
Dense-subgraph discovery
Aristides Gionis
Department of Information and Computer Science
Aalto University

aristides.gionis@aalto.fi

School for advanced sciences of Luchon
Network analysis and applications
June 26, 2014



what this lecture is about . . .

given a graph (network)

(social network, biological network, information network,
commodity network, . . . )

find a subgraph that . . .

. . . has many edges

. . . is densely connected

why I care?

what does dense mean?

review of main problems, and main algorithms



outline

today
I introduction and motivation
I density functions
I complexity of basic problems
I basic algorithms
I variants of the densest-subgraph problem
I biclique mining, trawling, graph shingling

tomorrow
I finding heavy subgraphs
I centerpiece problems



community detection in graphs and
social networks

a small network with clear community structure



community structure vs. dense subgraphs

informal definition of community : a set of vertices
I densely connected to each other, and
I sparsely connected to the rest of the graph

I dense subgraphs: set of vertices with many edges
I no requirement for small cuts
I key primitive for detecting communities,

but not identical problem



one motivating application — social piggybacking

[Serafini et al., 2013]

✦ majority of activity in social networking

• event feeds

✦ scaling feed generation → scaling social 
networking

I event feeds: majority of activity in social networks



one motivating application — social piggybacking

I system throughput proportional to the data transferred
between data stores

I feed generation important component to optimize

the delivery operations

-   push

-   pull

u

v

I primitive operation: transfer data between two data stores

I can be implemented as push or pull strategy

I optimal strategy depends on production and consumption
rates of nodes



one motivating application — social piggybacking• end of the story?

u

z

v
u

z

v

h l

hub optimizationI hub optimization turns out to be a good idea

I depends on finding dense subgraphs

node v. Observe that any node v has to either pull from at
least one other node u, u ⌅ v ⇧ E (and, in the ideal case, all
the other information required by v will be pushed to u), or,
if v does not pull from any u, then all other of v’s informa-
tion producers need to push to v. In the first case, the cost
attributed to the information flow to v is at least rc(v), which
is the rate at which v is pulling information. In the second
case, the attributed cost is at least

⇧
{u:u�v⇥E} rp(u), which

is the (accumulated) rate at which other nodes are pushing
information. This gives us the following lower bound.

Lemma 2 If all throughput costs are w(u ⌅ v) = 1 then no
feasible dissemination schedule can have a cost of less than:

C =
⌥

v⇥V

min

�
⇤rc(v),

⌥

{u:u�v⇥E}
rp(u)

⇥
⌅ (1)

This lower bound can be further strengthened by the ob-
servation that the same argument applies to each of v’s
“groups” of producing nodes separately: if there are sepa-
rate groups between which there is no information flow then
v needs to pull from or have information push to from each of
the groups individually. Details are given in Appendix A.2
and in our experiments we used the refined version. Our ex-
periments will show that this bound is overly optimistic (as
it assumes a single pull can su⇥ce) and we use the bound
to describe trends in the intrinsic problem di⇥culty.

4. ALGORITHMS

4.1 Approximation algorithm
In this section we describe our approximation algorithm

for the Dissemination problem, which we name ChitChat.
Not surprisingly, since the Dissemination problem asks to
find a schedule that covers all the edges in the network, our
solution is based on the SetCover problem.

For completeness we recall the SetCover problem: We
are given a ground set X and a collection C = {A1, . . . , Am}
of subsets of X, such that

⌃
i Ai = X. Each set A in C is

associated with a cost c(A). The goal is to select a sub-
collection S ⇥ C that covers all the elements in the ground
set, i.e.,

⌃
A⇥S A = X, and the total cost

⇧
A⇥S c(A) of the

sets in the collection S is minimized.
For the SetCover problem, the following simple greedy

algorithm is folklore [2]: Initialize S = ⌥ to keep the itera-
tively growing solution, and Z = X to keep the uncovered
elements of X. Then as long as Z is not empty, select the

set A that minimizes the cost per uncovered element c(A)
|A⇤Z| ,

add the set A to the solution (S ⇤ S �{A}) and update the
set of uncovered elements (Z ⇤ Z \ A).

It can be shown [2] that this greedy algorithm achieves
a solution with approximation guarantee O(log�), where
� = max{|A|} is the size of the largest set in the collection C.
At the same time, this logarithmic guarantee is essentially
the best one can hope for, since Feige [3] showed that the
problem is not approximable within (1 � o(1)) ln n, unless
NP has quasi-polynomial time algorithms.

To map the Dissemination problem to SetCover, we
consider as ground set X the set of edges E in the network.
The question is what should be the sets that form the collec-
tion C. Motivated by the elementary optimization operation

X
Y

w

Figure 2: A hub-graph used in the mapping of Dis-
semination to SetCover problem.

that we discussed in Section 2 we consider the covering sets
to be of the form of a hub-graph, as defined below.

Definition 9 (hub-graph) Given a graph G = (V, E) and
a node w ⇧ V we consider a triple (X, w, Y ), with X, Y ⇥ V
such that

(i) w ⌃⇧ X and w ⌃⇧ Y ,

(ii) for all x ⇧ X it is x ⌅ w ⇧ E, and

(iii) for all y ⇧ Y it is w ⌅ y ⇧ E.

The subgraph of G induced by the set of nodes X � Y � {w}
is called hub-graph G(X, w, Y ). For notational convenience
we partition the edges of a hub-graph G(X, w, Y ) into three
groups: the edges E(X, w) = {x ⌅ w | x ⇧ X} from X to w,
the edges E(w, Y ) = {w ⌅ y | y ⇧ Y } from w to Y , and the
cross-edges E(X, Y ) = {x ⌅ y | x ⇧ X and y ⇧ Y }  E.

A hub-graph G(X, w, Y ) is shown in Figure 2. The dashed
edges in the figure are the cross-edges.

The intuition behind the definition of a hub-graph
G(X, w, Y ) is that the node w can act as a hub between
nodes in X and Y : by serving all edges in E(X, w) by a
push, and all edges in E(w, Y ) by a pull, we can cover all
cross-edges for free, as follows from Observation 1. To spec-
ify in detail how we are using a hub-graph G(X, w, Y ) in our
SetCover-based solution, we need to discuss how to treat
each hub-graph in terms of coverage, cost, and dissemination
schedule.

Dissemination schedule. Selecting a hub-graph
G(X, w, Y ) implies that we will add in our dissemination
schedule all edges in E(X, w) to be served by a push opera-
tion and all edges in E(w, Y ) to be served by a pull opera-
tion.

Coverage. A hub-graph G(X, w, Y ) covers all the edges
E(X, w) � E(w, Y ) � E(X, Y ) = E(X, w, Y ).

Cost. The cost of a hub-graph G(X, w, Y ) is

c(X, w, Y ) =
⌥

u⇥X

h(u ⌅ w) +
⌥

v⇥Y

l(w ⌅ v).

Assume for a moment that we have at our disposal all pos-
sible hub-graphs G(X, w, Y ), so let C be the set of all pos-
sible such hub-graphs. For each hub-graph G(X, w, Y ) ⇧
C we have access to its coverage E(X, w, Y ) and its
cost c(X, w, Y ). We can then solve the problem Dissemi-
nation by solving the instance of the SetCover problem
on the collection C. For the latter problem, we need to find
the sub-collection S ⇥ C that covers all the edges in E and
minimizes the total cost

⇧
(X,w,Y )⇥S c(X, w, Y ). A dissem-

ination schedule can then be produced by processing each



other applications of finding dense subgraphs

I communities and spam link farms [Kumar et al., 1999]

I graph visualization [Alvarez-Hamelin et al., 2005]

I real-time story identification [Angel et al., 2012]

I regularoty motif detection in DNA [Fratkin et al., 2006]

I finding correlated genes [Zhang and Horvath, 2005]

I epilepsy prediction [Iasemidis et al., 2003]

I many more ...



notation

I undirected graph G = (V ,E) defined with
vertex set V and edge set E ⊆ V × V

I degree of a node u ∈ V is

deg(u) = |{v ∈ V such that (u, v) ∈ E}|

I edges between S ⊆ V and T ⊆ V are

E(S,T ) = {(u, v) such that u ∈ S and v ∈ T}

use shorthand E(S) for E(S,S)

I graph cut is defined by a subset of vertices S ⊆ V
I edges of a graph cut S ⊆ V are E(S, S̄)

