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Finding largest nodes in large complex networks

» Complex networks: Internet, World Wide Web, social
networks, protein-protein interactions, citation networks.
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Finding largest nodes in large complex networks

» Complex networks: Internet, World Wide Web, social
networks, protein-protein interactions, citation networks.

» Many networks are very large.

» Facebook has more than 1 billion users. With an average user
having 190 friends, the number of social links in Facebook is
190 billion.

» The static part of the web graph has more than 10 billion

pages. With an average number of 38 hyper-links per page,
the total number of hyper-links is 380 billion.
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Finding top-k largest degree nodes

» Goal: Find top-k network nodes with largest degrees
» Some applications:

Routing via large degree nodes

Proxy for various centrality measures

Node clustering and classification

Epidemic processes on networks

Finding most popular entities (e.g. interest groups)
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Finding top-k largest degree nodes

» Goal: Find top-k network nodes with largest degrees
» Some applications:

Routing via large degree nodes

Proxy for various centrality measures

Node clustering and classification

Epidemic processes on networks

Finding most popular entities (e.g. interest groups)
It is simply interesting!
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Top-k largest degree nodes

If the adjacency list of the network is known...

the top-k list of nodes can be found by the HeapSort with
complexity O(N + klog(N)), where N is the total number of nodes.

Even this modest complexity can be demanding for large networks.
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Top-k largest degree nodes

If the adjacency list of the network is known...

the top-k list of nodes can be found by the HeapSort with
complexity O(N + klog(N)), where N is the total number of nodes.

Even this modest complexity can be demanding for large networks.

Questions:
» How to do this faster?
» How to do it when the network structure is not known (cannot
be crawled without restrictions or stored in the memory)?

Answer: Randomized algorithms.
Idea: Find a ‘good enough’ answer in a short time.

Avrachenkov, L, Sokol, Towsley (2012); Cooper, Radzik, Siantos (2012),
Borgs, Brautbar, Chayes, Khanna, Lucier (2012),

Brautbar and Kearns (2010), Kumar, Lang, Marlow, Tomkins (2008)
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Finding most popular entities in directed on-line
social networks

» Social networks are large

The complete graphs structure is only available to the owners

» Many companies maintain network statistics
(twittercounter.com, followerwonk.com, twitaholic.com,
www.insidefacebook.com, yavkontakte.ru)

» The network can be accessed only via API, with limited access

» Twitter API allows one access per minute. We need 950 years
to crawl the current Twitter graph!

v

Goal: Find top-k most popular entities in social (directed) networks
(nodes with highest in/out-degrees, largest interest groups, largest
user categories), using the minimal number of API requests.
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Problem formulation

v

Consider a bi-partite graph (V, W, E)

V and W are sets of entities, |V| = M, |W|=N.

A directed edge (v, w) € E represents a relation between
veVandwe W.

Goal: Quickly find entities in W with highest degrees.
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Problem formulation

» Consider a bi-partite graph (V, W, E)

» V and W are sets of entities, |V| =M, |W| = N.

» A directed edge (v, w) € E represents a relation between

veVandwe W.

» Goal: Quickly find entities in W with highest degrees.
A Example. V = W is a set of Twit-
“-“"“ " ter users, (v, w) means that v fol-
f \ lows w.

Example. V is a set of users, W
is a set of interest groups, (v, w)
means that user v is a member of
w an interest group w.
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Algorithm for finding top-k most popular entities

Algorithm for finding top-k most popular entities
@ Choose a set A C V of n; nodes sampled from V at random.

@ For each v € A retrieve the id’s of nodes in W that have an
edge from v.

© Compute S,, — the number of edges of w € W from A.

@ Retrieve the actual degrees for the ny nodes w with the
largest values of S,,.

© Return the identified top-k list of most popular entities in W.

V1

0 \W . In total, we use n = nj + ny requests to API

| / i (Step 2 and Step 4).

- w
\
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Finding most followed users on Twitter

» Huge network (more than 500M users)
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Finding most followed users on Twitter

» Huge network (more than 500M users)

» Network accessed only through Twitter API
» The rate of requests is limited

» One request:

» ID’s of at most 5000 followers of a node, or
» the number of followers of a node

v

In a randomly chosen set of n; Twitter users only a few users
follow more than 5000 people. Thus, we retrieve at most 5000
followees of each node. This does not affect the results.
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Finding most followed users on Twitter

Huge network (more than 500M users)
Network accessed only through Twitter API
The rate of requests is limited

One request:

» ID’s of at most 5000 followers of a node, or
» the number of followers of a node

» In a randomly chosen set of n; Twitter users only a few users
follow more than 5000 people. Thus, we retrieve at most 5000
followees of each node. This does not affect the results.

