and square plaquettes plus atari
status (network II) all eigenvalues are computed. In
the case of the largest network, standard diagonaliza-
tion techniques could not be used and therefore we used
an Arnoldi-type algorithm to compute the largest few
thousands eigenvalues in the complex plane. For the G



Ranking vectors vs most common moves 

-> In the World Wide Web, frequency count corresponds to 
ranking by e. g. indegree 
 
->PageRank takes into account indegree but weighted by 
importance of nodes from where the links are coming 
 
-> Here PageRank underlines moves to which converge many 
well-trodden paths in the database 
 
->CheiRank does the same in the reverse direction, 
highlighting moves which open many such paths 
 
-> Could be used to bias or calibrate the Monte Carlo Go 
 



 Spectrum of the Google matrix  

Figure: Eigenvalues of G in the 
complex plane for the networks with 
1107, 2051 and 193995 nodes 
  

->For second and third networks, still 
gap between the first eigenvalue and 
next ones 
->Radius of the bulk of eigenvalues 
changes with size of network 
->More structure in the networks with 
larger plaquettes which disambiguate 
the different game paths and should 
make more visible the communities of 
moves 



 What is the meaning of 
eigenvectors of the Google matrix ? 

->Next to leading eigenvalues are important, may indicate the 
presence of communities of moves with common features. 
 
->Indeed, eigenvectors of G for large eigenvalues correspond 
to parts of the network where the random surfer gets stopped 
for some time before going elsewhere 
 
-> Correspond to sets of moves which are more linked 
together than with  the rest of the network 
 
-> Should indicate communities of moves which tend to be  
     played together 
 



Eigenvectors correlations 
->Top 200 eigenvectors of diamond network in order of 
decreasing modulus of eigenvalue from bottom to top 

->One line: one 
eigenvector in the order of 
PageRank 
 

->Correlations 
visible, not 
necessarily related 
to high PageRank 

6

matrix of the diamond network (network III), about 1000
eigenvectors were computed. For G∗ matrix of diamond,
about 500 eigenvectors were computed.

Stochasticity ofG andG∗ implies that their spectra are
necessarily inside the unit disk. For the World Wide Web
the spectrum is spread inside the unit circle [28], with no
gap between the largest eigenvalue and the bulk. For net-
works I and II, Fig. 8 shows a huge gap between the first
and the other eigenvalues. For the third network, there is
still a gap between the first eigenvalue and next ones, but
it is smaller. While the distribution of the ranking vec-
tors shown in Fig. 4 reflects the distribution of links, the
gap in the spectrum is related to the connectivity of the
network and the presence of large isolated communities
[28]. The presence of a large gap indicates a large con-
nectivity, which is reasonable for the smaller networks.
The presence of a smaller gap for network III indicates
that there is more structure in the networks with larger
plaquettes which disambiguate the different game paths
and makes more visible the communities of moves. How-
ever, the gap being still present shows that even at the
level of diamond-shaped plaquettes, the moves can be-
long to many different communities: this underlines one
of the specificities of the game of go, which makes a given
position part of many different strategic processes, and
makes it so difficult to simulate by a computer.

The results in this Section show that the tools of com-
plex networks such as ranking vectors associated to the
largest eigenvalue already give new information which
clearly go beyond the mere frequency count of the moves.
This could be used to make more efficient the Monte
Carlo algorithms of computer go. Nevertheless, other
eigenvalues also carry valuable information, that we will
study in the next Section.

IV. EIGENVECTORS AND COMMUNITIES

In the preceding Section, we displayed the spectra of
the networks constructed from the game of go. We have
already discussed the ranking vectors associated to the
largest eigenvalue. The other eigenvectors give a differ-
ent information. In Fig. 9 we display the intensities of
the first 200 eigenvectors of the three different networks.
It is clear that eigenvectors have specific features, not
being spread out uniformly or localized around a single
specific location. Correlations are also clearly visible be-
tween different eigenvectors, materialized by the vertical
lines where several eigenvectors have similar intensities
on the same node. Correlations are less visible on the
largest network, but it is also due to the much largest
size of the vectors which decreases the individual projec-
tions on each node. It is interesting to note that these
correlations are not necessarily related to the PageRank
values or the frequency of moves: vertical lines tend to
be more visible on the left of the figure corresponding
to high PageRank, but they are present all over the in-
terval: certain sequences of eigenvectors have correlated

FIG. 9: (Color online) Eigenvector correlation map of the ma-
trix G for the three different networks : I (top), II (middle)
and III (bottom). Top 200 eigenvectors in order of decreas-
ing eigenvalue modulus are plotted horizontally from bottom
to top. Only the first 200 components are shown in the
PageRank basis. The colors are proportional to the modu-
lus of components (the normalization of an eigenstate ψ is∑

i
|ψi|

2 = 1), from blue/dark grey (minimal) to red/light
grey (maximal).

peaks at locations with relatively low PageRank.