I induced subgraph by S ⊆ V is G(S) = (S,E(S))

I triangles: T (S) = {(u, v ,w) | (u, v), (u,w), (v ,w) ∈ E(S)}



density measures

I undirected graph G = (V ,E)

I subgraph induced by S ⊆ V

I clique: all vertices in S are connected to each other



density measures

I edge density (average degree):

d(S) =
2 |E(S,S)|
|S|

=
2 |E(S)|
|S|

I edge ratio:

δ(S) =
|E(S,S)|(|S|

2

) =
|E(S)|(|S|

2

) =
2 |E(S)|
|S|(|S| − 1)

I triangle density:

t(S) =
|T (S)|
|S|

I triangle ratio:

τ(S) =
|T (S)|(|S|

3

)



other density measures

I k -core: every vertex in S is connected to

at least k other vertices in S

I α-quasiclique: the set S has at least α
(|S|

2

)
edges

i.e., S is α-quasiclique if E(S) ≥ α
(|S|

2

)



and more

not considered (directly) in this tutorial

I k -cliques: a subset of vertices of distance at most k to
each other

– distances defined using intermediaries, outside the set
– not well connected

I k -club: a subgraph of diameter ≤ k

I k -plex: a subgraph S in which each vertex is connected to
at least |S| − k other vertices

– 1-plex is a clique



the general densest-subgraph problem

I given an undirected graph G = (V ,E)

and a density measure f : 2V → R

I find set of vertices S ⊆ V

that maximizes f (S)



complexity of density problems — clique

I find the max-size clique in a graph: NP-hard problem

I strong innaproximability result:

for any ε > 0, there cannot be a polynomial-time algorithm
that approximates the maximum clique problem within a
factor better than O(n1−ε), unless P = NP

[Håstad, 1997]



finding dense subgraphs – which measure?

I find large cliques. . .

NP-hard problem
too strict requirement

I find S that maximizes edge ratio δ(S) = |E(S)|/
(|S|

2

)
ill-defined problem . . . pick a single edge
will consider later

I find S that maximizes edge density d(S) = 2 |E(S)|/|S|
study in more detail next . . .



the densest-subgraph problem

I given an undirected graph G = (V ,E)

I find set of vertices S ⊆ V

I that maximizes the edge density (average degree)

d(S) =
2 |E(S)|
|S|

I . . . polynomial ? . . . NP-hard ? . . . approximations ?



reminder: min-cut and max-cut problems

min-cut problem

s t
S S

I source s ∈ V , destination t ∈ V
I find S ⊆ V , s.t.,
I s ∈ S and t ∈ S̄, and
I minimize e(S, S̄)

I polynomially-time solvable
I equivalent to max-flow problem

max-cut problem

S
S

I find S ⊆ V , s.t.,
I maximize e(S, S̄)

I NP-hard
I approximation algorithms

(0.868 based on SDP)



Goldberg’s algorithm for densest subgraph

G

I is there a subgraph S with
d(S) ≥ c?

I transform to a min-cut
instance

I on the transformed
instance:

I is there a cut smaller
than a certain value?

s t
... ...

G



Goldberg’s algorithm for densest subgraph

is there S with d(S) ≥ c ?

2 |E(S,S)|
|S|

≥ c

2 |E(S,S)| ≥ c|S|

∑
u∈S

deg(u)− |E(S, S̄)| ≥ c|S|

∑
u∈S

deg(u) +
∑
u∈S̄

deg(u)−
∑
u∈S̄

deg(u)− |E(S, S̄)| ≥ c|S|

∑
u∈S̄

deg(u) + |E(S, S̄)|+ c|S| ≤ 2 |E |



Goldberg’s algorithm for densest subgraph

I transform to a min-cut instance

s t... ...

deg(u )1

deg(u )n

c

c
1

G

I is there S s.t.
∑

u∈S̄ deg(u) + |e(S, S̄)|+ c|S| ≤ 2 |E | ?

a cut of value 2 |E | always exists, for S = ∅
∑

u∈S̄ |e(S, S̄)|



Goldberg’s algorithm for densest subgraph

I transform to a min-cut instance

s t... ...

deg(u )1

deg(u )n

c

c
1

S
I is there S s.t.

∑
u∈S̄ deg(u) + |e(S, S̄)|+ c|S| ≤ 2 |E | ?

I a cut of value 2 |E | always exists, for S = ∅
∑

u∈S̄ |e(S, S̄)|



Goldberg’s algorithm for densest subgraph

I transform to a min-cut instance

s t... ...

deg(u )1

deg(u )n

c

c
1

S

S
I is there S s.t.

∑
u∈S̄ deg(u) + |e(S, S̄)|+ c|S| ≤ 2 |E | ?

I S 6= ∅ gives cut of value
∑

u∈S̄ deg(u) + |e(S, S̄)|+ c|S|



Goldberg’s algorithm for densest subgraph

I transform to a min-cut instance

s t... ...

deg(u )1

deg(u )n

c

c
1

S

S
I is there S s.t.

∑
u∈S̄ deg(u) + |e(S, S̄)|+ c|S| ≤ 2 |E | ?

I YES, if min cut achieved for S 6= ∅
∑

u∈S̄ |e(S, S̄)|



Goldberg’s algorithm for densest subgraph

[Goldberg, 1984]

input: undirected graph G = (V ,E), number c
output: S, if d(S) ≥ c
1 transform G into min-cut instance G′ = (V ∪ {s} ∪ {t},E ′,w ′)
2 find min cut {s} ∪ S on G′

3 if S 6= ∅ return S
4 else return NO

to find the densest subgraph binary search on c



densest subgraph problem – discussion

I Goldberg’s algorithm polynomial algorithm, but
I O(nm) time for one min-cut computation
I not sclable for large graphs (millions of vertices / edges)

I faster algorithm due to [Charikar, 2000]
I greedy and simple to implement
I approximation algorithm



greedy algorithm for densest subgraph — example



greedy algorithm for densest subgraph

[Charikar, 2000]

input: undirected graph G = (V ,E)
output: S, a dense subgraph of G
1 set Gn ← G
2 for k ← n downto 1
2.1 let v be the smallest degree vertex in Gk
2.2 Gk−1 ← Gk \ {v}
3 output the densest subgraph among Gn,Gn−1, . . . ,G1



analysis of the greedy algorithm (I)
[Charikar, 2000]

I first, will upper bound the optimal solution
I consider any arbitrary assignment of edges (u, v) to u or v

u uv v

I define

in(u) = #{edges assigned to u} and ∆ = max
u∈V
{in(u)}

I claim 1: maxS⊆V{d(S)} ≤ 2 ∆

proof: consider the set S that maximizes d(S)

|e(S)| =
∑
u∈S

in(u) ≤ |S|∆, so d(S) =
2 |e(S)|
|S|

≤ 2 ∆



analysis of the greedy algorithm (II)

I consider assignment defined dynamically during greedy
I initially all edges are unassigned
I in each step, edges are assigned to the deleted vertex
I in the end, all edges have been assigned
I let z be the maximum d(S) achieved by greedy

I claim 2: ∆ ≤ z

proof: consider a single iteration of the greedy
v∗ is deleted in S

in(v∗) ≤ {average degree in S} = d(S) ≤ z

it holds for all v∗, thus maxv∈V{in(v)} = ∆ ≤ z



analysis of the greedy algorithm (III)

I putting everything together

I claim 1: maxS⊆V{d(S)} ≤ 2 ∆

I claim 2: ∆ ≤ z, for z the max d(S) achieved by greedy

I it follows
z ≥ 1

2
d(SOPT)

I 2-approximation algorithm



the greedy algorithm

I factor-2 approximation algorithm
I for a polynomial problem . . .

but faster and easier to implement than the exact algorithm

I running time:
naive implementation: O(n2)

using heaps: O(m + n log n)

also possible: O(m + n) (how?)



densest subgraph on directed graphs
[Charikar, 2000]

I dense subgraphs on directed graphs:
find sets S,T ⊆ V to maximize

d(S,T ) =
e[S,T ]√
|S| |T |

I problem can be solved exactly in polynomial time
using linear programming (LP)

– solution to LP can be transformed to integral solution
of the same value

I greedy 2-approximation algorithm

– similar “peel off” flavor as for the undirected case

– iteratively removes min-degree vertices from S or T
(depending on a certain condition)



size-constrainted densest-subgraph problems

[Khuller and Saha, 2009]

I given an undirected graph G = (V ,E)

I find set of vertices S ⊆ V

that maximizes degree density d(S)

and S satisfies size constraints

DkS “equality” constraint: |S| = k

DAMkS “at most” constraint: |S| ≤ k

DALkS “at least” constraint: |S| ≥ k



size-constrainted densest-subgraph problems

I what about the complexity of DkS, DAMkS, DALkS?