» Make a guess: We use 1000 requests to API. For which k can
we identify a top-k list of most followed Twitter users with
90% precision?

vvyywyy
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Results
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Figure : The fraction of correctly identified top-k most followed Twitter
users as a function of ny, with n = 1000.
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Most followed

Twitter users

'n KATY PERRY

S

E Justin Bieber
@ Barack Obama
o YouTube
{g-} Lady Gaga

UNIVERSITY OF TWENTE.

Followers

53,923,965

52,445,383

43,712,727

43,007,224

41,548,506

Following

148

130,204

650,033

704

134,424

[ Nelly Litvak, 24-06-2014 ]

Tweets

5,699

27,064

11,955

10,599

4,782
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Interest groups VKontakte

» Popular social network in Russian, more than 200M users.

Rank [ Number of participants [ Topic ]

1 4,35M humor
2 4,1M humor
3 3,76 M movies
4 3,69M humor
5 3,59M humor
6 3,58M facts

7 3,36M cookery
8 3,31M humor
9 3,14M humor
10 3,14M movies

[ 100 [ 1,65M [ success ]

» With n; =700, np = 300, our algorithm identifies on average
73.2 from the top-100 interest groups (averaged over 25
experiments). The standard deviation is 4.6.
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Comparison to known algorithms

» Well-studied problem
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Comparison to known algorithms

» Well-studied problem

» How our algorithm compares to baselines?
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Algorithm by Cooper, Radzik, Siantos (2012)

» Random-walk based

» Transitions probabilities along undirected edges (x, y) are
proportional to (d(x)d(y))?, where d(x) is the degree of a
vertex x and b > 0 is some parameter.

Problems?
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Algorithm by Cooper, Radzik, Siantos (2012)

» Random-walk based
» Transitions probabilities along undirected edges (x, y) are
proportional to (d(x)d(y))?, where d(x) is the degree of a
vertex x and b > 0 is some parameter.
Problems?

» Designed for undirected and connected graphs
(preferential attachment graphs)

» We need d(x) API requests to know the d(y)'s. All these
resources are spent to make just ONE transition!

» Not implementable on Twitter
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Random Walk

Avrachenkov, L, Sokol, Towsley (2012)

» Random walk with uniform jumps:

«/N+1 . .
, if x has a link to y,
plx,y) :{ N

d&gﬁo{, if x does not have a link to y,

where N is the number of nodes in the graph and d(x) is the
degree of a node x.

» Rationale: in undirected graphs the stationary distribution is
given by

d(x)+«

) = S T
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Random Walk

Avrachenkov, L, Sokol, Towsley (2012)

» Random walk with uniform jumps:

«/N+1 . .
, if x has a link to y,
plx,y) :{ N

d&gﬁa, if x does not have a link to y,

where N is the number of nodes in the graph and d(x) is the
degree of a node x.

» Rationale: in undirected graphs the stationary distribution is
given by

d(x)+ o

) = S T

» Best to take & approximately equal to the average degree
Problems?
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Random Walk: problems

» Undirected graphs:
d(x) +«
(o) = 21E] + No’

In directed graphs, stationary distribution will not give the
order according to degrees.
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» We need to know ids of all neighbors of x to decide where to

go, but we can obtain only 5000 ids per API request.
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Random Walk: problems

» Undirected graphs:
(o) = ST
2|E| + N«
In directed graphs, stationary distribution will not give the
order according to degrees.

» Fix: make the graph undirected (symmetrized). Usually
in-degrees are larger than out-degrees, so ordering by total
degree and by in-degree should be similar.

More problems?

» We need to know ids of all neighbors of x to decide where to
go, but we can obtain only 5000 ids per API request.

» Strict: [one step of the algorithm] = [one API request]

» Relaxed: [one step of the algorithm] = [one considered vertex]
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Crawl-Al and Crawl-GAl

Kumar, Lang, Marlow, Tomkins (2008)
» Designed for WWW crawl
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Kumar, Lang, Marlow, Tomkins (2008)

» Designed for WWW crawl

» At every step all nodes have their apparent in-degrees S;,
j=1,...,N: the number of discovered edges pointing to this
node.

