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1.  Bioinformatics and Big problems in Biology 
2.  Next Generation Sequencing, Genome 

assembling and bacterial gene identification 
3.  HMM eukaryotic gene finding, fast sequence 

reads alignment, big data analysis 
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Biologists  
collect molecular data:  
DNA & Protein sequences, 
gene expression, etc. 
 

 
Computer scientists  
(+Mathematicians, Statisticians, etc.) 
Develop tools, softwares, algorithms  
to store and analyze the data. 

Bioinformaticians 
Study biological questions 
by analyzing molecular 
data 
 

Bioinformatics - The application of computer science 
and mathematics to solve biological problems 
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Life begins with the cell 

•  A cell is a smallest structural unit of an organism 
that is capable of independent functioning 

•  All cells have some common features 
 
 

 





ProtComp  Identifying sub-cellular location (Plants) 
 
Seq name: Q9LVV5 Location:Chloroplast  DE  Thylakoid lumenal 19.6 kDa 
protein, chloroplast precursor. 179 
Significant similarity in Potential Location DB -  Location:Chloroplast   
Database sequence: AC=Q9LVV5 Location:Chloroplast  DE  Thylakoid 
lumenal 19.6 kDa protein, chloroplast 
Score=9050, Sequence length=179, Alignment length=179 
Predicted by Neural Nets - Chloroplast with score    2.7 
******** Chloroplast Transit peptide 1-31 is found 
******** Transmembrane segments are found: .+52:75-. 
Integral Prediction of protein location: Membrane bound Chloroplast 
with score    3.7 
Location weights:     LocDB / PotLocDB / Neural Nets / Integral 
 Nuclear                0.0 /      0.0 /        0.73 /     0.73 
 Plasma membrane        0.0 /      0.0 /        0.87 /     0.87 
 Extracellular          0.0 /      0.0 /        0.80 /     0.80 
 Cytoplasmic            0.0 /      0.0 /        0.71 /     0.71 
 Mitochondrial          0.0 /      0.0 /        0.60 /     0.60 
 Chloroplast            0.0 /   9050.0 /        2.65 /     3.66 
 Endoplasm. retic.      0.0 /      0.0 /        0.71 /     0.71 
 Peroxisomal            0.0 /      0.0 /        0.60 /     0.60 
 



 
Compartment     Percent predicted correctly 
                 ver. 5        
Nucleus                    88   
Plasma Membrane  87           
Extracellular  83   
Cytoplasm  63   
Mitochondria  82 
Endoplasmic Retic  83   
Peroxisome  97 
Lysosome   91           
Golgi                    77            



Cell Information and Machinery 
•  A cell stores all information to replicate itself 

–  Human genome is around 3 billion base pairs long 
–  Almost every cell in human body contains same set of genes 
–  But not all genes are used or expressed by those cells 

•  Machinery: 
–  Collect and manufacture components 
–  Carry out replication 
–  Kick-start its new offspring 



All life depends on 3 critical molecules 

•  DNAs 
–  Hold information on how cell works 

•  RNAs 
–  Act to transfer short pieces of information to 

different parts of cell 
–  Provide templates to synthesize into protein 

•  Proteins 
–  Form enzymes that send signals to other cells and 

regulate gene activity 
–  Form body’s major components (e.g. hair, skin, etc.) 



Chromosomes and genes  
DNA in the human 
genome is arranged into 
24 distinct 
chromosomes  

Each chromosome 
contains many genes, 
the basic physical and 
functional units of 
heredity. Genes are 
specific sequences of 
bases that encode 
instructions on how to 
make proteins.  
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DNA by the Numbers 
•  Each cell has about 2 

m of DNA. 
•  The average human has 

75 trillion cells. 
•  The average human has 

enough DNA to go from 
the earth to the sun 
more than 400 times. 

•  DNA has a diameter of 
only 0.000000002 m. 

The earth is 150 billion m 
or 93 million miles from  
the sun. 



Base Pairing in the DNA Double Helix 
The bases attract each other because 
of hydrogen bonds. 