I all NP-hard

DkS approximation guarantee O(nα), α < 1
3

DAMkS as hard as DkS

DALkS factor-2 approximation guarantee

[Feige et al., 2001, Khuller and Saha, 2009]



k -core

I (recall) S is a k -core, if every vertex in S is connected to at
least k other vertices in S

I can be found with the following algorithm:

1 while (k -core property is satisfied)
2 remove all vertices with degree less than k

I gives a k -core, as well as a k -core shell decomposition
I index of a vertex: the iteration id it was deleted
I more central vertices have higher index
I popular technique in social network analysis

I note resemblance with Charikar’s algorithm



recall our density measures

I edge density: d(S) = 2 |E(S)|/|S|

I edge ratio: δ(S) = |E(S)|/
(|S|

2

)
I triangle density: t(S) = |T (S)|/|S|

I triangle ratio: τ(S) = |T (S)|/
(|S|

3

)
I k -core: every vertex in S is connected to

at least k other vertices in S

I α-quasiclique: the set S has at least α
(|S|

2

)
edges



optimal quasicliques

I S is α-quasiclique if |E(S)| ≥ α
(|S|

2

)
I for S ⊆ V define edge surplus

fa(S) = |E(S)| − α
(
|S|
2

)

the optimal quasiclique problem:

find S ⊆ V that maximizes fa(S)



optimal quasicliques in practice

densest subgraph vs. optimal quasiclique

fined as 2e[S]
|S| The densest-subgraph problem is to find a set

S that maximizes the average degree. The densest subgraph
can be identified in polynomial time by solving a parametric
maximum-flow problem [17, 19]. Charikar [10] shows that
the greedy algorithm proposed by Asashiro et al. [6] pro-
duces a 1

2
-approximation of the densest subgraph in linear

time.
In the classic definition of densest subgraph there is no

size restriction of the output. When restrictions on the size
|S| are imposed, the problem becomes NP-hard. Specifi-
cally, the DkS problem of finding the densest subgraph of k
vertices is known to be NP-hard [5]. For general k, Feige
et al. [14] provide an approximation guarantee of O(n↵),
where ↵ < 1

3
. The greedy algorithm by Asahiro et al. [6]

gives instead an approximation factor of O(n
k
). Better ap-

proximation factors for specific values of k are provided by
algorithms based on semidefinite programming [15]. From
the perspective of (in)approximability, Khot [22] shows that
there cannot exist any PTAS for the DkS problem under a
reasonable complexity assumption. Arora et al. [4] propose
a PTAS for the special case k = ⌦(n) and m = ⌦(n2). Fi-
nally, two variants of the DkS problem are introduced by
Andersen and Chellapilla [2]. The two problems ask for the
set S that maximizes the average degree subject to |S|  k
(DamkS) and |S| � k (DalkS), respectively. They provide
constant factor approximation algorithms for DalkS and ev-
idence that DamkS is hard. The latter was verified by [23].

Quasi-cliques. A set of vertices S is an ↵-quasi-clique if
e[S] � ↵

�|S|
2

�
, i.e., if the edge density of the induced sub-

graph G[S] exceeds a threshold parameter ↵ 2 (0, 1). Simi-
larly to cliques, maximum quasi-cliques and maximal quasi-
cliques [8] are quasi-cliques of maximum size and quasi-
cliques not contained into any other quasi-clique, respec-
tively. Abello et al. [1] propose an algorithm for finding a
single maximal ↵-quasi-clique, while Uno [31] introduces an
algorithm to enumerate all ↵-quasi-cliques.

1.2 Contributions
Extracting the densest subgraph (i.e., finding the sub-

graph that maximizes the average degree) is particularly
attractive as it can be solved exactly in polynomial time
or approximated within a factor of 2 in linear time. Indeed
it is a popular choice in many applications. However, as we
will see in detail next, maximizing the average degree tends
to favor large subgraphs with not very large edge density
�. The prototypical dense graph is the clique, but, as dis-
cussed above, finding the largest clique is inapproximable.
Also, the clique definition is too strict in practice, as not
even a single edge can be missed from an otherwise dense
subgraph. This observation leads to the definition of quasi-
clique, whose underlying intuition is the following: assuming
that each edge in a subgraph G[S] exists with probability ↵,

then the expected number of edges in G[S] is ↵
�|S|

2

�
. Thus,

the condition of the ↵-quasi-clique expresses the fact that
the subgraph G[S] has more edges than those expected by
this binomial model.

Motivated by this definition, we turn the quasi-clique con-
dition into an objective function. In particular, we define the
density function f↵(S) = e[S]� ↵

�|S|
2

�
, which expresses the

edge surplus of a set S over the expected number of edges
under the random-graph model. We consider the problem of
finding the best ↵-quasi-clique, i.e., a set of vertices S that
maximizes the function f↵(S). We refer to the subgraphs

Table 1: Di↵erence between densest subgraph and
optimal quasi-clique on some popular graphs. � =
e[S]/

�|S|
2

�
is the edge density of the extracted sub-

graph, D is the diameter, and ⌧ = t[S]/
�|S|

3

�
is the

triangle density.
densest subgraph optimal quasi-clique

|S|
|V | � D ⌧

|S|
|V | � D ⌧

Dolphins 0.32 0.33 3 0.04 0.12 0.68 2 0.32
Football 1 0.09 4 0.03 0.10 0.73 2 0.34

Jazz 0.50 0.34 3 0.08 0.15 1 1 1
Celeg. N. 0.46 0.13 3 0.05 0.07 0.61 2 0.26

that maximize f↵(S) as optimal quasi-cliques. To the best
of our knowledge, the problem of extracting optimal quasi-
cliques from a graph has never been studied before. We
show that optimal quasi-cliques are subgraphs of high qual-
ity, with edge density � much larger than densest subgraphs
and with smaller diameter. We also show that our novel den-
sity function comes indeed from a more general framework
which subsumes other well-known density functions and has
appreciable theoretical properties.

Our contributions are summarized as follows.

• We introduce a general framework for finding dense sub-
graphs, which subsumes popular density functions. We
provide theoretical insights into our framework: show-
ing that a large family of objectives are e�ciently solv-
able while other subcases are NP-hard.

• As a special instance of our framework, we introduce
the novel problem of extracting optimal quasi-cliques.

• We design two e�cient algorithms for extracting opti-
mal quasi-cliques. The first one is a greedy algorithm
where the smallest-degree vertex is repeatedly removed
from the graph, and achieves an additive approximation
guarantee. The second algorithm is a heuristic based on
the local-search paradigm.

• Motivated by real-world scenarios, we define interesting
variants of our original problem definition: (i) finding
the top-k optimal quasi-cliques, and (ii) finding optimal
quasi-cliques that contain a given set of vertices.

• We extensively evaluate our algorithms and problem
variants on numerous datasets, both synthetic and
real, showing that they produce high-quality dense sub-
graphs, which clearly outperform densest subgraphs. We
also present applications of our problem in data-mining
and bioinformatics tasks, such as forming a successful
team of domain experts and finding highly-correlated
genes from a microarray dataset.

1.3 A preview of the results
Table 1 compares our optimal quasi-cliques with densest

subgraphs on some popular graphs.1 The results in the table
clearly show that optimal quasi-cliques have much larger edge
density than densest subgraphs, smaller diameters and larger
triangle densities. Moreover, densest subgraphs are usually
quite large-sized: in the graphs we report in Table 1, the
densest subgraphs contain always more than the 30% of the
vertices in the input graph. For instance, in the Football

1
Densest subgraphs are extracted here with the exact Goldberg’s algo-

rithm [19]. As far as optimal quasi-cliques, we optimize f↵ with ↵ = 1
3

and use our local-search algorithm.

