UNIVERSITY OF TWENTE.

Quick detection of popular entities

 in large on-line networksNelly Litvak
University of Twente,
Stochastic Operations Research group

Joint work with
K. Avrachenkov (INRIA), L. Ostroumova (Yandex)

Luchon 24-06-2014

Finding largest nodes in large complex networks

- Complex networks: Internet, World Wide Web, social networks, protein-protein interactions, citation networks.

Finding largest nodes in large complex networks

- Complex networks: Internet, World Wide Web, social networks, protein-protein interactions, citation networks.
- Many networks are very large.

Finding largest nodes in large complex networks

- Complex networks: Internet, World Wide Web, social networks, protein-protein interactions, citation networks.
- Many networks are very large.
- Facebook has more than 1 billion users. With an average user having 190 friends, the number of social links in Facebook is 190 billion.
- The static part of the web graph has more than 10 billion pages. With an average number of 38 hyper-links per page, the total number of hyper-links is 380 billion.

Finding top-k largest degree nodes

- Goal: Find top-k network nodes with largest degrees

Finding top-k largest degree nodes

- Goal: Find top-k network nodes with largest degrees
- Some applications:
- Routing via large degree nodes
- Proxy for various centrality measures
- Node clustering and classification
- Epidemic processes on networks
- Finding most popular entities (e.g. interest groups)

Finding top-k largest degree nodes

- Goal: Find top-k network nodes with largest degrees
- Some applications:
- Routing via large degree nodes
- Proxy for various centrality measures
- Node clustering and classification
- Epidemic processes on networks
- Finding most popular entities (e.g. interest groups)
- It is simply interesting!

Top-k largest degree nodes

If the adjacency list of the network is known... the top- k list of nodes can be found by the HeapSort with complexity $O(N+k \log (N))$, where N is the total number of nodes.

Even this modest complexity can be demanding for large networks.

Top-k largest degree nodes

If the adjacency list of the network is known... the top- k list of nodes can be found by the HeapSort with complexity $O(N+k \log (N))$, where N is the total number of nodes.

Even this modest complexity can be demanding for large networks.

Questions:

- How to do this faster?

Top-k largest degree nodes

If the adjacency list of the network is known... the top- k list of nodes can be found by the HeapSort with complexity $O(N+k \log (N))$, where N is the total number of nodes.

Even this modest complexity can be demanding for large networks.

Questions:

- How to do this faster?
- How to do it when the network structure is not known (cannot be crawled without restrictions or stored in the memory)?

Top-k largest degree nodes

If the adjacency list of the network is known... the top- k list of nodes can be found by the HeapSort with complexity $O(N+k \log (N))$, where N is the total number of nodes.

Even this modest complexity can be demanding for large networks.

Questions:

- How to do this faster?
- How to do it when the network structure is not known (cannot be crawled without restrictions or stored in the memory)?
Answer: Randomized algorithms.

Top-k largest degree nodes

If the adjacency list of the network is known...
the top- k list of nodes can be found by the HeapSort with complexity $O(N+k \log (N))$, where N is the total number of nodes.

Even this modest complexity can be demanding for large networks.

Questions:

- How to do this faster?
- How to do it when the network structure is not known (cannot be crawled without restrictions or stored in the memory)?
Answer: Randomized algorithms.
Idea: Find a 'good enough' answer in a short time.

Top-k largest degree nodes

If the adjacency list of the network is known...
the top- k list of nodes can be found by the HeapSort with complexity $O(N+k \log (N))$, where N is the total number of nodes.

Even this modest complexity can be demanding for large networks.

Questions:

- How to do this faster?
- How to do it when the network structure is not known (cannot be crawled without restrictions or stored in the memory)?
Answer: Randomized algorithms. Idea: Find a 'good enough' answer in a short time.
Avrachenkov, L, Sokol, Towsley (2012); Cooper, Radzik, Siantos (2012), Borgs, Brautbar, Chayes, Khanna, Lucier (2012),
Brautbar and Kearns (2010), Kumar, Lang, Marlow, Tomkins (2008)
UNIVERSITY OF TWENTE.
[Nelly Litvak, 24-06-2014] 4/28

Finding most popular entities in directed on-line social networks

- Social networks are large

Finding most popular entities in directed on-line social networks

- Social networks are large
- The complete graphs structure is only available to the owners

Finding most popular entities in directed on-line social networks

- Social networks are large
- The complete graphs structure is only available to the owners
- Many companies maintain network statistics (twittercounter.com, followerwonk.com, twitaholic.com, www.insidefacebook.com, yavkontakte.ru)

Finding most popular entities in directed on-line social networks

- Social networks are large
- The complete graphs structure is only available to the owners
- Many companies maintain network statistics (twittercounter.com, followerwonk.com, twitaholic.com, www.insidefacebook.com, yavkontakte.ru)
- The network can be accessed only via API, with limited access

Finding most popular entities in directed on-line social networks

- Social networks are large
- The complete graphs structure is only available to the owners
- Many companies maintain network statistics (twittercounter.com, followerwonk.com, twitaholic.com, www.insidefacebook.com, yavkontakte.ru)
- The network can be accessed only via API, with limited access
- Twitter API allows one access per minute. We need 950 years to crawl the current Twitter graph!