Eigenvectors localization 
->Inverse participation ratio: measures the spreading of 
  eigenvectors (Σi |\Pi|2/Σi |\Pi|4) 
->Large dispersion for G (top) 
-> Lower dispersion for G with links inverted  (bottom) 
->Average value quite low compared to network size 
    Vectors are concentrated on small parts of the network 
(communities) 
 

Network of size 
193995 (diamonds) 
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FIG. 10: (Color online) Histogram of IPR values (see text)
for Network I (red/dark grey), Network II (green/light grey)
and Network III (blue/black). Top panel shows the values
computed for eigenvectors of G and bottom panel shows the
same for G∗. Data correspond to the top 221 eigenvalues
(network I), top 410 eigenvalues (network II) and top 999
eigenvalues (network III).

In order to quantify these effects, we first look at the
spreading of eigenvectors: for a given vector, how many
sites have significant projections? This can be measured
for a vector ψ through the Inverse Participation Ra-
tio (IPR):

∑
i |ψi|4/(

∑
i |ψi|2)2. For a vector uniformly

spread over P vertices it would be equal to P . A random
vector thus has an IPR proportional to the size of the sys-
tem. The data of Fig. 10 for the eigenvectors correspond-
ing to the largest eigenvalues show that these vectors are
not random or uniformly spread. On the contrary, their
IPR is quite small, even for the largest network: in this
case only a few dozen sites contribute to a given eigen-
vector, among almost 200000 possible nodes. Fig. 10 also
shows that there is a relatively large dispersion of the IPR
around the mean value. We provide the distributions for
the Google matrices G and G∗. Qualitatively the fea-
tures are similar, but there is both a lower mean value
and a lower dispersion for G∗, indicating that the statis-
tical symmetry found previously between incoming and
outgoing links is indeed only approximate.

What is the meaning of these eigenvectors? If one in-
terprets the Google matrix as describing a random walk
among the nodes of the network as in the original paper
[23], eigenvectors of G correspond to parts of the net-
work where the random surfer gets stopped for some time
before going elsewhere in the network. In other words,
they are localized on sets of moves which are more linked
together than with the rest of the network. This cor-
responds to so-called communities of nodes which share
certain common properties. In social network, the im-
portance of communities has been stressed several times
and they are the subject of a large number of studies
(see e.g. the review [29]). The use of the eigenvectors of

G to extract the communities is one of the many avail-
able methods, which has been used already in the dif-
ferent context of the World Wide Web [30]. As already
mentioned, eigenvectors with largest eigenvalues tend to
be localized on groups of nodes where the probability is
trapped for some time. This approach will thus detect
communities of nodes from where it is difficult to escape,
i. e. with few links leading to the outside. In parallel, the
eigenvectors of G∗ tend to be localized on groups of nodes
with few incoming links from the outside. Fig. 10 shows
that this latter type of community, obtained from G∗,
tends to be smaller on average for the go game than the
former type, obtained from G. These different communi-
ties should reflect different strategic groupings of moves
during the course of the game.
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FIG. 11: Examples of the top 30 nodes where eigenvectors
of G localize themselves for diamond network, from top to
bottom λ7 = −0.618, λ11 = 0.185 − 0.5739i, λ13 = 0.5651,
λ21 = −0.4380.



 Eigenvectors for network I 

Moduli squared of the right 
eigenvectors of the 7 largest 
eigenvalues of G (network with 1107 
vertices). Inset: real games (black) 
vs random network (red) 

->Network I: the distribution 
of the first 7 eigenvectors 
(Left) shows that they are 
concentrated on particular 
sets of moves 
different for each vector.  
 
