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Finding largest nodes in large complex networks

I Complex networks: Internet, World Wide Web, social
networks, protein-protein interactions, citation networks.

I Many networks are very large.

I Facebook has more than 1 billion users. With an average user
having 190 friends, the number of social links in Facebook is
190 billion.

I The static part of the web graph has more than 10 billion
pages. With an average number of 38 hyper-links per page,
the total number of hyper-links is 380 billion.
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Finding top-k largest degree nodes

I Goal: Find top-k network nodes with largest degrees

I Some applications:

I Routing via large degree nodes
I Proxy for various centrality measures
I Node clustering and classification
I Epidemic processes on networks
I Finding most popular entities (e.g. interest groups)
I It is simply interesting!
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Top-k largest degree nodes

If the adjacency list of the network is known...

the top-k list of nodes can be found by the HeapSort with
complexity O(N + klog(N)), where N is the total number of nodes.

Even this modest complexity can be demanding for large networks.

Questions:
I How to do this faster?
I How to do it when the network structure is not known (cannot

be crawled without restrictions or stored in the memory)?

Answer: Randomized algorithms.
Idea: Find a ‘good enough’ answer in a short time.

Avrachenkov, L, Sokol, Towsley (2012); Cooper, Radzik, Siantos (2012),
Borgs, Brautbar, Chayes, Khanna, Lucier (2012),

Brautbar and Kearns (2010), Kumar, Lang, Marlow, Tomkins (2008)
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Finding most popular entities in directed on-line
social networks

I Social networks are large

I The complete graphs structure is only available to the owners
I Many companies maintain network statistics

(twittercounter.com, followerwonk.com, twitaholic.com,
www.insidefacebook.com, yavkontakte.ru)

I The network can be accessed only via API, with limited access
I Twitter API allows one access per minute. We need 950 years

to crawl the current Twitter graph!

Goal: Find top-k most popular entities in social (directed) networks
(nodes with highest in/out-degrees, largest interest groups, largest
user categories), using the minimal number of API requests.
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Problem formulation

I Consider a bi-partite graph (V ,W ,E )
I V and W are sets of entities, |V | = M, |W | = N.
I A directed edge (v ,w) ∈ E represents a relation between

v ∈ V and w ∈W .
I Goal: Quickly find entities in W with highest degrees.

Example. V = W is a set of Twit-
ter users, (v ,w) means that v fol-
lows w .

Example. V is a set of users, W
is a set of interest groups, (v ,w)
means that user v is a member of
an interest group w .
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Algorithm for finding top-k most popular entities

Algorithm for finding top-k most popular entities

1 Choose a set A ⊂ V of n1 nodes sampled from V at random.

2 For each v ∈ A retrieve the id’s of nodes in W that have an
edge from v .

3 Compute Sw – the number of edges of w ∈W from A.

4 Retrieve the actual degrees for the n2 nodes w with the
largest values of Sw .

5 Return the identified top-k list of most popular entities in W .

In total, we use n = n1+ n2 requests to API
(Step 2 and Step 4).
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Finding most followed users on Twitter

I Huge network (more than 500M users)

I Network accessed only through Twitter API
I The rate of requests is limited
I One request:

I ID’s of at most 5000 followers of a node, or
I the number of followers of a node

I In a randomly chosen set of n1 Twitter users only a few users
follow more than 5000 people. Thus, we retrieve at most 5000
followees of each node. This does not affect the results.

I Make a guess: We use 1000 requests to API. For which k can
we identify a top-k list of most followed Twitter users with
90% precision?
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Results
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Figure : The fraction of correctly identified top-k most followed Twitter
users as a function of n2, with n = 1000.
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Most followed
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Interest groups VKontakte

I Popular social network in Russian, more than 200M users.

Rank Number of participants Topic

1 4,35M humor
2 4,1M humor
3 3,76M movies
4 3,69M humor
5 3,59M humor
6 3,58M facts
7 3,36M cookery
8 3,31M humor
9 3,14M humor
10 3,14M movies

100 1,65M success

I With n1 = 700, n2 = 300, our algorithm identifies on average
73.2 from the top-100 interest groups (averaged over 25
experiments). The standard deviation is 4.6.
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Comparison to known algorithms

I Well-studied problem

I How our algorithm compares to baselines?
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Algorithm by Cooper, Radzik, Siantos (2012)

I Random-walk based

I Transitions probabilities along undirected edges (x , y) are
proportional to (d(x)d(y))b, where d(x) is the degree of a
vertex x and b > 0 is some parameter.