[Tsourakakis et al., 2013]



generalized edge-surplus framework

I for a set of vertices S define edge surplus

f (S) = g(|E(S)|)− h(|S|)

I optimal (g,h)-edge-surplus problem:

find S∗ such that

f (S∗) ≥ f (S), for all sets S ⊆ S∗

I example 1: optimal quasicliques

g(x) = x , h(x) = α
x(x − 1)

2



generalized edge-surplus framework

I edge surplus f (S) = g(|E(S)|)− h(|S|)

I example 2
g(x) = h(x) = log x

find S that maximizes log |E(S)|
|S|

densest-subgraph problem

I example 3

g(x) = x , h(x) =

{
0 if x = k
+∞ otherwise

k -densest-subgraph problem (DkS)



generalized edge-surplus framework

theorem
let g(x) = x and h(x) concave
then the optimal (g,h)-edge-surplus problem is
polynomially-time solvable

proof
g(x) = x is supermodular
if h(x) concave h(x) is submodular
−h(x) is supermodular
g(x)− h(x) is supermodular
maximizing supermodular functions is solvable in
polynomial time



algorithms for finding optimal quasicliques

I find S ⊆ V that maximizes fa(S) = |E(S)| − α
(|S|

2

)
I approximation algorithms?

I edge surplus function can take negative values
I multiplicative approximation guarantee not meaningful

I can obtain guarantee for a shifted version
but introduces large additive error

I other types of guarantees more appropriate



finding an optimal quasiclique

adaptation of the greedy algorithm of [Charikar, 2000]

input: undirected graph G = (V ,E)
output: a quasiclique S
1 set Gn ← G
2 for k ← n downto 1
2.1 let v be the smallest degree vertex in Gk
2.2 Gk−1 ← Gk \ {v}
3 output the subgraph in Gn, . . . ,G1 that maximizes f (S)

additive approximation guarantee [Tsourakakis et al., 2013]



practical considerations

1. further improve solution of greedy by local search

2. choice of α in practice?
when confronted with two disconnected components, the
measure should pick one of the two, instead of their union
translates to α ≥ 1

3



top-k densest subgraphs and quasicliques

Table 3: Densest subgraphs extracted with Charikar’s method vs. optimal quasi-cliques extracted with the pro-
posed GreedyOQC algorithm (greedy) and LocalSearchOQC algorithm (ls). � = e[S]/

�|S|
2

�
is the edge density

of the extracted subgraph S, D is the diameter, and ⌧ = t[S]/
�|S|

3

�
is the triangle density.

|S| � D ⌧
densest opt. quasi-clique densest opt. quasi-clique densest opt. quasi-clique densest opt. quasi-clique

subgraph greedy ls subgraph greedy ls subgraph greedy ls subgraph greedy ls
Dolphins 19 13 8 0.27 0.47 0.68 3 3 2 0.05 0.12 0.32
Polbooks 53 13 16 0.18 0.67 0.61 6 2 2 0.02 0.28 0.24
Adjnoun 45 16 15 0.20 0.48 0.60 3 3 2 0.01 0.10 0.12
Football 115 10 12 0.09 0.89 0.73 4 2 2 0.03 0.67 0.34

Jazz 99 59 30 0.35 0.54 1 3 2 1 0.08 0.23 1
Celeg. N. 126 27 21 0.14 0.55 0.61 3 2 2 0.07 0.20 0.26
Celeg. M. 44 22 17 0.35 0.61 0.67 3 2 2 0.07 0.26 0.33

Email 289 12 8 0.05 1 0.71 4 1 2 0.01 1 0.30
AS-22july06 204 73 12 0.40 0.53 0.58 3 2 2 0.09 0.19 0.20
Web-Google 230 46 20 0.22 1 0.98 3 2 2 0.03 0.99 0.95

Youtube 1874 124 119 0.05 0.46 0.49 4 2 2 0.02 0.12 0.14
AS-Skitter 433 319 96 0.41 0.53 0.49 2 2 2 0.10 0.19 0.13

Wiki ’05 24555 451 321 0.26 0.43 0.48 3 3 2 0.02 0.06 0.10
Wiki ’06/9 1594 526 376 0.17 0.43 0.49 3 3 2 0.10 0.06 0.11

Wiki ’06/11 1638 527 46 0.17 0.43 0.56 3 3 2 0.31 0.06 0.35

Our main goal is to compare our optimal quasi-cliques with
densest subgraphs. For extracting optimal quasi-cliques, we
involve both our proposed algorithms, i.e., GreedyOQC
and LocalSearchOQC, which, following the discussion in
Section 3.1, we run with ↵ = 1

3
(for LocalSearchOQC, we

also set Tmax = 50). For finding densest subgraphs, we use
the Goldberg’s exact algorithm [19] for small graphs, while
for graphs whose size does not allow the Goldberg’s algo-
rithm to terminate in reasonable time we use the Charikar’s
1
2
-approximation algorithm [10].
All algorithms are implemented in java, and all experi-

ments are performed on a single machine with Intel Xeon
cpu at 2.83GHz and 50GB ram.

5.1 Real-world graphs
Results on real graphs are shown in Table 3. We compare

optimal quasi-cliques outputted by the proposed Greedy-
OQC and LocalSearchOQC algorithms with densest sub-
graphs extracted with the Charikar’s algorithm. Particu-
larly, we use the Charikar’s method to be able to handle
the largest graphs. For consistency, Table 3 reports on re-
sults achieved by Charikar’s method also for the smallest
graphs. We recall that the results in Table 1 in the Intro-
duction refer instead to the exact Goldberg’s method. How-
ever, a comparison of the two tables on their common rows
shows that the Charikar’s algorithm, even though it is ap-
proximate, produces almost identical results with the results
produced by the Goldberg’s algorithm.

Table 3 clearly confirms the preliminary results reported
in the Introduction: optimal quasi-cliques have larger edge
and triangle densities, and smaller diameter than densest
subgraphs. Particularly, the edge density of optimal quasi-
cliques is evidently larger on all graphs. For instance, on
Football and Youtube, the edge density of optimal quasi-
cliques (for both the GreedyOQC and LocalSearchOQC
algorithms) is about 9 times larger than the edge den-
sity of densest subgraphs, while on Email the di↵erence in-
creases up to 20 times (GreedyOQC) and 14 times (Local-
SearchOQC). Still, the triangle density of the optimal
quasi-cliques outputted by both GreedyOQC and Local-
SearchOQC is one order of magnitude larger than the tri-
angle density of densest subgraphs on 11 out of 15 graphs.

Figure 1: Edge density and diameter of the top-
10 subgraphs found by our GreedyOQC and Local-
SearchOQC methods, and Charikar’s algorithm, on
the AS-skitter graph (top) and the Wikipedia 2006/11
graph (bottom).

Comparing our two algorithms to each other, we can
see that LocalSearchOQC performs generally better than
GreedyOQC. Indeed, the edge density achieved by Local-
SearchOQC is higher than that of GreedyOQC on 10 out
of 15 graphs, while the diameter of the LocalSearchOQC
optimal quasi-cliques is never larger than the diameter of the
GreedyOQC optimal quasi-cliques.

Concerning e�ciency, all algorithms are linear in the num-
ber of edges of the graph. Charikar’s and GreedyOQC
algorithm are somewhat slower than LocalSearchOQC,
but mainly due to bookkeeping. LocalSearchOQC algo-
rithm’s running times vary from milliseconds for the small
graphs (e.g., 0.004s for Dolphins, 0.002s for Celegans N.), few
seconds for the larger graphs (e.g., 7.94s for Web-Google and
3.52s for Youtube) and less than one minute for the largest
graphs (e.g., 59.27s for Wikipedia 2006/11).



recall our density measures

I edge density: d(S) = 2 |E(S)|/|S|

I edge ratio: δ(S) = |E(S)|/
(|S|

2

)
I triangle density: t(S) = |T (S)|/|S|

I triangle ratio: τ(S) = |T (S)|/
(|S|

3

)
I k -core: every vertex in S is connected to

at least k other vertices in S

I α-quasiclique: the set S has at least α
(|S|

2

)
edges



the triangle-densest-subgraph problem

[Tsourakakis, 2014]

I given an undirected graph G = (V ,E)

I find set of vertices S ⊆ V

I that maximizes the triangle density

t(S) =
|T (S)|
|S|

I . . . polynomial ? . . . NP-hard ? . . . approximations ?