->eigenvectors are different 
for different tournaments 
and from professional to 
amateur 
 
->much less peaked for 
randomized network 



 Eigenvectors for network III 
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FIG. 10: (Color online) Histogram of IPR values (see text)
for Network I (red/dark grey), Network II (green/light grey)
and Network III (blue/black). Top panel shows the values
computed for eigenvectors of G and bottom panel shows the
same for G∗. Data correspond to the top 221 eigenvalues
(network I), top 410 eigenvalues (network II) and top 999
eigenvalues (network III).

In order to quantify these effects, we first look at the
spreading of eigenvectors: for a given vector, how many
sites have significant projections? This can be measured
for a vector ψ through the Inverse Participation Ra-
tio (IPR):

∑
i |ψi|4/(

∑
i |ψi|2)2. For a vector uniformly

spread over P vertices it would be equal to P . A random
vector thus has an IPR proportional to the size of the sys-
tem. The data of Fig. 10 for the eigenvectors correspond-
ing to the largest eigenvalues show that these vectors are
not random or uniformly spread. On the contrary, their
IPR is quite small, even for the largest network: in this
case only a few dozen sites contribute to a given eigen-
vector, among almost 200000 possible nodes. Fig. 10 also
shows that there is a relatively large dispersion of the IPR
around the mean value. We provide the distributions for
the Google matrices G and G∗. Qualitatively the fea-
tures are similar, but there is both a lower mean value
and a lower dispersion for G∗, indicating that the statis-
tical symmetry found previously between incoming and
outgoing links is indeed only approximate.

What is the meaning of these eigenvectors? If one in-
terprets the Google matrix as describing a random walk
among the nodes of the network as in the original paper
[23], eigenvectors of G correspond to parts of the net-
work where the random surfer gets stopped for some time
before going elsewhere in the network. In other words,
they are localized on sets of moves which are more linked
together than with the rest of the network. This cor-
responds to so-called communities of nodes which share
certain common properties. In social network, the im-
portance of communities has been stressed several times
and they are the subject of a large number of studies
(see e.g. the review [29]). The use of the eigenvectors of

G to extract the communities is one of the many avail-
able methods, which has been used already in the dif-
ferent context of the World Wide Web [30]. As already
mentioned, eigenvectors with largest eigenvalues tend to
be localized on groups of nodes where the probability is
trapped for some time. This approach will thus detect
communities of nodes from where it is difficult to escape,
i. e. with few links leading to the outside. In parallel, the
eigenvectors of G∗ tend to be localized on groups of nodes
with few incoming links from the outside. Fig. 10 shows
that this latter type of community, obtained from G∗,
tends to be smaller on average for the go game than the
former type, obtained from G. These different communi-
ties should reflect different strategic groupings of moves
during the course of the game.
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FIG. 11: Examples of the top 30 nodes where eigenvectors
of G localize themselves for diamond network, from top to
bottom λ7 = −0.618, λ11 = 0.185 − 0.5739i, λ13 = 0.5651,
λ21 = −0.4380.
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FIG. 12: Examples of the top 30 nodes where eigenvectors
of G∗ localize themselves for diamond network, from top to
bottom λ7 = −0.6023, λ11 = 0.1743−0.5365i, λ18 = −0.4511,
λ21 = −0.4021.

The concept of community being intrinsically ambigu-
ous, one can assign a subjective meaning to the definition
of the community related to a chosen method. In our
case, it is a difficult task to establish clear characteris-
tics regarding what moves should be considered belong-
ing to which community, however in the spirit of ”moves
that are more played together” or ”similar moves” we
can observe that a single eigenvector may contain a mix-
ing of several communities. This could explain why in
Fig. 9 one can see similar patterns appearing in differ-
ent eigenvectors. These considerations are confirmed by
Fig. 11 and Fig. 12 where the first 30 moves of repre-
sentative eigenvectors of G and G∗ are displayed, ranked
by decreasing component modulus. While some common

features appear, one gets the impression that groups of
moves corresponding to different strategic processes are
mixed and should be disentangled; for instance the last
example of Fig. 11 seems to mix moves where black cap-
tures a white stone and moves where black connects a
chain.
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FIG. 13: Same eigenvectors as in Fig. 11 treated by filtering
out the top 30 PageRank moves.