» Crawl-Al: the next node is chosen at random with probability
proportional to its apparent in-degree

» Crawl-GAl: the next node is the node with the highest
apparent in-degree
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Crawl-Al and Crawl-GAl

Kumar, Lang, Marlow, Tomkins (2008)
» Designed for WWW crawl
» At every step all nodes have their apparent in-degrees S;,
j=1,...,N: the number of discovered edges pointing to this
node.
» Crawl-Al: the next node is chosen at random with probability
proportional to its apparent in-degree
» Crawl-GAl: the next node is the node with the highest
apparent in-degree
Problems?
» The resulting list is created according to the apparent
in-degrees, a lot of randomness
» Crawl-GAl can get stuck in some densely connected cluster
» Can suffer from correlations between in- and out-degrees
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HighestDegree

Borgs, Brautbar, Chayes, Khanna, Lucier (2012)

» Retrieve a random node
» Check in-degrees of its out-neighbors

» Proceed while resources are available
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HighestDegree

Borgs, Brautbar, Chayes, Khanna, Lucier (2012)

» Retrieve a random node
» Check in-degrees of its out-neighbors

» Proceed while resources are available

Problems?

» A lot of resources are spent on out-neighbors of random nodes
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Comparison of the algorithms

Table : Percentage of correctly identified nodes from top-100 in Twitter
averaged over 30 experiments, n = 1000

Algorithm \ mean \ standard deviation
Two-stage algorithm 92.6 4.7
Random walk (strict) 0.43 0.63
Random walk (relaxed) | 8.7 24
Crawl-GAl 4.1 5.9
Crawl-Al 23.9 20.2
HighestDegree 24.7 11.8
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Comparison of the algorithms

Table : Percentage of correctly identified nodes from top-100 in Twitter
averaged over 30 experiments, n = 1000

Algorithm \ mean \ standard deviation
Two-stage algorithm 92.6 4.7
Random walk (strict) 0.43 0.63
Random walk (relaxed) | 8.7 24
Crawl-GAl 4.1 5.9
Crawl-Al 23.9 20.2
HighestDegree 24.7 11.8

Advantages of the two-stage algorithm:
» does not waste resources
» obtains exact degrees of the n, 'most promising’ nodes
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Comparison of the algorithms
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Figure : The fraction of correctly identified top-100 most followed
Twitter users as a function of n averaged over 10 experiments.
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Influence of graph size?
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Figure : The fraction of correctly identified top-k in-degree nodes in the
CNR-2000 graph (faw.di.unimi.it/webdata/cnr-2000) as a function of ny,
with n =1000. Note that algorithm performs similarly on CNR-2000
(half a million nodes) and Twitter.
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Hubs in complex networks

» degree of the node = # links, [fraction nodes degree k] = py,
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Hubs in complex networks

» degree of the node = # links, [fraction nodes degree k] = py,
» Power law: p, = const - kY71 v > 1.

» Model for high variability, scale-free graph.

» Hubs are the nodes with extremely large degrees.

Twitter users Followers Following Tweets
"‘ KATY PERRY 53,923,965 148 5,699
9 Justin Bieber € 52,445,383 130,204 27,064
@ Barack Obama 43,712,727 650,033 11,955
O YouTube 43,007,224 704 10,599
e
A{;" Lady Gaga 41,548,506 134,424 4,782
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Formal view on the hubs

Let D be a degree of a random node. Regular varying distribution:
P(D > x)=L(x)x"Y (1)
L(x) is slowly varying, i.e. lim;_ o L(tx)/L(t) =1, x>0
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Formal view on the hubs

Let D be a degree of a random node. Regular varying distribution:
P(D > x)=L(x)x"Y (1)
L(x) is slowly varying, i.e. lim;_, o L(tx)/L(t) =1, x>0

EXTREME VALUE THEORY. Let F; > F» > --- > Fp be the order
statistics of the i.i.d. r.v.'s Dy, Do, ..., Dy as in (1). Then there
are (ap) such that for finite k

(5. Ay (6" (ZE)

e S

where & = 1/v and E;'are i.i.d. exponential(1) r.v.’s. k
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Formal view on the hubs

Let D be a degree of a random node. Regular varying distribution:
P(D > x)=L(x)x"Y (1)
L(x) is slowly varying, i.e. lim;_, o L(tx)/L(t) =1, x>0

EXTREME VALUE THEORY. Let F; > F» > --- > Fp be the order
statistics of the i.i.d. r.v.'s Dy, Do, ..., Dy as in (1). Then there
are (ap) such that for finite k

(5. Ay (6" (25 6)

e S

where & = 1/v and E;'are i.i.d. exponential(1) r.v.’s. k

Example. P(D > x) = Cx~Y, then ay = 8CON®, by = CON3.
The largest degrees are ‘of the order’ N1/ .
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Performance prediction

» Number nodes in W in the decreasing order of their degrees:
FizF > 2> Fp.
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Performance prediction

» Number nodes in W in the decreasing order of their degrees:
FrzF>--- = Fy.