Problems?

I Designed for undirected and connected graphs
(preferential attachment graphs)

I We need d(x) API requests to know the d(y)’s. All these
resources are spent to make just ONE transition!

I Not implementable on Twitter
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Random Walk

Avrachenkov, L, Sokol, Towsley (2012)

I Random walk with uniform jumps:

p(x , y) =

{
α/N+1
d(x)+α , if x has a link to y ,
α/N

d(x)+α , if x does not have a link to y ,

where N is the number of nodes in the graph and d(x) is the
degree of a node x .

I Rationale: in undirected graphs the stationary distribution is
given by

πx(α) =
d(x) + α

2|E |+ Nα
.

I Best to take α approximately equal to the average degree

Problems?
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Random Walk: problems

I Undirected graphs:

πx(α) =
d(x) + α

2|E |+ Nα
.

In directed graphs, stationary distribution will not give the
order according to degrees.

I Fix: make the graph undirected (symmetrized). Usually
in-degrees are larger than out-degrees, so ordering by total
degree and by in-degree should be similar.

More problems?
I We need to know ids of all neighbors of x to decide where to

go, but we can obtain only 5000 ids per API request.
I Strict: [one step of the algorithm] = [one API request]
I Relaxed: [one step of the algorithm] = [one considered vertex]
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Crawl-Al and Crawl-GAI

Kumar, Lang, Marlow, Tomkins (2008)

I Designed for WWW crawl

I At every step all nodes have their apparent in-degrees Sj ,
j = 1, . . . ,N: the number of discovered edges pointing to this
node.

I Crawl-AI: the next node is chosen at random with probability
proportional to its apparent in-degree

I Crawl-GAI: the next node is the node with the highest
apparent in-degree

Problems?
I The resulting list is created according to the apparent

in-degrees, a lot of randomness
I Crawl-GAI can get stuck in some densely connected cluster
I Can suffer from correlations between in- and out-degrees
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I Crawl-GAI can get stuck in some densely connected cluster
I Can suffer from correlations between in- and out-degrees
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HighestDegree

Borgs, Brautbar, Chayes, Khanna, Lucier (2012)

I Retrieve a random node

I Check in-degrees of its out-neighbors

I Proceed while resources are available

Problems?

I A lot of resources are spent on out-neighbors of random nodes
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Comparison of the algorithms

Table : Percentage of correctly identified nodes from top-100 in Twitter
averaged over 30 experiments, n = 1000

Algorithm mean standard deviation

Two-stage algorithm 92.6 4.7

Random walk (strict) 0.43 0.63

Random walk (relaxed) 8.7 2.4

Crawl-GAI 4.1 5.9

Crawl-AI 23.9 20.2

HighestDegree 24.7 11.8

Advantages of the two-stage algorithm:
I does not waste resources
I obtains exact degrees of the n2 ‘most promising’ nodes
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Figure : The fraction of correctly identified top-100 most followed
Twitter users as a function of n averaged over 10 experiments.
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Influence of graph size?
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Figure : The fraction of correctly identified top-k in-degree nodes in the
CNR-2000 graph (law.di.unimi.it/webdata/cnr-2000) as a function of n2,
with n = 1000. Note that algorithm performs similarly on CNR-2000
(half a million nodes) and Twitter.
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Hubs in complex networks

I degree of the node = # links, [fraction nodes degree k] = pk ,

I Power law: pk ≈ const · k−γ−1, γ > 1.
I Model for high variability, scale-free graph.
I Hubs are the nodes with extremely large degrees.

[ Nelly Litvak, 24-06-2014 ] 21/28



Hubs in complex networks

I degree of the node = # links, [fraction nodes degree k] = pk ,
I Power law: pk ≈ const · k−γ−1, γ > 1.

I Model for high variability, scale-free graph.
I Hubs are the nodes with extremely large degrees.

[ Nelly Litvak, 24-06-2014 ] 21/28



Hubs in complex networks

I degree of the node = # links, [fraction nodes degree k] = pk ,
I Power law: pk ≈ const · k−γ−1, γ > 1.
I Model for high variability, scale-free graph.
I Hubs are the nodes with extremely large degrees.

