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Networks

->Recent field: study of complex networks.Tools and models
have been created,;

->Many networks are scale-free with power-law distribution of links
difference between directed and non directed networks

->Important examples from recent technological developments:
iInternet, World Wide Web, social networks...

->Can be applied also to less recent objects
in particular, study of human behavior: languages, friendships...




Networks for games

-> Network theory never applied to
games

-> Games are nevertheless a very
ancient activity, with a mathematical
theory attached to the more complex
ones

-> Games represent a privileged
approach to human decision-making

->Can be very difficult to modelize or
simulate




The game of go

- Game of go: very ancient
Asian game, probably originated
in China in Antiquity (image on
the left from VIllth century)

-> (Go is the Japanese name;
Weiqi in Chinese, Baduk in
Korean




The game of go

-> (Go is a very popular game
played by many parts of the
population (ex. right) on a board
called Goban (see below)
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Rules of go

B

->\White and black stones A
alternatively put at
intersections of

19 x19 lines
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->Stones without liberties are i
removed

->A chain with only one liberty
IS said in atari

->Handicap stones can be
placed

->Aim of the game: construct
protected territories




Beginnings: Fuseki and Joseki
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During the game-Ko and ladders
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Endgames-life and death




Player rankings

—>There are nine levels (dans) of
professionals (top players) followed
by nine levels of amateurs

->A handicap stone can compensate
for roughly one dan: like in golfing,
players of different levels can play
evenly thanks to handicaps

->There are regular tournaments of
go since very long times




Computer simulations

-->\While Deep Blue famously beat the world chess champion
Kasparov in 1997, no computer program has beaten a very good
go player even in recent times. Why?

->total number of legal positions 10171, vs “only” 10°° for chess
-> Not easy to assign positional advantage to a move

-> Best programs use Monte Carlo Go: play random games
starting from one move and see the outcome until a value can be

assigned to the move

->Monte Carlo Go has beaten all other programs, can beat
professional players on 9x9 gobans, and with handicaps on 19x19




Databases

->\We use databases of expert and amateur games in order to
construct networks from the different sequences of moves,
and study the properties of these networks

->Databases available at

->\Whole available record, from 1941 onwards, of the
most important historical professional Japanese go tournaments:
Kisei (143 games), Meijin (259 games), Honinbo (305 games),
Judan (158 games)

-Contains also 135 000 amateur games played online

->Level of players is known, mutually assessed according to
games played




Vertices of the network |

->"plaquette” : square of 3 x3 intersections

->\We identify plaquettes related by symmetry

->\We identify plaquettes with colors swapped
->1107 nonequivalent plagquettes with empty centers
->vertices of our network
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Vertices of the networks Il

->"plaquette” : square of 3 x3 intersections + atari status of
nearest-neighbors

->\We still identify plaquettes related by symmetry

->Because of rules restrictions, only
2051 legal nonequivalent plaquettes with empty centers




Vertices of the networks lll

->"plaquette” : diamond of 3 x3 +4 intersections
->\We still identify plaquettes related by symmetry

->193995 nonequivalent plaquettes with empty centers
(96771 actually never used in the database)




Zipf’'s law

->Zipf's law: empirical law
observed in many natural
distributions (word
frequency, city sizes...)
->|f items are ranked
according to their
frequency, predicts a
power-law decay of the
frequency vs the rank.

61

->integrated distribution of B 1 2 Lo§ B
three network nodes clearly o ;
follows a Zipf's law, Normalized integrated frequency

distribution of three types of nodes.

with exponent close to 1 b
Thick dashed line is y=-x.




Links of the network

->we connect vertices corresponding to moves a and b if
b follows a in a game at a distance < d.

->Each choice of d defines a different network. The
choice of d determines the distance beyond which two
moves are considered nonrelated.