» S; is the number of followers of node j =1,2,..., N among
the n; randomly chosen nodes in V

» S; ~ Binomial(ny, Fj/N)
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Performance prediction

» Number nodes in W in the decreasing order of their degrees:
Fr>z2F > > Fy.

S; is the number of followers of node j =1,2,..., N among
the n; randomly chosen nodes in V

S; ~ Binomial(ny, Fj/N)

Sy =S, > ... > Sj, be the order statistics of S,..., Sy.
Performance measure:

v

vYvyy

E[fraction of correctly identified top-k entities]

k
:%ZPUe{il,...,im}). (2)
j=1
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Performance prediction

» Number nodes in W in the decreasing order of their degrees:
FrzF2>--->Fn.

» S; is the number of followers of node j =1,2,..., N among
the n; randomly chosen nodes in V

» S; ~ Binomial(ny, Fj/N)

Sy =S, > ... > Sj, be the order statistics of S,..., Sy.

» Performance measure:

v

E[fraction of correctly identified top-k entities]

k
1 . . .
:;ZPUG{/L...,I,D}). (2)
j=1
» Computation of P(j € {i1,...,in,}) is not feasible even if

degrees are known
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Poisson prediction

> PG e{in, ... in))

— P(Sj > S;n2) + P(Sj = 5,'"2,j € {1'1 ..... I'nQ})

» Example. Twitter graph, take n; = n, =500. Then the
average number of nodes / with S; = 1 among the top-/ nodes
is

I

/ = = 499
P(Si=1)=) 500 — — (1—— ,
; (5 =1) ; 5-108 ( 5-108>
which is 2540.6 for / = 10,000 and it is 57.4 for | = ny, = 500.
Hence, typically, [Si,, = 1]. The event [i € {i1, ..., in,}] occurs
only for a small fraction of nodes i with [S; = 1].
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Poisson prediction

> PG e{in, ... in))
=P(5>S5,,)+ PS5 =S,,.j€eln, ..., iny })

» Example. Twitter graph, take n; = n, =500. Then the
average number of nodes / with S; = 1 among the top-/ nodes
is

/ / F; F; 499
;P(S,1);5005'108 <1—5'108> ,
which is 2540.6 for / = 10,000 and it is 57.4 for | = ny, = 500.
Hence, typically, [Si,, = 1]. The event [i € {i1, ..., in,}] occurs
only for a small fraction of nodes i with [S; = 1].
» Approximation:
P(je{n, ....in}) = P(S5 > 5,-n2) ~ P(S; > Sp,)
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Poisson prediction

> PG e{in, ... in))
=P(5>S5,,)+ PS5 =S,,.j€eln, ..., iny })

» Example. Twitter graph, take n; = n, =500. Then the
average number of nodes / with S; = 1 among the top-/ nodes
is

/ / F; F; 499
;P(S,1);5005'108 <1—5'108> ,

which is 2540.6 for / = 10,000 and it is 57.4 for | = ny, = 500.

Hence, typically, [Si,, = 1]. The event [i € {i1, ..., in,}] occurs
only for a small fraction of nodes i with [S; = 1].

» Approximation:

P(je{n, ....in}) = P(S5 > 5,-n2) ~ P(S; > Sp,)

» Assume F; and Fp, are known, then approximate

Sj ~ Poisson(niF;/N)
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EVT predictions

» Poisson approximation is not realistic: degrees are unknown
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EVT predictions

» Poisson approximation is not realistic: degrees are unknown
» The algorithm finds a few highest degrees with accuracy

almost 100%
» Let F; > F» > -+ > Fp, be the top-m degrees found by the

algorithm, m < k
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EVT predictions

» Poisson approximation is not realistic: degrees are unknown

» The algorithm finds a few highest degrees with accuracy
almost 100%

> Let ,2—1 > 132 > > I:_m be the top-m degrees found by the
algorithm, m < k

» The degrees follow a power law distribution with exponent y
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EVT predictions

» Poisson approximation is not realistic: degrees are unknown

» The algorithm finds a few highest degrees with accuracy
almost 100%

> Let ,2—1 > 132 > > I:_m be the top-m degrees found by the
algorithm, m < k

» The degrees follow a power law distribution with exponent y

» Hill's estimator:

-1
1 m—1 R R
¥ = <m_1 Zl log(Fi) — Iog(Fm)> : (3)

