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Melnikov's method

The comet gets or looses energy on going through the solar
system

Halley's
comet

new trajectory
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Melnikov's method

Definitions

o We redefine the energy as w = —<~ = a=

@ We define x as the mean anomaly, it is related to time by
5= = £ with P the planet's period

@ The planet's orbit is circular, its position is marked by x

@ We define the kick as the increase of energy F(x) of the

comet when it passes at the perihelion

w
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Melnikov's method

Melnikov's method

@ Starting from the orbital elements of the comet, we choose an
osculating orbit (reference orbit)

F(x) = ijﬁ (®(7,x)— bo(r)) - dr

rb. osc.
o ®(7,x) is the potential energy of the restricted three-body
problem (Sun, planet, comet)

@ ®g(r) is the potential energy of the two-body problem (Sun,
comet) for which the osculating orbit is solution.
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Halley's comet

Overall view
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Halley's comet

Contribution of each planet
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Halley's comet

Major contributions : Jupiter and Saturn

Jupiter’s contribution Saturn's contribution
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Reference : R. V. Chirikov, V. V. Vecheslavov, Chaotic dynamics of
Comet Halley, Astronomy and Astrophysics, vol. 221, 1989, p. 146-154.
(figure 2)
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Halley's comet

Total kick : addition of the contributions

@ We define contribution
8
Frot(x = x5) = Z

@ The total kick may be bounded as below :
o We trace the kick produced by Jupiter only
o We add the kicks of the other planets so as to minimize or
maximize this kick
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Halley's comet

Total kick compared with the observations
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Reference : R. V. Chirikov, V. V. Vecheslavov, Chaotic dynamics of
Comet Halley, Astronomy and Astrophysics, vol. 221, 1989, p. 146-154.
(figure 1)
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Poincaré section
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Poincaré section

Halley's symplectic application

@ We can define an application which gives the comet’s energy

after each passage and the position of a planet at the next
passage

w = w + F(x)
x + 2m(w) 32

@ The application gives (X, w) from (x,w)

x|
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Poincaré section

Poincaré section

@ We only consider the influence of Jupiter (and of the Sun)
@ We trace a series of points (x,w), (x,w), (X,w) ...

@ We get a Poincaré section

w
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Poincaré section

Chaos and comet'’s position

@ The cross represents the actual position of
Halley's comet (outside the islets)

@ Presence of a chaotic component for
w < 0.15 which co-exists with stability
islets for 0.15 < w < 0.475

e Around w ~ 0.475, a limit defined by

Kam's invariant curve stops the chaotic
diffusion.
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Poincaré section

KAM's invariant curve

At
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@ There is self-similarity
around the stability islets

(fractal structure)
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Poincaré section

Stability islets and resonances with Jupiter

@ Resonances p: n are
determinated by w and the
number of islets a line

contains
X
X—X
= n
p 21
o\ ~2/3
Wp:n = -
p
n,p € N*

@ The comet makes p tours
while Jupiter makes n

025 05 075
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Poincaré section

Ejection /residence time

@ Use of Poincaré section with the influence of all the planets

(Ftot(x))

@ The number of passages in Solar System before ejection is
around 50 000

@ It is the number of passages since the comet's capture too

@ Chirikov & Vecheslavov get 100 000 passages (~ 10 millions
of years)
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Conclusion

Conclusion

@ Our results are similar to Chirikov & Vecheslavov (1989)

o the main contributions to the total kick, i.e. those of Jupiter and
Saturn, are the same as C&V (1989)

@ moreover, we have determined the contribution of the other planets
of Solar System and constructed the total kick Fror(x)

o the Halley's symplectic application incorporating Fiot(x) gives
residence/ejection times equivalent to C&V (1989)

@ We confirm the comet has been captured, and this a long time after
the formation of Solar System (origin : Oort’s cloud ?)

@ Perspectives

o Consider the elliptical orbits of the Solar System planets in order to
refine the kick functions

@ Check the robustness of Halley's symplectic application : we shall
have to compare it to its real dynamics
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