Finding most popular entities in directed on-line social networks

- Social networks are large
- The complete graphs structure is only available to the owners
- Many companies maintain network statistics (twittercounter.com, followerwonk.com, twitaholic.com, www.insidefacebook.com, yavkontakte.ru)
- The network can be accessed only via API, with limited access
- Twitter API allows one access per minute. We need 950 years to crawl the current Twitter graph!

Goal: Find top-k most popular entities in social (directed) networks (nodes with highest in/out-degrees, largest interest groups, largest user categories), using the minimal number of API requests.

Problem formulation

- Consider a bi-partite graph (V, W, E)
- V and W are sets of entities, $|V|=M,|W|=N$.
- A directed edge $(v, w) \in E$ represents a relation between $v \in V$ and $w \in W$.
- Goal: Quickly find entities in W with highest degrees.

Problem formulation

- Consider a bi-partite graph (V, W, E)
- V and W are sets of entities, $|V|=M,|W|=N$.
- A directed edge $(v, w) \in E$ represents a relation between $v \in V$ and $w \in W$.
- Goal: Quickly find entities in W with highest degrees.

Example. $V=W$ is a set of Twitter users, (v, w) means that v follows w.
Example. V is a set of users, W is a set of interest groups, (v, w) means that user v is a member of an interest group w.

Algorithm for finding top- k most popular entities

Algorithm for finding top- k most popular entities
(1) Choose a set $A \subset V$ of n_{1} nodes sampled from V at random.
(2) For each $v \in A$ retrieve the id's of nodes in W that have an edge from v.
(3) Compute S_{w} - the number of edges of $w \in W$ from A.
(9) Retrieve the actual degrees for the n_{2} nodes w with the largest values of S_{w}.
(5) Return the identified top- k list of most popular entities in W.

In total, we use $n=n_{1}+n_{2}$ requests to API (Step 2 and Step 4).

Finding most followed users on Twitter

- Huge network (more than 500M users)

Finding most followed users on Twitter

- Huge network (more than 500M users)
- Network accessed only through Twitter API

Finding most followed users on Twitter

- Huge network (more than 500M users)
- Network accessed only through Twitter API
- The rate of requests is limited
- One request:
- ID's of at most 5000 followers of a node, or
- the number of followers of a node
- In a randomly chosen set of n_{1} Twitter users only a few users follow more than 5000 people. Thus, we retrieve at most 5000 followees of each node. This does not affect the results.

Finding most followed users on Twitter

- Huge network (more than 500M users)
- Network accessed only through Twitter API
- The rate of requests is limited
- One request:
- ID's of at most 5000 followers of a node, or
- the number of followers of a node
- In a randomly chosen set of n_{1} Twitter users only a few users follow more than 5000 people. Thus, we retrieve at most 5000 followees of each node. This does not affect the results.
- Make a guess: We use 1000 requests to API. For which k can we identify a top- k list of most followed Twitter users with 90\% precision?

Results

Figure : The fraction of correctly identified top- k most followed Twitter users as a function of n_{2}, with $n=1000$.

Most followed

Twitter users

Followers

Followers	Following	Tweets
$53,923,965$	148	5,699
$52,445,383$	130,204	27,064
$43,712,727$	650,033	11,955
$43,007,224$	704	10,599
$41,548,506$	134,424	4,782

Interest groups VKontakte

- Popular social network in Russian, more than 200M users.

Rank	Number of participants	Topic
1	$4,35 \mathrm{M}$	humor
2	$4,1 \mathrm{M}$	humor
3	$3,76 \mathrm{M}$	movies
4	$3,69 \mathrm{M}$	humor
5	$3,59 \mathrm{M}$	humor
6	$3,58 \mathrm{M}$	facts
7	$3,36 \mathrm{M}$	cookery
8	$3,31 \mathrm{M}$	humor
9	$3,14 \mathrm{M}$	humor
10	$3,14 \mathrm{M}$	movies
100	$1,65 \mathrm{M}$	success

- With $n_{1}=700, n_{2}=300$, our algorithm identifies on average 73.2 from the top-100 interest groups (averaged over 25 experiments). The standard deviation is 4.6.

Comparison to known algorithms

- Well-studied problem

Comparison to known algorithms

- Well-studied problem
- How our algorithm compares to baselines?

Algorithm by Cooper, Radzik, Siantos (2012)

- Random-walk based
- Transitions probabilities along undirected edges (x, y) are proportional to $(d(x) d(y))^{b}$, where $d(x)$ is the degree of a vertex x and $b>0$ is some parameter.

Problems?

Algorithm by Cooper, Radzik, Siantos (2012)

- Random-walk based
- Transitions probabilities along undirected edges (x, y) are proportional to $(d(x) d(y))^{b}$, where $d(x)$ is the degree of a vertex x and $b>0$ is some parameter.

Problems?

- Designed for undirected and connected graphs (preferential attachment graphs)

Algorithm by Cooper, Radzik, Siantos (2012)

- Random-walk based
- Transitions probabilities along undirected edges (x, y) are proportional to $(d(x) d(y))^{b}$, where $d(x)$ is the degree of a vertex x and $b>0$ is some parameter.