In principle one could use correlations as the ones
shown in Fig. 9 directly to identify communities, but we
chose a different strategy. We propose here different basic
methods that can be a first step into separating the com-
munities within a given eigenvector. The simplest and
most straightforward method consists in filtering out the
effects of the most common and important moves by re-
moving the top moves given by PageRank and CheiRank
vectors. An example is shown in Fig. 13 and Fig. 14
where the remaining moves in the given eigenvectors cor-
responds to a specific set of moves. Very common moves
(such as empty or almost empty plaquettes) have been

Top 30 moves 
 
7th, 11th, 13th and 
21th eigenvectors  
of G (left) 
 
 
7th, 11th, 18th and 
21th eigenvectors  
of G* (right) 
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different groups 
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vectorsmay appear 
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communities 
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FIG. 12: Examples of the top 30 nodes where eigenvectors
of G∗ localize themselves for diamond network, from top to
bottom λ7 = −0.6023, λ11 = 0.1743−0.5365i, λ18 = −0.4511,
λ21 = −0.4021.

The concept of community being intrinsically ambigu-
ous, one can assign a subjective meaning to the definition
of the community related to a chosen method. In our
case, it is a difficult task to establish clear characteris-
tics regarding what moves should be considered belong-
ing to which community, however in the spirit of ”moves
that are more played together” or ”similar moves” we
can observe that a single eigenvector may contain a mix-
ing of several communities. This could explain why in
Fig. 9 one can see similar patterns appearing in differ-
ent eigenvectors. These considerations are confirmed by
Fig. 11 and Fig. 12 where the first 30 moves of repre-
sentative eigenvectors of G and G∗ are displayed, ranked
by decreasing component modulus. While some common

features appear, one gets the impression that groups of
moves corresponding to different strategic processes are
mixed and should be disentangled; for instance the last
example of Fig. 11 seems to mix moves where black cap-
tures a white stone and moves where black connects a
chain.
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FIG. 13: Same eigenvectors as in Fig. 11 treated by filtering
out the top 30 PageRank moves.

In principle one could use correlations as the ones
shown in Fig. 9 directly to identify communities, but we
chose a different strategy. We propose here different basic
methods that can be a first step into separating the com-
munities within a given eigenvector. The simplest and
most straightforward method consists in filtering out the
effects of the most common and important moves by re-
moving the top moves given by PageRank and CheiRank
vectors. An example is shown in Fig. 13 and Fig. 14
where the remaining moves in the given eigenvectors cor-
responds to a specific set of moves. Very common moves
(such as empty or almost empty plaquettes) have been
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FIG. 14: Same eigenvectors as in Fig. 12 treated by filtering
out the top 30 CheiRank moves.

deleted, leaving more focused groups of moves. For exam-
ple, the third eigenvector in Fig. 13 is much more focused
on various moves containing situations of Ko or of immi-
nent capture (Ko or “eternity” is a famous type of fights
with alternate captures of opponent’s stones).

A more systematic method that we propose is to con-
sider the ancestors of each move and determine if they
share a significant number of preceding moves. As the
Google matrix describes a Markovian transition model it
would be natural to look for incoming flows of two moves
to decide whether they belong to the same community.
We implement it as follows: We choose two moves m1

and m2, with respectively N1 and N2 incoming links.
We denote the origin of these incoming links pointing to
m1 and m2 as sets of moves S1 and S2. If both moves
share at least a certain fraction ε of common ancestors,

. . .

.

.

. . .

. . .

.

.

. . .

. . .

.

.

. . .

. . .

.

.

. . .

. . .

.

.

. . .

. . .

.

.

. . .

. . .

.

.

. . .

. . .

.

.

. . .

. . .

.

.

. . .

. .

.

.

. .

. .

.

.

. .

. .

.

.

. .

. .

.

.

. .

. .

.

.

. .

. . . .

. .

. .

. . . .

. . . .

. .

. .

. . . .

. . . .

. .

. .

. . . .

. . . .

. .

. .

. . . .

. . . .

. .

. .

. . . .

. . . .

. .

. .

. . . .

. . . .

. .

. .

. . . .

. .

.

.

. .

. .

.

.

. .

. .

.

.

. .

. .

.

.

. .

. .

.

.

. .

. .

.

.

. .

. .

.

.

. .

. .

.

.

. .

. .

.

.

. .

.

. .

. .

.

.

. .

. .

.

.

. .

. .

.

.

. .