[ Nelly Litvak, 24-06-2014 ] 21/28



Hubs in complex networks

I degree of the node = # links, [fraction nodes degree k] = pk ,
I Power law: pk ≈ const · k−γ−1, γ > 1.
I Model for high variability, scale-free graph.
I Hubs are the nodes with extremely large degrees.

[ Nelly Litvak, 24-06-2014 ] 21/28



Formal view on the hubs

Let D be a degree of a random node. Regular varying distribution:

P(D > x) = L(x)x−γ (1)

L(x) is slowly varying, i.e. limt→∞ L(tx)/L(t) = 1, x > 0

Extreme value theory. Let F1 > F2 > · · · > FN be the order
statistics of the i.i.d. r.v.’s D1,D2, . . . ,DN as in (1). Then there
are (aN) such that for finite k(

F1
aN

, · · · ,
Fk
aN

)
d→

E−δ
1

δ
, · · · ,

(∑k
i=1 Ei

)−δ
δ

 ,

where δ = 1/γ and Ei ’are i.i.d. exponential(1) r.v.’s. k

Example. P(D > x) = Cx−γ, then aN = δCδNδ, bN = CδNδ.
The largest degrees are ‘of the order’ N1/γ.
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Performance prediction

I Number nodes in W in the decreasing order of their degrees:
F1 > F2 > · · · > FN .

I Sj is the number of followers of node j = 1, 2, . . . ,N among
the n1 randomly chosen nodes in V

I Sj ∼ Binomial(n1,Fj/N)
I Si1 > Si2 > . . . > SiN be the order statistics of S1, . . . ,SN .
I Performance measure:

E [fraction of correctly identified top-k entities]

=
1

k

k∑
j=1

P(j ∈ {i1, . . . , in2}). (2)

I Computation of P(j ∈ {i1, . . . , in2}) is not feasible even if
degrees are known
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Poisson prediction

I P(j ∈ {i1, . . . , in2})
= P(Sj > Sin2 ) + P(Sj = Sin2 , j ∈ {i1, . . . , in2})

I Example. Twitter graph, take n1 = n2 = 500. Then the
average number of nodes i with Si = 1 among the top-l nodes
is

l∑
i=1

P(Si = 1) =
l∑

i=1

500
Fi

5 · 108

(
1 −

Fi
5 · 108

)499

,

which is 2540.6 for l = 10, 000 and it is 57.4 for l = n2 = 500.
Hence, typically, [Si500 = 1]. The event [i ∈ {i1, . . . , in2}] occurs
only for a small fraction of nodes i with [Si = 1].

I Approximation:
P(j ∈ {i1, . . . , in2}) ≈ P(Sj > Sin2 ) ≈ P(Sj > Sn2)

I Assume Fj and Fn2 are known, then approximate
Sj ∼ Poisson(n1Fj/N)
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EVT predictions

I Poisson approximation is not realistic: degrees are unknown

I The algorithm finds a few highest degrees with accuracy
almost 100%

I Let F̂1 > F̂2 > · · · > F̂m be the top-m degrees found by the
algorithm, m < k

I The degrees follow a power law distribution with exponent γ
I Hill’s estimator:

γ̂ =

(
1

m − 1

m−1∑
i=1

log(F̂i ) − log(F̂m)

)−1

. (3)

I Estimator for high degrees: Dekkers et al. (1989)

f̂j = F̂m

(
m
j−1

)1/γ̂
, j > 1, j << N.

I Use Sj ∼ Poisson(n1f̂j/N)
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Performance predictions on the Twitter graph
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Sublinear complexity

I 1, . . . , k – top-k nodes in W ; F1, . . . ,Fk – their degrees

I Sj ∼ Binomial(n1,Fj/N)
I With normal approximation, and error pr-ty α we need that√

n1
N

Fk − Fn2√
Fk + Fn2

> z1−α

I Fk >> Fn2
I Assuming the i.i.d. degrees, by the Extreme Value Theory,

w.h.p., log(Fk) = γ
−1 log(N)(1 + o(log(N)))

I Roughly, n1 = O(N1−1/γ)
I Since

∑
w Sw = O(n1) w.h.p., n2 is at most O(n1)

I We conclude that roughly n = n1 + n2 = O(N1−1/γ)
I Note that the complexity is in terms of |W | = N
I High variability helps a lot!
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Thank you!
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