Problems?

- Designed for undirected and connected graphs (preferential attachment graphs)
- We need $d(x)$ API requests to know the $d(y)$'s. All these resources are spent to make just ONE transition!

Algorithm by Cooper, Radzik, Siantos (2012)

- Random-walk based
- Transitions probabilities along undirected edges (x, y) are proportional to $(d(x) d(y))^{b}$, where $d(x)$ is the degree of a vertex x and $b>0$ is some parameter.

Problems?

- Designed for undirected and connected graphs (preferential attachment graphs)
- We need $d(x)$ API requests to know the $d(y)$'s. All these resources are spent to make just ONE transition!
- Not implementable on Twitter

Random Walk

Avrachenkov, L, Sokol, Towsley (2012)

- Random walk with uniform jumps:

$$
p(x, y)= \begin{cases}\frac{\alpha / N+1}{d(x)+\alpha}, & \text { if } x \text { has a link to } y \\ \frac{\alpha / N}{d(x)+\alpha}, & \text { if } x \text { does not have a link to } y,\end{cases}
$$

where N is the number of nodes in the graph and $d(x)$ is the degree of a node x.

- Rationale: in undirected graphs the stationary distribution is given by

$$
\pi_{x}(\alpha)=\frac{d(x)+\alpha}{2|E|+N \alpha}
$$

Random Walk

Avrachenkov, L, Sokol, Towsley (2012)

- Random walk with uniform jumps:

$$
p(x, y)= \begin{cases}\frac{\alpha / N+1}{d(x)+\alpha}, & \text { if } x \text { has a link to } y \\ \frac{\alpha / N}{d(x)+\alpha}, & \text { if } x \text { does not have a link to } y,\end{cases}
$$

where N is the number of nodes in the graph and $d(x)$ is the degree of a node x.

- Rationale: in undirected graphs the stationary distribution is given by

$$
\pi_{x}(\alpha)=\frac{d(x)+\alpha}{2|E|+N \alpha}
$$

- Best to take α approximately equal to the average degree Problems?

Random Walk: problems

- Undirected graphs:

$$
\pi_{x}(\alpha)=\frac{d(x)+\alpha}{2|E|+N \alpha}
$$

In directed graphs, stationary distribution will not give the order according to degrees.

Random Walk: problems

- Undirected graphs:

$$
\pi_{x}(\alpha)=\frac{d(x)+\alpha}{2|E|+N \alpha}
$$

In directed graphs, stationary distribution will not give the order according to degrees.

- Fix: make the graph undirected (symmetrized). Usually in-degrees are larger than out-degrees, so ordering by total degree and by in-degree should be similar.

Random Walk: problems

- Undirected graphs:

$$
\pi_{x}(\alpha)=\frac{d(x)+\alpha}{2|E|+N \alpha}
$$

In directed graphs, stationary distribution will not give the order according to degrees.

- Fix: make the graph undirected (symmetrized). Usually in-degrees are larger than out-degrees, so ordering by total degree and by in-degree should be similar.
More problems?

Random Walk: problems

- Undirected graphs:

$$
\pi_{x}(\alpha)=\frac{d(x)+\alpha}{2|E|+N \alpha}
$$

In directed graphs, stationary distribution will not give the order according to degrees.

- Fix: make the graph undirected (symmetrized). Usually in-degrees are larger than out-degrees, so ordering by total degree and by in-degree should be similar.
More problems?
- We need to know ids of all neighbors of x to decide where to go, but we can obtain only 5000 ids per API request.

Random Walk: problems

- Undirected graphs:

$$
\pi_{x}(\alpha)=\frac{d(x)+\alpha}{2|E|+N \alpha}
$$

In directed graphs, stationary distribution will not give the order according to degrees.

- Fix: make the graph undirected (symmetrized). Usually in-degrees are larger than out-degrees, so ordering by total degree and by in-degree should be similar.

More problems?

- We need to know ids of all neighbors of x to decide where to go, but we can obtain only 5000 ids per API request.
- Strict: [one step of the algorithm] $=$ [one API request]
- Relaxed: [one step of the algorithm] $=$ [one considered vertex]

Crawl-AI and Crawl-GAI

Kumar, Lang, Marlow, Tomkins (2008)

- Designed for WWW crawl

Crawl-AI and Crawl-GAI

Kumar, Lang, Marlow, Tomkins (2008)

- Designed for WWW crawl
- At every step all nodes have their apparent in-degrees S_{j}, $j=1, \ldots, N$: the number of discovered edges pointing to this node.
- Crawl-AI: the next node is chosen at random with probability proportional to its apparent in-degree
- Crawl-GAI: the next node is the node with the highest apparent in-degree

Crawl-AI and Crawl-GAI

Kumar, Lang, Marlow, Tomkins (2008)

- Designed for WWW crawl
- At every step all nodes have their apparent in-degrees S_{j}, $j=1, \ldots, N$: the number of discovered edges pointing to this node.
- Crawl-AI: the next node is chosen at random with probability proportional to its apparent in-degree
- Crawl-GAI: the next node is the node with the highest apparent in-degree
Problems?