FIG. 15: Example of set of moves extracted from data of
Fig. 11 by considering common ancestry of moves with thresh-
old level ε = 0.3 (see text) applied to λ7,λ11 and λ21, and
threshold level ε = 0.5 applied to λ13. .
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FIG. 16: Example of set of moves extracted from data of
Fig. 12 by considering common ancestry of moves with thresh-
old level ε = 0.3 (see text) applied to λ7,λ11, λ18 and λ21.

that is if ε min(N1, N2) < card(S1 ∩ S2), we assign both
moves to the same community. This process is iterated
until no more new moves are added to this community.
This extracting process is of course empirical, but helps
us nevertheless to sort out some subgroups of moves that
are different from those extracted with previous methods,
provided that the parameter ε is carefully tuned. Indeed
a too low value of ε does not help much in extracting a
group as in most cases moves share naturally a certain
amount of preceding moves but a too high value of ε will



 Eigenvectors-second treatment 
->Second idea: in the same eigenvector, several 
communities may coexist 
 
-> To disentangle them, regroup moves by common 
ancestry: we fix a theshold of common ancestors, and 
add moves to the community if they share enough 
ancestors with one member of the community 
 
->The threshold is a parameter which should be tuned 
depending on the network and the type of community 
searched for 
 
-> Such communities could be used to improve the 
Monte Carlo go: e.g. initialize the value of moves 
according to neighbours in the community, or bias the 
Monte Carlo towards the community 
 
 
 



 Eigenvectors-second treatment 
->This method enables to extract groups of moves with common features 
 
->Examples below for G (left) and G* (right) 
 
->Ko  (« eternity ») situations (alternate captures of opponent’s stone) visible 
(first and third left), black connecting on side of the board (fourth left), 
attempts  by black to takeover an opponent’s chain on the rim of the board 
(first right) 9
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FIG. 14: Same eigenvectors as in Fig. 12 treated by filtering
out the top 30 CheiRank moves.

deleted, leaving more focused groups of moves. For exam-
ple, the third eigenvector in Fig. 13 is much more focused
on various moves containing situations of Ko or of immi-
nent capture (Ko or “eternity” is a famous type of fights
with alternate captures of opponent’s stones).

A more systematic method that we propose is to con-
sider the ancestors of each move and determine if they
share a significant number of preceding moves. As the
Google matrix describes a Markovian transition model it
would be natural to look for incoming flows of two moves
to decide whether they belong to the same community.
We implement it as follows: We choose two moves m1

and m2, with respectively N1 and N2 incoming links.
We denote the origin of these incoming links pointing to
m1 and m2 as sets of moves S1 and S2. If both moves
share at least a certain fraction ε of common ancestors,
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FIG. 15: Example of set of moves extracted from data of
Fig. 11 by considering common ancestry of moves with thresh-
old level ε = 0.3 (see text) applied to λ7,λ11 and λ21, and
threshold level ε = 0.5 applied to λ13. .
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FIG. 16: Example of set of moves extracted from data of
Fig. 12 by considering common ancestry of moves with thresh-
old level ε = 0.3 (see text) applied to λ7,λ11, λ18 and λ21.

that is if ε min(N1, N2) < card(S1 ∩ S2), we assign both
moves to the same community. This process is iterated
until no more new moves are added to this community.
This extracting process is of course empirical, but helps
us nevertheless to sort out some subgroups of moves that
are different from those extracted with previous methods,
provided that the parameter ε is carefully tuned. Indeed
a too low value of ε does not help much in extracting a
group as in most cases moves share naturally a certain
amount of preceding moves but a too high value of ε will
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FIG. 14: Same eigenvectors as in Fig. 12 treated by filtering
out the top 30 CheiRank moves.

deleted, leaving more focused groups of moves. For exam-
ple, the third eigenvector in Fig. 13 is much more focused
on various moves containing situations of Ko or of immi-
nent capture (Ko or “eternity” is a famous type of fights
with alternate captures of opponent’s stones).
A more systematic method that we propose is to con-

sider the ancestors of each move and determine if they
share a significant number of preceding moves. As the
Google matrix describes a Markovian transition model it
would be natural to look for incoming flows of two moves
to decide whether they belong to the same community.
We implement it as follows: We choose two moves m1

and m2, with respectively N1 and N2 incoming links.
We denote the origin of these incoming links pointing to
m1 and m2 as sets of moves S1 and S2. If both moves
share at least a certain fraction ε of common ancestors,
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FIG. 15: Example of set of moves extracted from data of
Fig. 11 by considering common ancestry of moves with thresh-
old level ε = 0.3 (see text) applied to λ7,λ11 and λ21, and
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FIG. 16: Example of set of moves extracted from data of
Fig. 12 by considering common ancestry of moves with thresh-
old level ε = 0.3 (see text) applied to λ7,λ11, λ18 and λ21.