Chemical structure DNA 



The Central Dogma of Biology 

DNA 

RNA 

Protein 

transcription 

translation 

CCTGAGCCAACTATTGATGAA 

PEPTIDE 

CCUGAGCCAACUAUUGAUGAA 

It was first stated by Francis Crick in 1958 and re-stated in a Nature paper 
published in 1970 

Genetic information in genes flows into proteins: DNA → RNA → protein 



Genome sizes 



Nitrogenous bases commonly 
found in RNA and DNA 

PURINES          PYRIMIDINES RNA (AU  GC) 

DNA (AT  GC) 
T ----à    U 

A-T   (A-U)     G=C   

Complementary 
pairs  



Hierarchical organization  
of RNA molecules 

Primary structure: 

• 5’ to 3’ list of covalently linked 
nucleotides, named by the attached base 

• Commonly represented by a string S over 
the alphabet Σ={A,C,G,U} 



Example of RNA Primary Structure 
•  In RNA, A, C, G, and U are linked by 3’-5’ ester bonds 

between ribose and phosphate 



RNA synthesis and fold 

Adenine 
(A) 

Cytosine 
(C) 

Guanine 
(G) 

Uracyl 
(U) 

Watson-Crick 
Base Pairing 

Wobble    
Base Pairing 

•  RNA immediately starts to fold when it is 
synthesized 



RNA secondary structures 
Single stranded bases within a stem are called a bulge of bulge loop if 
the single stranded bases are on only one side of the stem. 
 
If single stranded bases interrupt both sides of a stem, they are called an  
internal (interior) loop. 



Transfer RNA 
•  tRNA has a tertiary structure that is L-shaped 

 - one end attaches to the amino acid and the other binds to the mRNA 
by a 3-base complimentary sequence 



Genetic code 



Amino acids - The protein building blocks  

C          G          P 



Protein Folding  
•  The structure that a 

protein adopts is vital to 
its chemistry 

•  Its structure determines 
which of its amino acids 
are exposed to carry out 
the protein’s function 

•  Its structure also 
determines what 
substrates it can react 
with 



How do we commonly represent 
DNA sequences? 

•  Both strands depicted with bases only 
•  5’ ATCTTTGGCTCAGTCTAGTGCACCCAGTT 3’ 
•  3’ TAGAAACCGAGTCAGATCACGAGGGTCAA 5’ 

•  The coding strand, 5’ to 3’. The coding strand is the 
strand whose sequence is the same as the corresponding 
mRNA sequence 

DNA  ATCTTTGGCTCAGTCTAGTGCACCCAGTT 
mRNA AUCUUUGGCUCAGUCUAGUGCACCCAGUU 
•  Protein:   F  G  S  V 
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Molecular Bioinformatics 
Molecular Bioinformatics involves the use 
of computational tools to discover new 
information in complex data sets (from the 
one-dimensional information of DNA through 
the two-dimensional information of RNA and 
the three-dimensional information of proteins, 
to the four-dimensional information of 
evolving living systems).  



Examples of some important 
Problems from the Biological side  

•  Protein folding  
•  Find Homologies (Similarities)  
•  Finding genes in new genomes 
•  Phylogenetic Trees  
•  Analysis of Gene Expression data 
•  Prediction of special (regulatory) sites in DNA  
•  Determine Pathways/gene interaction networks  
•  Databases/Data mining  
•  Stochastic Modelling / Simulation of biosystems 