Crawl-AI and Crawl-GAI

Kumar, Lang, Marlow, Tomkins (2008)

- Designed for WWW crawl
- At every step all nodes have their apparent in-degrees S_{j}, $j=1, \ldots, N$: the number of discovered edges pointing to this node.
- Crawl-AI: the next node is chosen at random with probability proportional to its apparent in-degree
- Crawl-GAI: the next node is the node with the highest apparent in-degree

Problems?

- The resulting list is created according to the apparent in-degrees, a lot of randomness

Crawl-AI and Crawl-GAI

Kumar, Lang, Marlow, Tomkins (2008)

- Designed for WWW crawl
- At every step all nodes have their apparent in-degrees S_{j}, $j=1, \ldots, N$: the number of discovered edges pointing to this node.
- Crawl-AI: the next node is chosen at random with probability proportional to its apparent in-degree
- Crawl-GAI: the next node is the node with the highest apparent in-degree

Problems?

- The resulting list is created according to the apparent in-degrees, a lot of randomness
- Crawl-GAI can get stuck in some densely connected cluster

Crawl-AI and Crawl-GAI

Kumar, Lang, Marlow, Tomkins (2008)

- Designed for WWW crawl
- At every step all nodes have their apparent in-degrees S_{j}, $j=1, \ldots, N$: the number of discovered edges pointing to this node.
- Crawl-AI: the next node is chosen at random with probability proportional to its apparent in-degree
- Crawl-GAI: the next node is the node with the highest apparent in-degree

Problems?

- The resulting list is created according to the apparent in-degrees, a lot of randomness
- Crawl-GAI can get stuck in some densely connected cluster
- Can suffer from correlations between in- and out-degrees

HighestDegree

Borgs, Brautbar, Chayes, Khanna, Lucier (2012)

- Retrieve a random node
- Check in-degrees of its out-neighbors
- Proceed while resources are available

HighestDegree

Borgs, Brautbar, Chayes, Khanna, Lucier (2012)

- Retrieve a random node
- Check in-degrees of its out-neighbors
- Proceed while resources are available

Problems?

HighestDegree

Borgs, Brautbar, Chayes, Khanna, Lucier (2012)

- Retrieve a random node
- Check in-degrees of its out-neighbors
- Proceed while resources are available

Problems?

- A lot of resources are spent on out-neighbors of random nodes

Comparison of the algorithms

Table: Percentage of correctly identified nodes from top-100 in Twitter averaged over 30 experiments, $n=1000$

Algorithm	mean	standard deviation
Two-stage algorithm	92.6	4.7
Random walk (strict)	0.43	0.63
Random walk (relaxed)	8.7	2.4
Crawl-GAI	4.1	5.9
Crawl-AI	23.9	20.2
HighestDegree	24.7	11.8

Comparison of the algorithms

Table: Percentage of correctly identified nodes from top-100 in Twitter averaged over 30 experiments, $n=1000$

Algorithm	mean	standard deviation
Two-stage algorithm	92.6	4.7
Random walk (strict)	0.43	0.63
Random walk (relaxed)	8.7	2.4
Crawl-GAI	4.1	5.9
Crawl-Al	23.9	20.2
HighestDegree	24.7	11.8

Advantages of the two-stage algorithm:

- does not waste resources
- obtains exact degrees of the n_{2} 'most promising' nodes

Comparison of the algorithms

Figure : The fraction of correctly identified top-100 most followed Twitter users as a function of n averaged over 10 experiments.

Influence of graph size?

Figure: The fraction of correctly identified top- k in-degree nodes in the CNR-2000 graph (law.di.unimi.it/webdata/cnr-2000) as a function of n_{2}, with $n=1000$. Note that algorithm performs similarly on CNR-2000 (half a million nodes) and Twitter.

UNIVERSITY OF TWENTE.

Hubs in complex networks

- degree of the node $=$ \# links, [fraction nodes degree k] $=p_{k}$,

Hubs in complex networks

- degree of the node $=\#$ links, [fraction nodes degree $k]=p_{k}$,
- Power law: $p_{k} \approx$ const $\cdot k^{-\gamma-1}, \gamma>1$.

Hubs in complex networks

- degree of the node $=\#$ links, $[$ fraction nodes degree $k]=p_{k}$,
- Power law: $p_{k} \approx$ const $\cdot k^{-\gamma-1}, \gamma>1$.
- Model for high variability, scale-free graph.
- Hubs are the nodes with extremely large degrees.

Hubs in complex networks

- degree of the node $=\#$ links, [fraction nodes degree k] $=p_{k}$,
- Power law: $p_{k} \approx$ const $\cdot k^{-\gamma-1}, \gamma>1$.
- Model for high variability, scale-free graph.
- Hubs are the nodes with extremely large degrees.