the triangle-densest-subgraph problem

[Tsourakakis, 2014]

I complexity: polynomial

I two exact algorithms

1. tranformation to max-flow
as Goldberg’s algorithm, but more sophisticated
construction
running time: O(`(m,n) + nT )

where `(m,n) triangle listing complexity
(can be n3, m3/2, . . . ), and
T number of triangles in the graph

2. via supermodular function maximization



the triangle-densest-subgraph problem

[Tsourakakis, 2014]

I also adapt Charikar’s greedy algorithm:

I iteratively remove the vertex that participates in least
number of triangles

I return the graph with maximum triangle density

I provides factor-3 approximation



the triangle-densest-subgraph problem – summary

[Tsourakakis, 2014]

I in practice, as with optimal quasi-cliques, the
triangle-densest-subgraph problem provides high quality
solutions

I small size, dense in all measures, near cliques

I formulation combines best of both worlds: polynomial
complexity,
good quality solutions

I exact algorithms are expensive but greedy is efficient



mining cliques and bi-cliques

I finding large cliques is NP-hard problem

I same for bi-cliques (cliques in bipartite graphs)

I ok, so what? . . . let’s see if there is something we can do

I frequent pattern mining is all about mining large cliques



reminder: frequent pattern mining

I given a set of transactions over items

I find item sets that occur together in a θ fraction of the
transactions

issue heroes
number

1 Iceman, Storm, Wolverine
2 Aurora, Cyclops, Magneto, Storm
3 Beast, Cyclops, Iceman, Magneto
4 Cyclops, Iceman, Storm, Wolverine
5 Beast, Iceman, Magneto, Storm

e.g., {Iceman, Storm} appear in 60% of issues



reminder: frequent pattern mining

I one of the most well-studied area in data mining

I many efficient algorithms
Apriori, Eclat, FP-growth, Mafia, ABS, . . .

I main idea: monotonicity
a subset of a frequent set must be frequent, or
a superset of an infrequent set must be infrequent

I algorithmically:
start with small itemsets
proceed with larger itemset if all subsets are frequent

I enumerate all frequent itemsets



frequent itemsets vs. dense subgraphs
id heroes
1 Iceman, Storm, Wolverine
2 Aurora, Cyclops, Magneto, Storm
3 Beast, Cyclops, Iceman, Magneto
4 Cyclops, Iceman, Storm, Wolverine
5 Beast, Iceman, Magneto, Storm

⇔

A B C I M S W
1 0 0 0 1 0 1 1
2 1 0 1 1 1 0 0
3 0 1 1 1 1 0 0
4 0 0 1 1 0 1 1
5 0 1 0 1 1 1 0

⇔

1

2

3

4

5

Aurora
Beast

Cyclops

Magneto

Storm

Wolverine

Iceman

I transaction data⇔ binary data⇔ bipartite graphs
frequent itemsets⇔ bi-cliques



frequent itemsets vs. dense subgraphs
id heroes
1 Iceman, Storm, Wolverine
2 Aurora, Cyclops, Magneto, Storm
3 Beast, Cyclops, Iceman, Magneto
4 Cyclops, Iceman, Storm, Wolverine
5 Beast, Iceman, Magneto, Storm

⇔

A B C I M S W
1 0 0 0 1 0 1 1
2 1 0 1 1 1 0 0
3 0 1 1 1 1 0 0
4 0 0 1 1 0 1 1
5 0 1 0 1 1 1 0

⇔

1

2

3

4

5

Aurora
Beast

Cyclops

Magneto

Storm

Wolverine

Iceman

I transaction data⇔ binary data⇔ bipartite graphs
I frequent itemsets⇔ bi-cliques



bi-cliques vs. tiles

I quality of itemsets measured by support
require frequency ≥ support threshold

I another idea:
measure itemset quality as {itemset size} × {support}
tile mining
measure corresponds to the area of the tile
or equivalently, number of edges of the bi-clique

I algorithmically: not monotone measure, developed
branch-and-bound technique to mine all tiles



slide by Bart Goethals



slide by Bart Goethals



slide by Bart Goethals



slide by Bart Goethals



slide by Bart Goethals



frequent itemsets vs. dense subgraphs —
discussion

I ideas from frequent itemset mining can be used for finding
(bi-)cliques

+ wealth of efficient and highly-optimized algorithms

typically uses the concept of support

− not easily adapted for near cliques or other dense
subgraphs

paradigm of enumerating all “large enough” cliques,
not for finding the maximum clique



application to finding web communities

[Kumar et al., 1999]

I hypothesis: web communities consist of hub-like pages
and authority-like pages
e.g., luxury cars and luxury-car aficionados

I key observations:

1. let G = (U,V ,E) be a dense web community
then G should contain some small core (bi-clique)

2. consider a web graph with no communities
then small cores are unlikely

I both observations motivated from theory of random graphs



dense communities contain small cores

authority
pages

hub
pages

[Kumar et al., 1999]



dense communities contain small cores

authority
pages

hub
pages

[Kumar et al., 1999]



finding web communities

trawling algorithm [Kumar et al., 1999]

1. iterative pruning: when searching for (a,b)-cores
vertices with outdegree less than a can be pruned
same for vertices with indegree less than b

2. inclusion-exclusion pruning: exclude a page or output an
(a,b)-core

3. enumeration: after pruning graph has been reduced
apply exact enumeration, e.g., Apriori



inclusive-exclusive pruning

u

d(u)=a

N(u)

I consider u with outdegree exactly a

I consider neighbors N(u)

I if exist a− 1 vertices pointing N(u)

then output core
else eliminate u



finding web communities II — graph shingling

[Gibson et al., 2005]

I think what trawling achieves:

find u1, . . . ,uk s.t. N(u1), . . . ,N(uk ) have large intersection

I somewhat easier problem: N(u1), . . . ,N(uk ) are similar

measuring set similarity using the Jaccard coefficient

J(A,B) =
|A ∩ B|
|A ∪ B|



finding web communities II — graph shingling

I locate similar items via locality-sensitive hashing

I design a family of hash function, so that similar items have
high probability of collision

I for sets hashing based on min-wise independent
permutations

[Broder et al., 1997]



min-wise independent permutations

I sets over a universe U
I measuring set similarity using the Jaccard coefficient
I π : U → U a random permutation of U
I h(A) = min{π(x) | x ∈ A}
I then

Pr[h(A) = h(B)] = J(A,B) =
|A ∩ B|
|A ∪ B|

I amplify the probability :
concatenate many hashes into sketches
repeat many times
consider objects similar if they collide in at least one sketch

I min-wise independent functions are expensive
in practice, universal hash functions work well



probability amplification

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Jaccard

C
o
lli

s
io

n
 p

ro
b
a
b
ili

ty

 

 

k=1, l=1

k=10, l=10

concatenate k hashes, repeat ` times

Pr[ sketches of A and B collide ] = 1− (1− J(A,B)k )`



discovering heavy subgraphs

I given a graph G = (V ,E ,d ,w)

with a distance function d : E → R on edges

and weights on vertices w : V → R

I find a subset of vertices S ⊆ V

so that

1. total weight in S is high

2. vertices in S are close to each other

[Rozenshtein et al., 2014]



discovering heavy subgraphs

I what does total weight and close to each other mean?