->Sequences of moves follow Zipf's law (cf languages)
Exponent decreases as longer sequences reflect
individual strategies

->move sequences are well hierarchized by d=5
->amateur database departs from all professional ones,
playing more often at shorter distances




Sizes of the three networks

-> Total number of links including degeneracies is 26 116 006,
the same for all networks

->Network I: 1107 nodes, 558190 links without degeneracies
->Network Il: 2051 nodes, 852578 links without degeneracies

->Network Ill: 193995 nodes, 7405395 links without
degeneracies

->\/ery dense networks, especially the smallest ones

-> Very different from e.g. the World Wide Web




Link distribution

->Tails of link distributions

very close to power-law - ®
for all three networks TN
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->network displays the
scale-free property
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->symmetry between ol =

ingoing and outgoing links 4 ——————————

is a peculiarity of this et

network Normalized integrated
distribution of links for the
three networks




Matrix for directed networks

Weighted adjacency matrix
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Google algorithm

Ranking pages {1, ..., N} according to their importance.
|dea:
e The importance of a page / depends on the importance of the pages j
pointing on it

e If a page has many outgoing links the importance it transmits is inversely
proportional to the number of pages it points to.

PageRank p; should thus verify
p-32
— 1)
j—i

n;= number of outgoing links of page J.
With the (stochastic) matrix H introduced above,

p=Hp




Computation of PageRank

p = Hp = p= stationary vector of H:
can be computed by iteration of H.

To remove convergence problems:

Replace columns of 0 (dangling nodes) by +: H — matrix S
[0 0 000 0\
1ol ooo0o0
3 07 3 000
Inourexample, H=| 2 0 2 0 1 1 1
001 1 000
011 0000
\ 0 0 I 0000

To remove degeneracies of the eigenvalue 1, replace S by

1

G:ozS—F(‘I—oz)N




PageRank and CheiRank

o The PageRank algorithm gives the PageRank vector, with amplitudes p;,
with0 < p; < 1

e All webpages can then be ordered according to their PageRank value

e The PageRank value of a webpage can be understood as the average
time a random surfer will spend there

e It ranks websites according to the number of links pointing to them which
come from high-PageRank sites.

->PageRank is associated to the largest eigenvalue of the matrix G. It
is based on ingoing links

->CheiRank corresponds to the PageRank of the network obtained by
inverting all links. It can be associated to a new matrix G*, and is
based on outgoing links



Ranking vectors: network |

->PageRank: ingoing links

->CheiRank: outgoing links

->HITS algorithm:Authorities

(ingoing links) and Hubs
(outgoing links)

->Ranking vectors follow an
algebraic law

log(rank)

->Symmetry between
distributions of ranking
vectors based on ingoing
links and outgoing links.




Ranking vectors: other networks

->Still symmetry

between distributions 0
of ranking vectors .
based on ingoing links Ll
and outgoing links.

->Power law different
for the largest network

Log , K,K*

->Ranking vectors of G and G* for the three networks
red: size 1107, green: size 2051, blue: size 193995.



Ranking vectors: correlations

->3trong correlations
between PageRank and
CheiRank

->Strong correlation between
moves which open many
possibilities of new moves
and moves that can follow
many other moves.
->However, the symmetry is
far from exact.
->Correlation less strong for
largest network

Figure: K* vs K where K (resp. K*) is the rank of a vertex when ordered
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Ranking vectors vs most common moves
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Figure: Top 30 most common
moves of network lll; right: top
30 PageRank and CheiRank
for same network




Ranking vectors vs most common moves

->There are correlations between PageRank, CheiRank, and
most common moves

->However, there are also many differences, which mark the
importance of specific moves in the network even if they are
not that common

->Genuinely new information, which can be obtained only from
the network approach 10000 :

8000

Figure: frequency rank vs
PageRank (blue) and
CheiRank (red) for network Il
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Ranking vectors vs most common moves

-> |n the World Wide Web, frequency count corresponds to
ranking by e. g. indegree

->PageRank takes into account indegree but weighted by
importance of nodes from where the links are coming

-> Here PageRank underlines moves to which converge many
well-trodden paths in the database

->CheiRank does the same in the reverse direction,
highlighting moves which open many such paths

-> Could be used to bias or calibrate the Monte Carlo Go



Spectrum of the Google matrix

->For second and third networks, still
gap between the first eigenvalue and
next ones

->Radius of the bulk of eigenvalues
changes with size of network

->More structure in the networks with
larger plaquettes which disambiguate
the different game paths and should
make more visible the communities of
moves

Figure: Eigenvalues of G in the
complex plane for the networks with
1107, 2051 and 193995 nodes
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What is the meaning of
eigenvectors of the Google matrix ?