Formal view on the hubs

Let D be a degree of a random node. Regular varying distribution:

$$
\begin{equation*}
P(D>x)=L(x) x^{-\gamma} \tag{1}
\end{equation*}
$$

$L(x)$ is slowly varying, i.e. $\lim _{t \rightarrow \infty} L(t x) / L(t)=1, x \geqslant 0$

Formal view on the hubs

Let D be a degree of a random node. Regular varying distribution:

$$
\begin{equation*}
P(D>x)=L(x) x^{-\gamma} \tag{1}
\end{equation*}
$$

$L(x)$ is slowly varying, i.e. $\lim _{t \rightarrow \infty} L(t x) / L(t)=1, x \geqslant 0$
Extreme value theory. Let $F_{1} \geqslant F_{2} \geqslant \cdots \geqslant F_{N}$ be the order statistics of the i.i.d. r.v.'s $D_{1}, D_{2}, \ldots, D_{N}$ as in (1). Then there are $\left(a_{N}\right)$ such that for finite k

$$
\left(\frac{F_{1}}{a_{N}}, \cdots, \frac{F_{k}}{a_{N}}\right) \xrightarrow{d}\left(\frac{E_{1}^{-\delta}}{\delta}, \cdots, \frac{\left(\sum_{i=1}^{k} E_{i}\right)^{-\delta}}{\delta}\right)
$$

where $\delta=1 / \gamma$ and E_{i} 'are i.i.d. exponential(1) r.v.'s. k

Formal view on the hubs

Let D be a degree of a random node. Regular varying distribution:

$$
\begin{equation*}
P(D>x)=L(x) x^{-\gamma} \tag{1}
\end{equation*}
$$

$L(x)$ is slowly varying, i.e. $\lim _{t \rightarrow \infty} L(t x) / L(t)=1, x \geqslant 0$
Extreme value theory. Let $F_{1} \geqslant F_{2} \geqslant \cdots \geqslant F_{N}$ be the order statistics of the i.i.d. r.v.'s $D_{1}, D_{2}, \ldots, D_{N}$ as in (1). Then there are $\left(a_{N}\right)$ such that for finite k

$$
\left(\frac{F_{1}}{a_{N}}, \cdots, \frac{F_{k}}{a_{N}}\right) \xrightarrow{d}\left(\frac{E_{1}^{-\delta}}{\delta}, \cdots, \frac{\left(\sum_{i=1}^{k} E_{i}\right)^{-\delta}}{\delta}\right)
$$

where $\delta=1 / \gamma$ and E_{i} 'are i.i.d. exponential(1) r.v.'s. k Example. $P(D>x)=C x^{-\gamma}$, then $a_{N}=\delta C^{\delta} N^{\delta}, b_{N}=C^{\delta} N^{\delta}$. The largest degrees are 'of the order' $N^{1 / \gamma}$.

Formal view on the hubs

Let D be a degree of a random node. Regular varying distribution:

$$
\begin{equation*}
P(D>x)=L(x) x^{-\gamma} \tag{1}
\end{equation*}
$$

$L(x)$ is slowly varying, i.e. $\lim _{t \rightarrow \infty} L(t x) / L(t)=1, x \geqslant 0$
Extreme value theory. Let $F_{1} \geqslant F_{2} \geqslant \cdots \geqslant F_{N}$ be the order statistics of the i.i.d. r.v.'s $D_{1}, D_{2}, \ldots, D_{N}$ as in (1). Then there are $\left(a_{N}\right)$ such that for finite k

$$
\left(\frac{F_{1}}{a_{N}}, \cdots, \frac{F_{k}}{a_{N}}\right) \xrightarrow{d}\left(\frac{E_{1}^{-\delta}}{\delta}, \cdots, \frac{\left(\sum_{i=1}^{k} E_{i}\right)^{-\delta}}{\delta}\right)
$$

where $\delta=1 / \gamma$ and E_{i} 'are i.i.d. exponential(1) r.v.'s. k Example. $P(D>x)=C x^{-\gamma}$, then $a_{N}=\delta C^{\delta} N^{\delta}, b_{N}=C^{\delta} N^{\delta}$. The largest degrees are 'of the order' $N^{1 / \gamma}$.

Performance prediction

- Number nodes in W in the decreasing order of their degrees: $F_{1} \geqslant F_{2} \geqslant \cdots \geqslant F_{N}$.

Performance prediction

- Number nodes in W in the decreasing order of their degrees: $F_{1} \geqslant F_{2} \geqslant \cdots \geqslant F_{N}$.
- S_{j} is the number of followers of node $j=1,2, \ldots, N$ among the n_{1} randomly chosen nodes in V
- $S_{j} \sim \operatorname{Binomial}\left(n_{1}, F_{j} / N\right)$

Performance prediction

- Number nodes in W in the decreasing order of their degrees: $F_{1} \geqslant F_{2} \geqslant \cdots \geqslant F_{N}$.
- S_{j} is the number of followers of node $j=1,2, \ldots, N$ among the n_{1} randomly chosen nodes in V
- $S_{j} \sim \operatorname{Binomial}\left(n_{1}, F_{j} / N\right)$
- $S_{i_{1}} \geqslant S_{i_{2}} \geqslant \ldots \geqslant S_{i_{N}}$ be the order statistics of S_{1}, \ldots, S_{N}.
- Performance measure:
E [fraction of correctly identified top- k entities]

$$
\begin{equation*}
=\frac{1}{k} \sum_{j=1}^{k} P\left(j \in\left\{i_{1}, \ldots, i_{n_{2}}\right\}\right) \tag{2}
\end{equation*}
$$