I total weight
W (S) =

∑
v∈S

w(v)

I close to each other

D(S) =
∑
u∈S

∑
v∈S

d(u, v)

I want to maximize W (S) and minimize D(S)

I maximize
Q(S) = λW (S)− D(S)



applications of discovering heavy subgraphs

I finding events in networks

I vertices correspond to locations

I weights model activity recorded in locations

I distances between locations

I find compact regions (neighborhoods) with high activity



event detection

I sensor networks and traffic measurements

City events 

Dataset – fixed spatially scattered sources of time series 
 
Our dataset: city-movements sensor – public transport 
stations and statistics on its activity 



event detection

15.11.2012
ordinary day, no events

General problem formulation 

Find an event – a subset of spatially and/or temporally close 
time sub-series with anomalous behavior 
 

← Normal day 
 
15.11.12: no events 

Event  day  → 
 
11.09.12:  
• National day of 

Catalonia 
• FC Barcelona - 

Igualada HC 

11.09.2012
Catalunya national dayGeneral problem formulation 

Find an event – a subset of spatially and/or temporally close 
time sub-series with anomalous behavior 
 

← Normal day 
 
15.11.12: no events 

Event  day  → 
 
11.09.12:  
• National day of 

Catalonia 
• FC Barcelona - 

Igualada HC 



event detection

I location-based social networks

event detection

• input data: recordings of a certain 
measurement in space and time

(a) Barcelona bicycle-share:
11.09.12 National Day of
Catalonia

(b) Minneapolis bicycle-share:
4.07.12 Independence Day in
the USA

(c) Washington,DC
bicycle-share: 27.05.13
Memorial Day in the USA

(d) Los Angeles Twitter
messages: 31.05.10 Memorial
Day in the USA

(e) New York Twitter messages:
6.09.10 Labor Day in the USA

Figure 8: Public holiday city-events

score C(S) for an event S is defined as follows,

C(S) =
1

|S|
X

v2S

|Nk(v) \ S|
k

,

where k is a nearest-neighbors parameter and Nk(v) denotes
the set of the k-nearest neighbors of v in the graph. From
the panels (g) and (h) of Figures 6 and 7, we see that
small values of � give low compactness. This is because
of the small sizes of detected events for those values of
�. When � increases, the accuracy increases and so
does compactness. However, when � becomes very large,
the algorithms downweight the distance objective and the
detected events include noisy nodes. The fact that the
compactness measure “flattens out” gives us some guidance
in selecting an appropriate value of �. In our experiments,
using the Pareto curves and the notion of compactness we
processed real-world datasets to discover meaningful events.

Case studies. In Figure 8 we show events discovered
by our algorithms on the bike-share and twitter data.
These are events found by our algorithms on problem
instances whose solution exhibits high value with respect to
other instances. We are able to a posteriori characterize
those events and associate them with state holidays in
the corresponding cities: National day of Catalonia (for
Barcelona), Independence day, Memorial day and Labor

0 2000 4000 6000 8000 10000
0

2

4

6

8

10

nodes

ru
n

n
in

g
 t

im
e

, 
se

c

Figure 9: Scalability of the GreedyAP algorithm

day for the USA. All those days are characterized by high
activity levels, clustered in the center of the cities.

Scalability. The proposed greedy algorithms are e�cient
and can scale to large networks. We report on the scalability
behavior of the GreedyAP algorithm. We use the twitter
dataset, with tweets from the whole US, to compile activity
networks with increased number of nodes. We use k-means
with k up to 10 000 centroids and we apply the GreedyAP
algorithm to detect events in the resulting graph. The
results, shown in Figure 9, are obtained by executing the
algorithm on an Intel Core i7 (4 cores) machine, with 8 GB
RAM and processor running at 2.30GHz. We see that the
algorithm is e�cient and scales linearly with the size of the
graph.

6. CONCLUSION
We formalize the problem of detecting events in

activity networks, as a problem of finding compact
subgraphs in graphs with vertex weights. Depending
on the notion of compactness used—sum of all pairs
of distances or Steiner-tree distance—we formulate two
di↵erent optimization problems. By using ideas from
semidefinite programming and the primal-dual scheme, we
provide approximation algorithms for the two problems
we consider. We also provide simpler and faster greedy
algorithms, for which we are also able to show approximation
guarantees that rely on the submodularity property of the
objective function. Our experiments show that the greedy
approaches are more light-weight and perform as good as
the more sophisticated approximation algorithms.

The event-detection setting we consider has many
applications. In this paper we are experimenting with
real-world datasets from city sensors and social media
applications, and we show that our methods are able to
discover successfully real events.

Our work opens many interesting directions for future
work. One challenge is to incorporate the temporal
dimension of the activity network in the graph-theoretic
framework and be able to discover events of varying
temporal support.

7. REFERENCES
[1] L. Akoglu and C. Faloutsos. What is strange in large

networks? graph-based irregularity and fraud
detection. Available at
http://www.cs.stonybrook.edu/~leman/icdm12,
2012. Tutorial presented at IEEE ICDM 2012.

[2] A. Archer, M. Bateni, M. Hajiaghayi, and H. Karlo↵.
Improved approximation algorithms for



discovering heavy subgraphs

I maximize Q(S) = λW (S)− D(S)

I objective can by negative

I add a constant term to ensure non-negativity

I maximize Q(S) = λW (S)− D(S) + D(V )



discovering heavy subgraphs

I maximize Q(S) = λW (S)− D(S) + D(V )

I objective is submodular (but not monotone)

I can obtain 1
2 -approximation guarantee

[Buchbinder et al., 2012]

I problem can be mapped to the max-cut problem
which gives 0.868-approximation guarantee
[Rozenshtein et al., 2014]



events discovered with bicing and 4square data

(a) Barcelona: 11.09.12
National Day of Catalonia

(b) Minneapolis: 4.07.12
Independence Day

(c) Washington, DC:
27.05.13 Memorial Day

(d) Los Angeles: 31.05.10
Memorial Day

(e) New York: 6.09.10
Labor Day

Figure 4: Public holiday city-events discovered using the SDP algorithm.

(a) 01.06.12 Primavera
sound music festival

(b) 18.09.12 festival of the
Poblenou neighborhood (c) 31.10.12 Halloween

Figure 5: Top-3 diverse events discovered from Barcelona bicing data using the SDP algorithm.

[9] M. H. Bhuyan, D. K. Bhattacharyya, and J. K.
Kalita. An e↵ective unsupervised network anomaly
detection method. ICACCI, 2012.

[10] D. Bienstock, M. X. Goemans, D. Simchi-Levi, and
D. Williamson. A note on the prize-collecting traveling
salesman problem. Mathematical programming,
59(1-3), 1993.

[11] B. Boden, S. Günnemann, H. Ho↵mann, and T. Seidl.
Mining coherent subgraphs in multi-layer graphs with
edge labels. KDD, 2012.

[12] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and
J. Sander. LOF: identifying density-based local
outliers. SIGMOD, 2000.

[13] N. Buchbinder, M. Feldman, J. S. Naor, and
R. Schwartz. A tight linear time (1/2)-approximation
for unconstrained submodular maximization. FOCS,
2012.

[14] M. Charikar. Greedy approximation algorithms for
finding dense components in a graph. APPROX, 2000.

[15] Z. Cheng, J. Caverlee, K. Lee, and D. Z. Sui.
Exploring millions of footprints in location sharing
services. ICWSM, 2011.

[16] U. Feige, G. Kortsarz, and D. Peleg. The dense
k-subgraph problem. Algorithmica, 29(3), 2001.

[17] M. X. Goemans and D. P. Williamson. A general
approximation technique for constrained forest
problems. SIAM Journal on Computing, 24(2), 1995.

[18] M. X. Goemans and D. P. Williamson. Improved
approximation algorithms for maximum cut and
satisfiability problems using semidefinite
programming. JACM, 42(6), 1995.

[19] V. Guralnik and J. Srivastava. Event detection from
time series data. KDD, 1999.

[20] N. A. Heard, D. J. Weston, K. Platanioti, and D. J.
Hand. Bayesian anomaly detection methods for social
networks. Ann. Appl. Stat., 4(2), 2010.

[21] D. S. Johnson, M. Minko↵, and S. Phillips. The
prize-collecting Steiner tree problem: theory and
practice. SODA, 2000.

[22] S. Khuller and B. Saha. On finding dense subgraphs.
ICALP, 2009.

[23] M. Kulldor↵. A spatial scan statistic. Communications
in Statistics-Theory and Methods, 26(6), 1997.

[24] M. Olson, A. Liu, M. Faulkner, and K. M. Chandy.
Rapid detection of rare geospatial events: earthquake
warning applications. DEBS, 2011.

[25] G. P. Patil and C. Taillie. Upper level set scan
statistic for detecting arbitrarily shaped hotspots.
Environmental and Ecological Statistics, 11, 2004.

[26] S. Seufert, S. J. Bedathur, J. Mestre, and G. Weikum.
Bonsai: Growing interesting small trees. In ICDM,
pages 1013–1018, 2010.

[27] T. Tango and K. Takahashi. A flexibly shaped spatial
scan statistic for detecting clusters. International
Journal of Health Geographics, 4-11, 2005.

[28] K.-C. Toh, M. J. Todd, and R. H. Tütüncü. SDPT3
— a Matlab software package for semidefinite
programming, version 1.3. Optimization methods and
software, 11(1-4), 1999.