that is if ε min(N1, N2) < card(S1 ∩ S2), we assign both
moves to the same community. This process is iterated
until no more new moves are added to this community.
This extracting process is of course empirical, but helps
us nevertheless to sort out some subgroups of moves that
are different from those extracted with previous methods,
provided that the parameter ε is carefully tuned. Indeed
a too low value of ε does not help much in extracting a
group as in most cases moves share naturally a certain
amount of preceding moves but a too high value of ε will
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Figure: red is for 1d/1d vs 9d/
9d, blue for 6d/6d Network 
with 193995 vertices.  
 
Is this difference significant? 

->The presence of handicaps means that the winner may not be 
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It is in principle not excluded that one should look
into combinations of eigenvectors but even though we
considered single vectors, the results show that it is pos-
sible to extract community of moves which share some
common properties with these methods. The combina-
tion of methods outlined in this section, namely isolating
top moves in eigenvectors associated to large eigenvalues,
and disambiguating them through search for common
ancestries, seems to yield meaningful groups of moves.
We stress again that they do not merely correspond to
most played moves or sequences of moves, nor to the best
ranked in the PageRank or CheiRank, but give a differ-
ent information related to the network structure around
these moves. It is possible to play with the parameters of
the method (threshold ε, number of eigenvectors, starting
point of the common ancestry) in order to find different
sets of communities, which should be analyzed in rela-
tion with the strategy of the game, and then could help
organize the Monte Carlo go search by running it into
specific communities.

V. GENERALIZED NETWORKS

One can refine the analysis further by disaggregating
the datasets in several ways, constructing different net-
works from the same database. The number of nodes
is still the same, but links are now selected according
to some specific criterion and may give rise to different
properties. In this Section we will illustrate this by a few
examples.
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FIG. 18: (Color online) Fluctuation difference rj =∑
i←j

|ki − k′i|/
∑

i
ki of outgoing links versus move indices

for top 1500 moves of diamond patterns in PageRank order
(network III)(see text). An example of difference is shown be-
tween two networks built from games between 6d players (blue
crosses) and two networks built respectively from games be-
tween 1d players and games between 9d players (red squares).
The number of games in each case is 2731, corresponding to
the number of 1d/1d games in the database [17].

An important aspect of the games, especially in view
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FIG. 19: (Color online) Difference r (see text) between the
networks built from games of 1d players and of 9d players
(red cross) together with several examples of r for pairs of
networks constructed from different samples of games of 6d
players (green squares). The three horizontal lines mark the
mean and the variance of the 6d values The number of games
in each sample is 2731, corresponding to the number of 1d/1d
games in the database.

of applications to computer go, is to select moves which
are more susceptible of winning the game. It is possible
to separate the players between winners and losers, but
the presence of handicaps makes this process ambiguous.
Indeed, it is possible to place up to nine stones before the
beginning of the game at strategic locations, giving an ad-
vantage to a weaker player which may allow him to play
against a better opponent with a fair chance of winning.
Another possibility we thus investigated was to separate
the players by their levels according to their dan rank-
ing. Indeed, players are ranked from first dan (1d, lowest
level) to ninth dan (9d, highest level). In the database
[17] the number of dans of the players is known, and it is
therefore possible to separate games played at different
levels. To explore these differences, we constructed the
diamond network from games played by 1d versus 1d, the
one from 9d versus 9d, and the one from 6d versus 6d.
Fig. 18 shows the quantity rj =