Performance prediction

- Number nodes in W in the decreasing order of their degrees: $F_{1} \geqslant F_{2} \geqslant \cdots \geqslant F_{N}$.
- S_{j} is the number of followers of node $j=1,2, \ldots, N$ among the n_{1} randomly chosen nodes in V
- $S_{j} \sim \operatorname{Binomial}\left(n_{1}, F_{j} / N\right)$
- $S_{i_{1}} \geqslant S_{i_{2}} \geqslant \ldots \geqslant S_{i_{N}}$ be the order statistics of S_{1}, \ldots, S_{N}.
- Performance measure:
E [fraction of correctly identified top- k entities]

$$
\begin{equation*}
=\frac{1}{k} \sum_{j=1}^{k} P\left(j \in\left\{i_{1}, \ldots, i_{n_{2}}\right\}\right) \tag{2}
\end{equation*}
$$

- Computation of $P\left(j \in\left\{i_{1}, \ldots, i_{n_{2}}\right\}\right)$ is not feasible even if degrees are known

Poisson prediction

- $P\left(j \in\left\{i_{1}, \ldots, i_{n_{2}}\right\}\right)$

$$
=P\left(S_{j}>S_{i_{n_{2}}}\right)+P\left(S_{j}=S_{i_{n_{2}}}, j \in\left\{i_{1}, \ldots, i_{n_{2}}\right\}\right)
$$

- Example. Twitter graph, take $n_{1}=n_{2}=500$. Then the average number of nodes i with $S_{i}=1$ among the top-/ nodes is

$$
\sum_{i=1}^{1} P\left(S_{i}=1\right)=\sum_{i=1}^{1} 500 \frac{F_{i}}{5 \cdot 10^{8}}\left(1-\frac{F_{i}}{5 \cdot 10^{8}}\right)^{499},
$$

which is 2540.6 for $I=10,000$ and it is 57.4 for $I=n_{2}=500$. Hence, typically, $\left[S_{i_{500}}=1\right]$. The event $\left[i \in\left\{i_{1}, \ldots, i_{n_{2}}\right\}\right]$ occurs only for a small fraction of nodes i with $\left[S_{i}=1\right.$].

Poisson prediction

- $P\left(j \in\left\{i_{1}, \ldots, i_{n_{2}}\right\}\right)$

$$
=P\left(S_{j}>S_{i_{n_{2}}}\right)+P\left(S_{j}=S_{i_{n_{2}}}, j \in\left\{i_{1}, \ldots, i_{n_{2}}\right\}\right)
$$

- Example. Twitter graph, take $n_{1}=n_{2}=500$. Then the average number of nodes i with $S_{i}=1$ among the top-/ nodes is

$$
\sum_{i=1}^{1} P\left(S_{i}=1\right)=\sum_{i=1}^{1} 500 \frac{F_{i}}{5 \cdot 10^{8}}\left(1-\frac{F_{i}}{5 \cdot 10^{8}}\right)^{499},
$$

which is 2540.6 for $I=10,000$ and it is 57.4 for $I=n_{2}=500$. Hence, typically, $\left[S_{i_{500}}=1\right]$. The event $\left[i \in\left\{i_{1}, \ldots, i_{n_{2}}\right\}\right]$ occurs only for a small fraction of nodes i with $\left[S_{i}=1\right]$.

- Approximation:

$$
P\left(j \in\left\{i_{1}, \ldots, i_{n_{2}}\right\}\right) \approx P\left(S_{j}>S_{i_{n_{2}}}\right) \approx P\left(S_{j}>S_{n_{2}}\right)
$$

Poisson prediction

- $P\left(j \in\left\{i_{1}, \ldots, i_{n_{2}}\right\}\right)$

$$
=P\left(S_{j}>S_{i_{n_{2}}}\right)+P\left(S_{j}=S_{i_{r_{2}}}, j \in\left\{i_{1}, \ldots, i_{n_{2}}\right\}\right)
$$

- Example. Twitter graph, take $n_{1}=n_{2}=500$. Then the average number of nodes i with $S_{i}=1$ among the top-/ nodes is

$$
\sum_{i=1}^{l} P\left(S_{i}=1\right)=\sum_{i=1}^{l} 500 \frac{F_{i}}{5 \cdot 10^{8}}\left(1-\frac{F_{i}}{5 \cdot 10^{8}}\right)^{499}
$$

which is 2540.6 for $I=10,000$ and it is 57.4 for $I=n_{2}=500$. Hence, typically, $\left[S_{i_{500}}=1\right]$. The event $\left[i \in\left\{i_{1}, \ldots, i_{n_{2}}\right\}\right]$ occurs only for a small fraction of nodes i with $\left[S_{i}=1\right]$.