[29] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and
M. Tsiarli. Denser than the densest subgraph:
extracting optimal quasi-cliques with quality
guarantees. KDD, 2013.

[30] M. Walther and M. Kaisser. Geo-spatial event
detection in the twitter stream. ECIR, 2013.

[31] K. Watanabe, M. Ochi, M. Okabe, and R. Onai.
Jasmine: a real-time local-event detection system
based on geolocation information propagated to
microblogs. CIKM, 2011.



community detection problems

I typical problem formulations require non-overlapping
and complete partition of the set of vertices

I quite restrictive

I inherently ambiguous: research group vs. bicycling club

I additional information can resolve ambiquity

I community defined by two or more people



the community-search problem

I given graph G = (V ,E), and

I given a subset of vertices Q ⊆ V (the query vertices)

I find a community H that contains Q

applications

I find the community of a given set of users (cocktail party)

I recommend tags for an image (tag recommendation)

I form a team to solve a problem (team formation)



center-piece subgraph

[Tong and Faloutsos, 2006]

I given: graph G = (V ,E) and set of query vertices Q ⊆ V
I find: a connected subgraph H that

(a) contains Q
(b) optimizes a goodness function g(H)

I main concepts:
I k_softAND: a node in H should be well connected to at

least k vertices of Q
I r(i , j) goodness score of j wrt qi ∈ Q
I r(Q, j) goodness score of j wrt Q
I g(H) goodness score of a candidate subgraph H
I H∗ = arg maxH g(H)



center-piece subgraph

[Tong and Faloutsos, 2006]

I r(i , j) goodness score of j wrt qi ∈ Q

probability to meet j in a random walk with restart to qi

I r(Q, j) goodness score of j wrt Q

probability to meet j in a random walk with restart to k
vertices of Q

I proposed algorithm:

1. greedy: find a good destination vertex j ito add in H
2. add a path from each of top-k vertices of Q path to j
3. stop when H becomes large enough



center-piece subgraph — example results

(a) “K softANDquery”: k = 2

(b) “AND query”

Figure 1: Center-piece subgraph among Rakesh Agrawal, Jiawei Han, Michael I. Jordan and Vladimir Vapnik.

Thus, we define the center-piece subgraph problem, as
follows:

Problem 1. Center-Piece Subgraph Discovery(CEPS)

Given: an edge-weighted undirected graph W, Q nodes as
source queries Q = {qi} (i = 1, ..., Q), the softAND
coefficient k and an integer budget b

Find: a suitably connected subgraph H that (a) contains all
query nodes qi (b) at most b other vertices and (c) it
maximizes a “goodness” function g(H).

Allowing Q query nodes creates a subtle problem: do we
want the qualifying nodes to have strong ties to all the query
nodes? to at least one? to at least a few? We handle all
of the above cases with our proposed K softAND queries.
Figure 1(a) illustrates the case where we want intermediate
nodes with good connections to at least k = 2 of the query
nodes. Notice that the resulting subgraph is much different
now: there are two disconnected components, reflecting the
two sub-communities (databases/statistics).

The contributions of this work are the following

• The problem definition, for arbitrary number Q of
query nodes, with careful handling of a lot of the sub-
tleties.

• The introduction and handling of K softAND queries.

• EXTRACT, a novel subgraph extraction algorithm.

• The design of a fast, approximate method, which pro-
vides a 6 : 1 speedup with little loss of accuracy.

The system is operational, with careful design and nu-
merous optimizations, like alternative normalizations of the
adjacency matrix, a fast algorithm to compute the scores for
K softAND queries.

Our experiments on a large real dataset (DBLP) show that
our method returns results that agree with our intuition, and
that it can be made fast (a few seconds response time), while
retaining most of the accuracy (about 90%).

The rest of the paper is organized as follows: in Section 2,
we review some related work; Section 3 provides an overview
of the proposed method: CEPS. The goodness score calcu-
lation is proposed Section 4 and its variants are presented in
the Appendix. The “EXTRACT” algorithm and the speed-
ing up strategy are provided in Section 5 and Section 6,
respectively. We present experimental results in Section 7;
and conclude the paper in Section 8.

2. RELATED WORK
In recent years, there is increasing research interest in

large graph mining, such as pattern and law mining [2][5][7][20],
frequent substructure discovery [27], influence propagation [18],
community mining [9][11][12] and so on. Here, we make a
brief review of the related work, which can be categorized
into four groups: 1) measuring the goodness of connection;
2) community mining; 3) random walk and electricity re-
lated methods; 4) graph partition.

The goodness of connection. Defining a goodness cri-
terion is the core for center-piece subgraph discovery. The
two most natural measures for “good” paths are shortest dis-
tance and maximum flow. However, as pointed out in [6],
both measurements might fail to capture some preferred
characteristics for social network. The goodness function for
survivable network [13], which is the count of edge-disjoint
or vertex-disjoint paths from source to destination, also fails
to adequately model social relationship. A more related dis-
tance function is proposed in [19] [23]. However, It can-
not describe the multi-faceted relationship in social network
since center-piece subgraph aims to discover collection of
paths rather than a single path.

In [6], the authors propose an delivered current based
method. By interpreting the graph as an electric network,
applying +1 voltage to one query node and setting the other
query node 0 voltage, their method proposes to choose the
subgraph which delivers maximum current between the query
nodes. In [25], the authors further apply the delivered cur-
rent based method to multi-relational graph. However, the
delivered current criterion can only deal with pairwise source

405

Research Track Paper

[Tong and Faloutsos, 2006]



the team-formation problem

x,y y,z

x
w,z

w

A B

CD

E

[Lappas et al., 2009]
I users in social network have skills
I find a team to accomplish a task, e.g., task T = {x , z}



the team-formation problem

x,y y,z

x
w,z

w

x

y

z

w

A AB B

C C
D D

EE

[Lappas et al., 2009]
I users in social network have skills
I find a team to accomplish a task, e.g., task T = {x , z}



the team-formation problem

x,y y,z

x
w,z

w

x

y

z

w

A AB B

C C
D D

EE

[Lappas et al., 2009]
I users in social network have skills
I find a team to accomplish a task, e.g., task T = {x , z}



the community-search problem

I given: graph G = (V ,E) and set of query vertices Q ⊆ V

I find: a connected subgraph H that

(a) contains Q
(b) optimizes a density function d(H)

(c) possibly other constraints

I density function (b):

average degree, minimum degree, quasiclique, etc.

measured on the induced subgraph H



free riders

I remedy 1: use min degree as density function

I remedy 2: use distance constraint

d(Q, j) =
∑
q∈Q

d2(qi , j) ≤ B



the community-search problem

adaptation of the greedy algorithm of [Charikar, 2000]

input: undirected graph G = (V ,E), query vertices Q ⊆ V
output: connected, dense subgraph H
1 set Gn ← G
2 for k ← n downto 1
2.1 remove all vertices violating distance constraints
2.2 let v be the smallest degree vertex in Gk

among all vertices not in Q
2.3 Gk−1 ← Gk \ {v}
2.4 if left only with vertices in Q or disconnected graph, stop
3 output the subgraph in Gn, . . . ,G1 that maximizes f (H)



properties of the greedy algorithm

I returns optimal solution if no size constraints

I upper-bound constraints make the problem NP-hard
(heuristic solution, also adaptation of the greedy)

I generalization for monotone constraints and
monotone objective functions



experimental evaluation (qualitative summary)

baseline: increamental addition of vertices
I start with a Steiner tree on the query vertices
I greedily add vertices
I return best solution among all solutions constructed

example result in DBLP

I proposed algorithm: min degree = 3, avg degree = 6
I baseline algorithm: min degree = 1.5, avg degree = 2.5



the community-search problem — example results

Kanellakis

Papadimitriou

Abiteboul

Buneman

Vianu
Vardi

Hull

Delobel

Ioannidis

Hellerstein

Ross

Ullman

Bernstein

(a) Database theory

Fortnow

Babai

Nisan

Wigderson

Zuckerman

Safra

Saks

Papadimitriou

Karp

Itai

Lipton

Goldreich

(b) Complexity theory

Karp

Blum

Papadimitriou

Afrati

Johnson

Goldman

Piccolboni

Yannakakis

Crescenzi

TarjanUllman

Sagiv

(c) Algorithms I

Kleinberg

Raghavan

Rajagopalan

Tomkins

Hirsch

Dantsin

Kannan

Goerdt

Papadimitriou

Chakrabarti

Gibson

Kumar

Dom

Schoning

(d) Algorithms II

Figure 4: Different communities of Christos Papadimitriou. Rectangular nodes indicate the query nodes, and elliptical

nodes indicate nodes discover by our algorithm.

