
Community subgraph densification

Róbert Pálovics

June 26, 2014

Personal

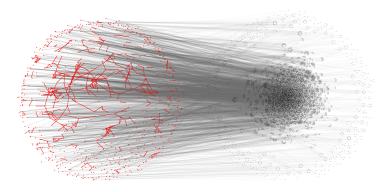
- Robert Palovics
- rpalovics@ilab.sztaki.hu
- Supervisor: András Benczúr
- ► BSc and MSc degree in Theoretical Physics
 - ► TU Budapest
- Phd student in Mathematics (2nd year)
 - ► TU Budapest
 - InfoLab @ Hungarian Academy of Sciences https://dms.sztaki.hu/en/ http://www.sztaki.hu/department/INFOLAB/
- computer science:)

RESEARCH INTEREST

- ► Information (epidemic) spreading in networks
 - Cascades in online social networks
 - Community densification laws
- Models of complex networks & large graphs
 - Accelerated growth of networks
 - Densification laws
- Recommender systems (RS)
 - Online (temporal) recommendations
 - Temporal prediction and evaluation
 - Online collaborative filtering
 - Context-based RS
 - Location based RS
 - Using social information in RS

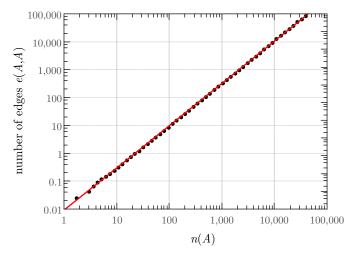
INFORMATION SPREAD IN NETWORKS

Network + Diffusion process \leftrightarrow Measurements

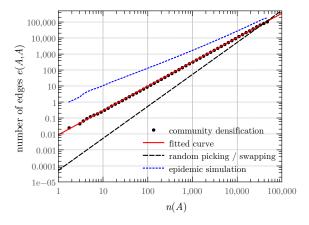

- diffusion \leftrightarrow observable time series
- fixed network + time series

COMMUNITY DENSIFICATION LAW

- Users adopt a given behavior *a* after each other
- ► G(a, t) = {subgraph of users who adopted a before t}

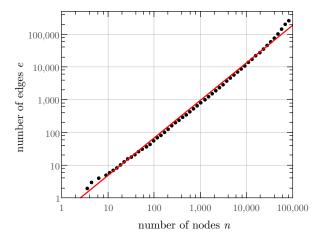

Datasets

- ► artists in Last.fm
- ► hashtags in Twitter



COMMUNITY DENSIFICATION LAW

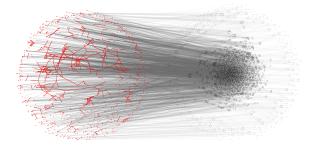
► The number of edges e(a, t) is power-law function of the number of nodes n(a, t) in the subgraph with exponent γ < 2.</p>


COMPARISON OF PROCESSES

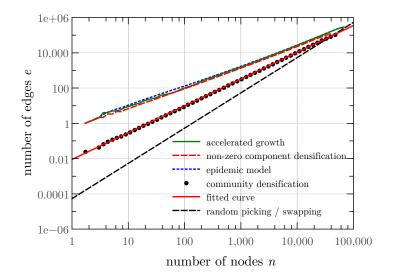
•
$$\overline{d} = \frac{e}{n}$$
 $\rho = \frac{2e}{n(n-1)} \sim \frac{e}{n^2}$

- Densification vs. sparsification
- Maximum spread

ACCELERATED GROWTH OF NETWORKS



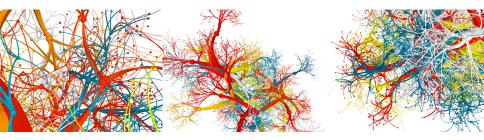
- ► Growing network, no information diffusion
- $L(t) \propto t^{a+1}$ $e(n) \propto n^{\beta}$


NON-ISOLATED NODES

- ► Power law fraction of nodes with at least one edge within the community, with exponent δ > 1.
- The edge number in a community as the function of the number nodes with at least one edge also follows power law (β').

$$\blacktriangleright \ \beta = \beta' (!)$$

SUMMARY



Network discovery process

- Information spreading over a network and the dynamic growth of the network are similar and closely related processes
- The network itself can be considered as a community in a hidden social network

Work in progress

- Develop a network model that describes this effect
- Develop an information spreading model
- ► Is the degree sequence sufficient (swapping, β-model)?