- Approximation:

$$
P\left(j \in\left\{i_{1}, \ldots, i_{n_{2}}\right\}\right) \approx P\left(S_{j}>S_{i_{n_{2}}}\right) \approx P\left(S_{j}>S_{n_{2}}\right)
$$

- Assume F_{j} and $F_{n_{2}}$ are known, then approximate $S_{j} \sim \operatorname{Poisson}\left(n_{1} F_{j} / N\right)$

EVT predictions

- Poisson approximation is not realistic: degrees are unknown

EVT predictions

- Poisson approximation is not realistic: degrees are unknown
- The algorithm finds a few highest degrees with accuracy almost 100%
- Let $\hat{F}_{1} \geqslant \hat{F}_{2} \geqslant \cdots \geqslant \hat{F}_{m}$ be the top- m degrees found by the algorithm, $m<k$

EVT predictions

- Poisson approximation is not realistic: degrees are unknown
- The algorithm finds a few highest degrees with accuracy almost 100%
- Let $\hat{F}_{1} \geqslant \hat{F}_{2} \geqslant \cdots \geqslant \hat{F}_{m}$ be the top- m degrees found by the algorithm, $m<k$
- The degrees follow a power law distribution with exponent γ

EVT predictions

- Poisson approximation is not realistic: degrees are unknown
- The algorithm finds a few highest degrees with accuracy almost 100\%
- Let $\hat{F}_{1} \geqslant \hat{F}_{2} \geqslant \cdots \geqslant \hat{F}_{m}$ be the top- m degrees found by the algorithm, $m<k$
- The degrees follow a power law distribution with exponent γ
- Hill's estimator:

$$
\begin{equation*}
\hat{\gamma}=\left(\frac{1}{m-1} \sum_{i=1}^{m-1} \log \left(\hat{F}_{i}\right)-\log \left(\hat{F}_{m}\right)\right)^{-1} \tag{3}
\end{equation*}
$$

EVT predictions

- Poisson approximation is not realistic: degrees are unknown
- The algorithm finds a few highest degrees with accuracy almost 100\%
- Let $\hat{F}_{1} \geqslant \hat{F}_{2} \geqslant \cdots \geqslant \hat{F}_{m}$ be the top- m degrees found by the algorithm, $m<k$
- The degrees follow a power law distribution with exponent γ
- Hill's estimator:

$$
\begin{equation*}
\hat{\gamma}=\left(\frac{1}{m-1} \sum_{i=1}^{m-1} \log \left(\hat{F}_{i}\right)-\log \left(\hat{F}_{m}\right)\right)^{-1} \tag{3}
\end{equation*}
$$

- Estimator for high degrees: Dekkers et al. (1989)

$$
\hat{f}_{j}=\hat{F}_{m}\left(\frac{m}{j-1}\right)^{1 / \hat{\gamma}}, \quad j>1, j \ll N .
$$

- Use $S_{j} \sim \operatorname{Poisson}\left(n_{1} \hat{f}_{j} / N\right)$

Performance predictions on the Twitter graph

UNIVERSITY OF TWENTE.
[Nelly Litvak, 24-06-2014] 26/28

Sublinear complexity

- $1, \ldots, k$ - top- k nodes in $W ; F_{1}, \ldots, F_{k}$ - their degrees

Sublinear complexity

- $1, \ldots, k$ - top- k nodes in $W ; F_{1}, \ldots, F_{k}$ - their degrees
- $S_{j} \sim \operatorname{Binomial}\left(n_{1}, F_{j} / N\right)$

Sublinear complexity

- $1, \ldots, k$ - top- k nodes in $W ; F_{1}, \ldots, F_{k}$ - their degrees
- $S_{j} \sim \operatorname{Binomial}\left(n_{1}, F_{j} / N\right)$
- With normal approximation, and error pr-ty α we need that

$$
\sqrt{\frac{n_{1}}{N}} \frac{F_{k}-F_{n_{2}}}{\sqrt{F_{k}+F_{n_{2}}}}>z_{1-\alpha}
$$

Sublinear complexity

- $1, \ldots, k$ - top- k nodes in $W ; F_{1}, \ldots, F_{k}$ - their degrees
- $S_{j} \sim \operatorname{Binomial}\left(n_{1}, F_{j} / N\right)$
- With normal approximation, and error pr-ty α we need that

$$
\sqrt{\frac{n_{1}}{N}} \frac{F_{k}-F_{n_{2}}}{\sqrt{F_{k}+F_{n_{2}}}}>z_{1-\alpha}
$$

- $F_{k} \gg F_{n_{2}}$

Sublinear complexity

- $1, \ldots, k$ - top- k nodes in $W ; F_{1}, \ldots, F_{k}$ - their degrees
- $S_{j} \sim \operatorname{Binomial}\left(n_{1}, F_{j} / N\right)$
- With normal approximation, and error pr-ty α we need that

$$
\sqrt{\frac{n_{1}}{N}} \frac{F_{k}-F_{n_{2}}}{\sqrt{F_{k}+F_{n_{2}}}}>z_{1-\alpha}
$$

- $F_{k} \gg F_{n_{2}}$
- Assuming the i.i.d. degrees, by the Extreme Value Theory, w.h.p., $\log \left(F_{k}\right)=\gamma^{-1} \log (N)(1+o(\log (N)))$