[10] C. Faloutsos, K. McCurley, and A. Tomkins. Fast discovery
of connection subgraphs. In KDD, 2004.

[11] U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph
problem. Algorithmica, 29:2001, 1999.

[12] G. W. Flake, S. Lawrence, and C. L. Giles. Efficient
identification of web communities. In KDD, 2000.

[13] G. W. Flake, S. Lawrence, C. L. Giles, and F. M. Coetzee.
Self-organization and identification of web communities.
Computer, 35(3):66–71, 2002.

[14] S. Fortunato and M. Barthelemy. Resolution limit in
community detection. PNAS, 104(1), 2007.

[15] D. Gibson, R. Kumar, and A. Tomkins. Discovering large
dense subgraphs in massive graphs. In VLDB, 2005.

[16] M. Girvan and M. E. J. Newman. Community structure in
social and biological networks. Proceedings of the National
Academy of Sciences of the USA, 99(12):7821–7826, 2002.

[17] J. H̊astad. Clique is hard to approximate within n1−ε.
Electronic Colloquium on Computational Complexity
(ECCC), 4(38), 1997.

[18] G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs. JSC,
20(1), 1998.

[19] G. Kasneci, S. Elbassuoni, and G. Weikum. Ming: mining
informative entity relationship subgraphs. In CIKM, 2009.

[20] S. Khuller and B. Saha. On finding dense subgraphs. In
ICALP, 2009.

[21] Y. Koren, S. C. North, and C. Volinsky. Measuring and
extracting proximity graphs in networks. TKDD, 1(3),
2007.

[22] B. Korte and J. Vygen. Combinatorial Optimization:
Theory and Algorithms (Algorithms and Combinatorics).
Springer, 2007.

[23] L. Kou, G. Markowsky, and L. Berman. A fast algorithm
for steiner trees. Acta Informatica, 15(2):141–145, 1981.

[24] T. Lappas, K. Liu, and E. Terzi. Finding a team of experts
in social networks. In KDD, 2009.

[25] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney.
Statistical properties of community structure in large social
and information networks. In WWW, 2008.

[26] M. Newman. Fast algorithm for detecting community
structure in networks. Physical Review E, 69, 2003.

[27] P. Sevon, L. Eronen, P. Hintsanen, K. Kulovesi, and
H. Toivonen. Link discovery in graphs derived from
biological databases. In DILS, 2006.

[28] H. Tong and C. Faloutsos. Center-piece subgraphs:
problem definition and fast solutions. In KDD, 2006.

[29] S. White and P. Smyth. A spectral clustering approach to
finding communities in graph. In SDM, 2005.

948

(from [Sozio and Gionis, 2010])



monotone functions

f is monotone non-increasing if
for every graph G and
for every subgraph H of G it is

f (H) ≤ f (G)

the following functions are monotone non-increasing:
I the query nodes are connected in H (0/1)
I are the nodes in H able to perform a set of tasks?
I upper-bound distance constraint
I lower-bound constraint on the size of H



generalization to monotone functions

generalized community-search problem

given
I a graph G = (V ,E)

I a node-monotone non-increasing function f
I f1, . . . , fk non-increasing boolean functions

find
I a subgraph H of G
I satisfying f1, . . . , fk and
I maximizing f



generalized greedy

1 set Gn ← G
2 for k ← n downto 1
2.1 remove all vertices violating any constraint f1, . . . , fk
2.2 let v minimizing f (Gk , v)
2.3 Gk−1 ← Gk \ {v}
3 output the subgraph H in Gn, . . . ,G1 that maximizes f (H, v)



generalized greedy

theorem
generalized greedy computes an optimum solution
for the generalized community-search problem

running time
I depends on the time to evaluate the functions f1, . . . , fk
I formally O(m +

∑
i nTi)

I where Ti is the time to evaluate fi



conclusions

summary
I many applications finding dense subgraphs
I different density measures
I different problem formulations
I polynomial-time solvable or NP-hard problems
I choice of density measure matters

promising future directions
I room for new concepts
I better algorithms for upper-bound constraints
I top-k versions of dense subgraphs
I formulations for enriched graphs (labels or attributes)
I local algorithms



references
Alvarez-Hamelin, J. I., Dall’Asta, L., Barrat, A., and Vespignani, A.
(2005).
Large scale networks fingerprinting and visualization using the k -core
decomposition.
In NIPS.

Angel, A., Koudas, N., Sarkas, N., and Srivastava, D. (2012).
Dense Subgraph Maintenance under Streaming Edge Weight Updates
for Real-time Story Identification.
arXiv.org.

Broder, A. Z., Glassman, S. C., Manasse, M. S., and Zweig, G. (1997).
Syntactic clustering of the web.
In Selected papers from the sixth international conference on World
Wide Web, pages 1157–1166, Essex, UK. Elsevier Science Publishers
Ltd.

Buchbinder, N., Feldman, M., Naor, J. S., and Schwartz, R. (2012).
A tight linear time (1/2)-approximation for unconstrained submodular
maximization.
FOCS.

http://portal.acm.org/citation.cfm?id=283370


references (cont.)
Charikar, M. (2000).
Greedy approximation algorithms for finding dense components in a
graph.
In APPROX.

Feige, U., Kortsarz, G., and Peleg, D. (2001).
The dense k-subgraph problem.
Algorithmica, 29(3):410–421.

Fratkin, E., Naughton, B. T., Brutlag, D. L., and Batzoglou, S. (2006).
MotifCut: regulatory motifs finding with maximum density subgraphs.
Bioinformatics, 22(14).

Gibson, D., Kumar, R., and Tomkins, A. (2005).
Discovering large dense subgraphs in massive graphs.
In Proceedings of the 31st international conference on Very large data
bases, pages 721–732. VLDB Endowment.

Goldberg, A. V. (1984).
Finding a maximum density subgraph.
Technical report.



references (cont.)
Håstad, J. (1997).

Clique is hard to approximate within n1−ε.
In Electronic Colloquium on Computational Complexity (ECCC).

Iasemidis, L. D., Shiau, D.-S., Chaovalitwongse, W. A., Sackellares,
J. C., Pardalos, P. M., Principe, J. C., Carney, P. R., Prasad, A.,
Veeramani, B., and Tsakalis, K. (2003).
Adaptive epileptic seizure prediction system.
IEEE Transactions on Biomedical Engineering, 50(5).

Khuller, S. and Saha, B. (2009).
On finding dense subgraphs.
In ICALP.

Kumar, R., Raghavan, P., Rajagopalan, S., and Tomkins, A. (1999).
Trawling the Web for emerging cyber-communities.
Computer Networks, 31(11–16):1481–1493.

Lappas, T., Liu, K., and Terzi, E. (2009).
Finding a team of experts in social networks.
In KDD.

citeseer.ist.psu.edu/kumar99trawling.html


references (cont.)
Rozenshtein, P., Anagnostopoulos, A., Gionis, A., and Tatti, N. (2014).
Event detection in activity networks.
In KDD.

Serafini, M., Gionis, A., Junqueira, F., Leroy, V., and Weber, I. (2013).
Piggybacking on Social Networks.
PVLDB, pages 1–12.

Sozio, M. and Gionis, A. (2010).
The community-search problem and how to plan a successful cocktail
party.
In KDD.

Tong, H. and Faloutsos, C. (2006).
Center-piece subgraphs: problem definition and fast solutions.
In KDD.

Tsourakakis, C. (2014).
A Novel Approach to Finding Near-Cliques: The Triangle-Densest
Subgraph Problem.
arXiv.org.



references (cont.)

Tsourakakis, C., Bonchi, F., Gionis, A., Gullo, F., and Tsiarli, M. (2013).
Denser than the densest subgraph: extracting optimal quasi-cliques with
quality guarantees.
In KDD.

Zhang, B. and Horvath, S. (2005).
A general framework for weighted gene co-expression network analysis.
Statistical applications in genetics and molecular biology, 4(1):1128.