UNIVERSITY OF TWENTE. [ Nelly Litvak, 24-06-2014 ]  25/28



EVT predictions

» Poisson approximation is not realistic: degrees are unknown

» The algorithm finds a few highest degrees with accuracy
almost 100%

> Let ,2—1 > 132 > > I:_m be the top-m degrees found by the
algorithm, m < k

» The degrees follow a power law distribution with exponent y

» Hill's estimator:

—1
< _1Z|og Iogﬁ)) _ (3)

» Estimator for high degrees: Dekkers et al. (1989)
/¥
f= (Jml) L j>1,j<<N.
» Use S5 ~ Pmsson(nlﬁ-/N)
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Performance predictions on the Twitter graph
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Sublinear complexity

» 1,..., k—top-k nodes in W; Fq,..., Fx — their degrees

UNIVERSITY OF TWENTE. [ Nelly Litvak, 24-06-2014 ]  27/28



Sublinear complexity

» 1,..., k—top-k nodes in W; Fq,..., Fx — their degrees
» S; ~ Binomial(ny, Fj/N)
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» With normal approximation, and error pr-ty o« we need that
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Sublinear complexity

» 1,..., k—top-k nodes in W; Fq,..., Fx — their degrees
» S; ~ Binomial(ny, Fj/N)
» With normal approximation, and error pr-ty o« we need that

> Fe>>Fp,
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Sublinear complexity

v

1,..., k —top-k nodes in W; Fq,..., Fx — their degrees
Sj ~ Binomial(ny, Fj/N)
With normal approximation, and error pr-ty o« we need that

vy

v

Fk >> Fnz
Assuming the i.i.d. degrees, by the Extreme Value Theory,
w.h.p., log(Fi) =y~ " log(N)(1 + o(log(N)))

v
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Sublinear complexity

v

1,..., k —top-k nodes in W; Fq,..., Fx — their degrees
Sj ~ Binomial(ny, Fj/N)
With normal approximation, and error pr-ty o« we need that

vy

v

Fk >> Fnz

Assuming the i.i.d. degrees, by the Extreme Value Theory,
w.h.p., log(Fi) =y~ " log(N)(1 + o(log(N)))

Roughly, n; = O(N~1/7)

v

v
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Sublinear complexity

v

1,..., k —top-k nodes in W; Fq,..., Fx — their degrees
Sj ~ Binomial(ny, Fj/N)
With normal approximation, and error pr-ty o« we need that

vy

> Fe>>Fp,

» Assuming the i.i.d. degrees, by the Extreme Value Theory,
w.h.p., log(Fy) =y~ " log(N)(1 + o(log(N)))

» Roughly, n; = O(N*~1/7)

» Since ), Sw = O(n1) w.h.p., np is at most O(ny)
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Sublinear complexity

» 1,..., k—top-k nodes in W; Fq,..., Fx — their degrees
Sj ~ Binomial(ny, Fj/N)
» With normal approximation, and error pr-ty o« we need that

v

> Fe>>Fp,

» Assuming the i.i.d. degrees, by the Extreme Value Theory,
w.h.p., log(Fy) =y~ " log(N)(1 + o(log(N)))

» Roughly, n; = O(N1~1/7)

» Since ), Sw = O(n1) w.h.p., np is at most O(ny)

» We conclude that roughly n = ny + ny = O(N—1/7)
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Sublinear complexity

» 1,..., k—top-k nodes in W; Fq,..., Fx — their degrees
Sj ~ Binomial(ny, Fj/N)
» With normal approximation, and error pr-ty o« we need that

v

v

Fk >> Fnz

Assuming the i.i.d. degrees, by the Extreme Value Theory,
w.h.p., log(Fi) =y~ log(N)(1 + o(log(N)))

Roughly, n; = O(N~1/7)

Since >, Sw = O(n1) w.h.p., n is at most O(ny)

We conclude that roughly n = ny + no = O(N*~1/Y)
Note that the complexity is in terms of |W| =N

v

vvyyy
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Sublinear complexity

» 1,..., k—top-k nodes in W; Fq,..., Fx — their degrees
Sj ~ Binomial(ny, Fj/N)
» With normal approximation, and error pr-ty o« we need that

v

v

Fk >> Fnz

Assuming the i.i.d. degrees, by the Extreme Value Theory,
w.h.p., log(Fi) =y~ log(N)(1 + o(log(N)))

Roughly, n; = O(N~1/7)

Since >, Sw = O(n1) w.h.p., n is at most O(ny)

We conclude that roughly n = ny + no = O(N*~1/Y)
Note that the complexity is in terms of |W| =N

High variability helps a lot!

v

vvyyVvyyvyy
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Thank youl!
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