Sublinear complexity

- $1, \ldots, k$ - top- k nodes in $W ; F_{1}, \ldots, F_{k}$ - their degrees
- $S_{j} \sim \operatorname{Binomial}\left(n_{1}, F_{j} / N\right)$
- With normal approximation, and error pr-ty α we need that

$$
\sqrt{\frac{n_{1}}{N}} \frac{F_{k}-F_{n_{2}}}{\sqrt{F_{k}+F_{n_{2}}}}>z_{1-\alpha}
$$

- $F_{k} \gg F_{n_{2}}$
- Assuming the i.i.d. degrees, by the Extreme Value Theory, w.h.p., $\log \left(F_{k}\right)=\gamma^{-1} \log (N)(1+o(\log (N)))$
- Roughly, $n_{1}=O\left(N^{1-1 / \gamma}\right)$

Sublinear complexity

- $1, \ldots, k$ - top- k nodes in $W ; F_{1}, \ldots, F_{k}$ - their degrees
- $S_{j} \sim \operatorname{Binomial}\left(n_{1}, F_{j} / N\right)$
- With normal approximation, and error pr-ty α we need that

$$
\sqrt{\frac{n_{1}}{N}} \frac{F_{k}-F_{n_{2}}}{\sqrt{F_{k}+F_{n_{2}}}}>z_{1-\alpha}
$$

- $F_{k} \gg F_{n_{2}}$
- Assuming the i.i.d. degrees, by the Extreme Value Theory, w.h.p., $\log \left(F_{k}\right)=\gamma^{-1} \log (N)(1+o(\log (N)))$
- Roughly, $n_{1}=O\left(N^{1-1 / \gamma}\right)$
- Since $\sum_{w} S_{w}=O\left(n_{1}\right)$ w.h.p., n_{2} is at most $O\left(n_{1}\right)$

Sublinear complexity

- $1, \ldots, k$ - top- k nodes in $W ; F_{1}, \ldots, F_{k}$ - their degrees
- $S_{j} \sim \operatorname{Binomial}\left(n_{1}, F_{j} / N\right)$
- With normal approximation, and error pr-ty α we need that

$$
\sqrt{\frac{n_{1}}{N}} \frac{F_{k}-F_{n_{2}}}{\sqrt{F_{k}+F_{n_{2}}}}>z_{1-\alpha}
$$

- $F_{k} \gg F_{n_{2}}$
- Assuming the i.i.d. degrees, by the Extreme Value Theory, w.h.p., $\log \left(F_{k}\right)=\gamma^{-1} \log (N)(1+o(\log (N)))$
- Roughly, $n_{1}=O\left(N^{1-1 / \gamma}\right)$
- Since $\sum_{w} S_{w}=O\left(n_{1}\right)$ w.h.p., n_{2} is at most $O\left(n_{1}\right)$
- We conclude that roughly $n=n_{1}+n_{2}=O\left(N^{1-1 / \gamma}\right)$

Sublinear complexity

- $1, \ldots, k$ - top- k nodes in $W ; F_{1}, \ldots, F_{k}$ - their degrees
- $S_{j} \sim \operatorname{Binomial}\left(n_{1}, F_{j} / N\right)$
- With normal approximation, and error pr-ty α we need that

$$
\sqrt{\frac{n_{1}}{N}} \frac{F_{k}-F_{n_{2}}}{\sqrt{F_{k}+F_{n_{2}}}}>z_{1-\alpha}
$$

- $F_{k} \gg F_{n_{2}}$
- Assuming the i.i.d. degrees, by the Extreme Value Theory, w.h.p., $\log \left(F_{k}\right)=\gamma^{-1} \log (N)(1+o(\log (N)))$
- Roughly, $n_{1}=O\left(N^{1-1 / \gamma}\right)$
- Since $\sum_{w} S_{w}=O\left(n_{1}\right)$ w.h.p., n_{2} is at most $O\left(n_{1}\right)$
- We conclude that roughly $n=n_{1}+n_{2}=O\left(N^{1-1 / \gamma}\right)$
- Note that the complexity is in terms of $|W|=N$

Sublinear complexity

- $1, \ldots, k$ - top- k nodes in $W ; F_{1}, \ldots, F_{k}$ - their degrees
- $S_{j} \sim \operatorname{Binomial}\left(n_{1}, F_{j} / N\right)$
- With normal approximation, and error pr-ty α we need that

$$
\sqrt{\frac{n_{1}}{N}} \frac{F_{k}-F_{n_{2}}}{\sqrt{F_{k}+F_{n_{2}}}}>z_{1-\alpha}
$$

- $F_{k} \gg F_{n_{2}}$
- Assuming the i.i.d. degrees, by the Extreme Value Theory, w.h.p., $\log \left(F_{k}\right)=\gamma^{-1} \log (N)(1+o(\log (N)))$
- Roughly, $n_{1}=O\left(N^{1-1 / \gamma}\right)$
- Since $\sum_{w} S_{w}=O\left(n_{1}\right)$ w.h.p., n_{2} is at most $O\left(n_{1}\right)$
- We conclude that roughly $n=n_{1}+n_{2}=O\left(N^{1-1 / \gamma}\right)$
- Note that the complexity is in terms of $|W|=N$
- High variability helps a lot!

Thank you!