∑
i←j |ki − k′i|/

∑
i ki

defined for a pair of networks, where ki (resp. k′i) is
the number of links from a fixed node j to node i for
one network (resp. for the second network). For each
node, rj thus quantifies the difference in outgoing links
between two networks. Fig 18 shows the distribution of
this quantity highlighting the difference between the net-
work 1d/1d and the network 9d/9d. One sees that they
are indeed different, with a mean 〈rj〉 ≈ 1.33. Never-
theless, in the same figure we add for comparison the
difference between two networks of 6d/6d, showing that
one can also find differences between networks built from
players of the same level. In view of this, to see if the
difference between 1d/1d and 9d/9d is statistically sig-
nificant, Fig 19 shows the average r = 〈rj〉 for different
choices of samples of 6d versus 6d games and the value for
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of applications to computer go, is to select moves which
are more susceptible of winning the game. It is possible
to separate the players between winners and losers, but
the presence of handicaps makes this process ambiguous.
Indeed, it is possible to place up to nine stones before the
beginning of the game at strategic locations, giving an ad-
vantage to a weaker player which may allow him to play
against a better opponent with a fair chance of winning.
Another possibility we thus investigated was to separate
the players by their levels according to their dan rank-
ing. Indeed, players are ranked from first dan (1d, lowest
level) to ninth dan (9d, highest level). In the database
[17] the number of dans of the players is known, and it is
therefore possible to separate games played at different
levels. To explore these differences, we constructed the
diamond network from games played by 1d versus 1d, the
one from 9d versus 9d, and the one from 6d versus 6d.
Fig. 18 shows the quantity rj =

∑
i←j |ki − k′i|/

∑
i ki

defined for a pair of networks, where ki (resp. k′i) is
the number of links from a fixed node j to node i for
one network (resp. for the second network). For each
node, rj thus quantifies the difference in outgoing links
between two networks. Fig 18 shows the distribution of
this quantity highlighting the difference between the net-
work 1d/1d and the network 9d/9d. One sees that they
are indeed different, with a mean 〈rj〉 ≈ 1.33. Never-
theless, in the same figure we add for comparison the
difference between two networks of 6d/6d, showing that
one can also find differences between networks built from
players of the same level. In view of this, to see if the
difference between 1d/1d and 9d/9d is statistically sig-
nificant, Fig 19 shows the average r = 〈rj〉 for different
choices of samples of 6d versus 6d games and the value for

->Differences can be 
seen between the 
networks built from 
moves of players of 
different levels 



 Networks for different game phases 

Figure: spectrum for all 
moves (black), 50 first 
moves (red), middle 50 
(green) and last 50 
(blue), Network with 
193995 vertices.  

->One can separate the 
games into beginning, 
middle, and end 
->The three networks 
are different, with 
markedly different 
spectra and 
eigenvectors 
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the networks constructed from the games of 1d players
and 9d players, with the average taken on top 1500 moves
of the PageRank. It shows that the difference between
1d players an 9d players has some statistical significance.
The quantity r is a simple way of quantifying the struc-
tural differences in the networks at the level of outgoing
flows which is in our case an indication that 9d players
might have an overall structurally different style of play
than 1d players, even though the difference is relatively
small.
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FIG. 20: (Color online) Spectrum of G for diamond networks
of different game phases : first 50 moves (red crosses), middle
50 moves (green circles) and last 50 moves (blue stars). The
black squares correspond to the spectrum of the network when
the whole game is taken into account, shown for reference.

An interesting possibility which might also be useful
for applications is to create separate networks for differ-
ent phases of the game. For instance, one can take into
account when using the database of real games only the
first 50 moves, the middle 50, or the final 50. Again, this
does not modify the nodes of the networks, but changes
the links, creating three different networks correspond-
ing to respectively beginning, middle, and ending phases
of the game. The number of links is now 6155936 for
the beginning phase, 6460771 for the middle phase, and
5947467 for the ending phase (instead of 26116006 for the
whole game) (the numbers without degeneracies for di-
amond plaquettes are respectively 613953, 2070305 and
3182771). The spectra of the three networks for the di-
amond plaquettes are shown in Fig. 20 (again, only the
largest eigenvalues are calculated). It is clear that the
spectra are quite different, indicating that the structure
of the network is not equivalent for the different phases of
the game. It is visible that the eigenvalue cloud is larger
for the ending phase indicating that near the final stage
of the game the random surfer gets trapped more easily
in specific patterns, which should correspond to typical
endgames. Similarly, the gap is smaller for the begin-
ning phase, indicating that one strongly knit community
exists with an eigenvalue close to the PageRank value.
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FIG. 21: Examples of set of top 30 moves where eigenvectors
localize themselves, those examples are computed for diamond
network in different game phases : starting phase and λ4

(top), middle phase and λ4 (middle) and ending phase λ4

(bottom).