->Next to leading eigenvalues are important, may indicate the
presence of communities of moves with common features.

->Indeed, eigenvectors of G for large eigenvalues correspond
to parts of the network where the random surfer gets stopped
for some time before going elsewhere

-> Correspond to sets of moves which are more linked
together than with the rest of the network

-> Should indicate communities of moves which tend to be
played together



Eigenvectors correlations

->Top 200 eigenvectors of diamond network in order of
decreasing modulus of eigenvalue from bottom to top

->0One line: one
eigenvector in the order of
PageRank

->Correlations
visible, not
necessarily related
to high PageRank




Eigenvectors localization

->|nverse participation ratio: measures the spreading of
eigenvectors (Z; |\P.|2/Z. |\P,|*)
->|_arge dispersion for G (top)
-> Lower dispersion for G with links inverted (bottom)
->Average value quite low compared to network size
Vectors are concentrated on small parts of the network
(communities)
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Eigenvectors for network |

->Network |: the distribution
of the first 7 eigenvectors
(Left) shows that they are
concentrated on particular
sets of moves

different for each vector.

->eigenvectors are different
for different tournaments
and from professional to
amateur

->much less peaked for
randomized network
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1
Moduli squared of the right
eigenvectors of the 7 largest
eigenvalues of G (network with 1107
vertices). Inset: real games (black)
vs random network (red)



Eigenvectors for network Il

 $2% g 33 5 5 Top 30 moves
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Eigenvectors-first treatment
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Eigenvectors-second treatment

->Second idea: in the same eigenvector, several
communities may coexist

-> To disentangle them, regroup moves by common
ancestry: we fix a theshold of common ancestors, and
add moves to the community if they share enough
ancestors with one member of the community

->The threshold is a parameter which should be tuned
depending on the network and the type of community
searched for

-> Such communities could be used to improve the
Monte Carlo go: e.g. initialize the value of moves
according to neighbours in the community, or bias the
Monte Carlo towards the community



Eigenvectors-second treatment

->This method enables to extract groups of moves with common features
->Examples below for G (left) and G* (right)

->Ko (« eternity ») situations (alternate captures of opponent’s stone) visible
(first and third left), black connecting on side of the board (fourth left),
attempts by black to takeover an opponent’s chain on the rim of the board
(first right)




Networks for different levels of play

->The presence of handicaps means that the winner may not be
the best player

-> However, the level of players is known (number of dans)
-> One can construct networks for 1d vs 1d and compare
with 9d vs 9d. We look at

rjy = Zi(—j ki — Kil/ > ki

which quantifies the difference in outgoing links between two
networks 5

Figure: red is for 1d/1d vs 9d/ .|
9d, blue for 6d/6d Network .
with 193995 vertices. N

Is this difference significant?

. | | Y
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Networks for different levels of play

-> \We compared different samples of 6d/6d to the 1d/9d and
computed T = <7”j> In each case

-> Result: statistically significant difference between 1d/9d and
the 6d/6d samples

->Differences can be

seen between the 135
networks built from -
moves of players of - 137

different levels —= 5w = ==

=
1.25¢ = n




Networks for different game phases

->0ne can separate the
games into beginning,

middle, and end | .
->The three networks | °
are different, with
markedly different
spectra and

eigenvectors Of

Figure: spectrum for all
moves (black), 50 first |
moves (red), middle 50 °

(green) and last 50 | | | | -

(blue), Network with -1 05 0 05
193995 vertices.



Networks for different game phases

->Eigenvectors are
different from those of full
game network, showing
specific communities

DI
SE M M

->Bias toward more
empty plaquettes for
beginnings, more filled
plaguettes towards the
end

Figure: fourth
eigenvector of G for 50
first moves (top), middle
50 (middle) and last 50
(bottom)




Conclusion

->we have studied the game of go, one of the most ancient and
complex board games, from a complex network perspective.

->Ranking vectors highlight specific moves which are pivotal but
may not be the most common

->Eigenvectors of G and G* are localized on specific groups of
moves which correspond to communities of related moves

->0ne can construct networks for specific phases of the game or
specific levels of players

-> Ranking vectors and communities could be used to improve
the Monte Carlo go, currently the best go simulators

->Qur approach could be used for other types of games, and in
parallel shed light on the human decision making process.