The eigenvectors shown in Fig. 21 highlight different
sets of moves as might be expected since strategy should
differ in thoses phases. Obviously, eigenvectors for open-
ing moves are much more biased towards relatively empty
plaquettes, indicating the start of local fights. In the
middle and end of the games, communities are biased to-
wards moves corresponding to more and more filled pla-
quettes, indicating ongoing fights or fight endings. We
stress the fact that those sets of moves are not just the
most played moves in the respective phases. Running
the community detection process of Section IV on such
eigenvectors should select communities specific to these
different phases of the game.

VI. CONCLUSION

We have shown that it is possible to construct networks
which describe the game of go, in a spirit similar to the
ones already used for languages. We have extended the
results of [2], comparing three networks of different sizes
according to the size of the plaquettes which serve as
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Figure: fourth 
eigenvector of G for 50 
first moves (top), middle 
50 (middle) and last 50 
(bottom) 

->Eigenvectors are 
different from those of full 
game network, showing 
specific communities 
 
->Bias toward more 
empty plaquettes for 
beginnings, more filled 
plaquettes towards the 
end 
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the networks constructed from the games of 1d players
and 9d players, with the average taken on top 1500 moves
of the PageRank. It shows that the difference between
1d players an 9d players has some statistical significance.
The quantity r is a simple way of quantifying the struc-
tural differences in the networks at the level of outgoing
flows which is in our case an indication that 9d players
might have an overall structurally different style of play
than 1d players, even though the difference is relatively
small.
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FIG. 20: (Color online) Spectrum of G for diamond networks
of different game phases : first 50 moves (red crosses), middle
50 moves (green circles) and last 50 moves (blue stars). The
black squares correspond to the spectrum of the network when
the whole game is taken into account, shown for reference.

An interesting possibility which might also be useful
for applications is to create separate networks for differ-
ent phases of the game. For instance, one can take into
account when using the database of real games only the
first 50 moves, the middle 50, or the final 50. Again, this
does not modify the nodes of the networks, but changes
the links, creating three different networks correspond-
ing to respectively beginning, middle, and ending phases
of the game. The number of links is now 6155936 for
the beginning phase, 6460771 for the middle phase, and
5947467 for the ending phase (instead of 26116006 for the
whole game) (the numbers without degeneracies for di-
amond plaquettes are respectively 613953, 2070305 and
3182771). The spectra of the three networks for the di-
amond plaquettes are shown in Fig. 20 (again, only the
largest eigenvalues are calculated). It is clear that the
spectra are quite different, indicating that the structure
of the network is not equivalent for the different phases of
the game. It is visible that the eigenvalue cloud is larger
for the ending phase indicating that near the final stage
of the game the random surfer gets trapped more easily
in specific patterns, which should correspond to typical
endgames. Similarly, the gap is smaller for the begin-
ning phase, indicating that one strongly knit community
exists with an eigenvalue close to the PageRank value.
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FIG. 21: Examples of set of top 30 moves where eigenvectors
localize themselves, those examples are computed for diamond
network in different game phases : starting phase and λ4

(top), middle phase and λ4 (middle) and ending phase λ4

(bottom).

The eigenvectors shown in Fig. 21 highlight different
sets of moves as might be expected since strategy should
differ in thoses phases. Obviously, eigenvectors for open-
ing moves are much more biased towards relatively empty
plaquettes, indicating the start of local fights. In the
middle and end of the games, communities are biased to-
wards moves corresponding to more and more filled pla-
quettes, indicating ongoing fights or fight endings. We
stress the fact that those sets of moves are not just the
most played moves in the respective phases. Running
the community detection process of Section IV on such
eigenvectors should select communities specific to these
different phases of the game.

VI. CONCLUSION

We have shown that it is possible to construct networks
which describe the game of go, in a spirit similar to the
ones already used for languages. We have extended the
results of [2], comparing three networks of different sizes
according to the size of the plaquettes which serve as



 Conclusion 
->we have studied the game of go, one of the most ancient and 
complex board games, from a complex network perspective.  
 
->Ranking vectors highlight specific moves which are pivotal but 
may not be the most common 
 
->Eigenvectors of G and G* are localized on specific groups of 
moves which correspond to communities of related moves 
 
 ->One can construct networks for specific phases of the game or 
specific levels of players 
 
-> Ranking vectors and communities could be used to improve 
the Monte Carlo go, currently the best go simulators 
 
->Our approach could be used for other types of games, and in 
parallel shed light on the human decision making process. 