Find genes in DNA sequence 
GAATTCTAATCTCCCTCTCAACCCTACAGTCACCCATTTGGTATATTAAAGATGTGTTGTCTACTGTCTAGTATCCCTCA 
AGTAGTGTCAGGAATTAGTCATTTAAATAGTCTGCAAGCCAGGAGTGGTGGCTCATGTCTGTAATTCCAGCACTGGAGAG 
GTAGAAGTGGGAGGACTGCTTGAGCTCAAGAGTTTGATATTATCCTGGACAACATAGCAAGACCTCGTCTCTACTTAAAA 
AAAAAAAAATTAGCCAGGCATGTGATGTACACCTGTAGTCCCAGCTACTCAGGAGGCCGAAATGGGAGGATCCCTTGAGC 
TCAGGAGGTCAAGGCTGCAGTGAGACATGATCTTGCCACTGCACTCCAGCCTGGACAGCAGAGTGAAACCTTGCCTCACG 
AAACAGAATACAAAAACAAACAAACAAAAAACTGCTCCGCAATGCGCTTCCTTGATGCTCTACCACATAGGTCTGGGTAC 
TTTGTACACATTATCTCATTGCTGTTCGTAATTGTTAGATTAATTTTGTAATATTGATATTATTCCTAGAAAGCTGAGGC 
CTCAAGATGATAACTTTTATTTTCTGGACTTGTAATAGCTTTCTCTTGTATTCACCATGTTGTAACTTTCTTAGAGTAGT 
AACAATATAAAGTTATTGTGAGTTTTTGCAAACACATGCAAACACAACGACCCATATAGACATTGATGTGAAATTGTCTAT 
TGTCAATTTATGGGAAAACAAGTATGTACTTTTTCTACTAAGCCATTGAAACAGGAATAACAGAACAAGATTGAAAGAAT 
ACATTTTCCGAAATTACTTGAGTATTATACAAAGACAAGCACGTGGACCTGGGAGGAGGGTTATTGTCCATGACTGGTGT 
GTGGAGACAAATGCAGGTTTATAATAGATGGGATGGCATCTAGCGCAATGACTTTGCCATCACTTTTAGAGAGCTCTTGG 
GGACCCCAGTACACAAGAGGGGACGCAGGGTATATGTAGACATCTCATTCTTTTTCTTAGTGTGAGAATAAGAATAGCCA 
TGACCTGAGTTTATAGACAATGAGCCCTTTTCTCTCTCCCACTCAGCAGCTATGAGATGGCTTGCCCTGCCTCTCTACTA 
GGCTGACTCACTCCAAGGCCCAGCAATGGGCAGGGCTCTGTCAGGGCTTTGATAGCACTATCTGCAGAGCCAGGGCCGAG 
AAGGGGTGGACTCCAGAGACTCTCCCTCCCATTCCCGAGCAGGGTTTGCTTATTTATGCATTTAAATGATATATTTATTT 
TAAAAGAAATAACAGGAGACTGCCCAGCCCTGGCTGTGACATGGAAACTATGTAGAATATTTTGGGTTCCATTTTTTTTT 
CCTTCTTTCAGTTAGAGGAAAAGGGGCTCACTGCACATACACTAGACAGAAAGTCAGGAGCTTTGAATCCAAGCCTGATC 



Primate evolution	

Phylogenetic Trees  
How did our genome evolve?  How close are we 
related to other  species?  



Morphological vs. Molecular 

•  Classical phylogenetic analysis:  
morphological features 

–  number of legs, lengths of legs, etc. 

• Modern biological methods allow to use 
molecular features 

– Gene sequences 
– Protein sequences 



Gene Expression 

How do genes in one cell work together over time?  
 
What is the difference of gene activity between a young and old 
cell or between healthy and sick cell? 
 
What set of genes is activated in cancer cells? 





Biotinylated RNA 
from experiment 

GeneChip expression 
analysis probe array 

Image of hybridized probe array 

Each probe cell contains 
millions of copies of a specific  
oligonucleotide probe 

Streptavidin- 
phycoerythrin 
conjugate 



Determine Pathways 
 Which genes work together? Which genes are active at which times in 
which situations in which cells?  
How are the functions of different proteins interconnected?  



Information Derivable from Chip Data 

•  Microarray data is becoming a key source of data 
for computational inference of biological networks  
–  who interact with who 
–  who regulate who 
–  …. 

How does this 
work? 



Ion 
Channels 

Receptors 

Transcription 
Factors 

Ligands 

ELECTROPHYSIOLOGY 
Extracellular 
space 

Cytoplasm 

Nucleus Translation +  
processing 

cis sites 

Intracellular 
Signaling 

Genetic 
Regulatory 
Network 

mRNA 

Genetic Regulatory Network	
 
the set of mutually activating and repressing genes  
and gene products and their interactions  
	



Microarray analysis model using gene expression profiles 

DNA Gene A Gene B Gene C Gene D 

Protein 
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Gene Regulatory Systems 

“Programs built into the DNA of every animal.” 
            Eric H. Davidson 

 



Intensity 
(treated) 

Intensity 
(wild type) 

 

Ratio 

Gene A 0.22 0.24 0.917 

Gene B 0.67 1.21 0.598 

Gene C 1.13 0.43 2.630 

Gene D 2.45 2.44 1.01 

0	  <	  ra&o	  <	  Inf.	  
	  
-‐ Inf.	  <	  log2(ra&o)	  <	  +	  Inf.	  
where	  
log2(ra&o)	  >	  0:	  increase	  
log2(ra&o)	  <	  0:	  decrease	  

Exp. 1 ...... Exp. P 

Gene 1 0.78 ...... 0.50 

Gene 2 0.73 ...... 0.09 

Gene 3 0.99 ...... 0.56 

Gene 4 0.60 ...... 0.41 

Gene 5 0.44 ...... 0.86 

Gene 6 0.07 ...... 0.05 

Gene 7 0.28 ...... 0.89 

Gene 8 0.91 ...... 0.00 

..... ..... ...... ..... 

Gene N 0.28 ...... 0.89 

mRNA Expression Data Format 

E X P matrix  From cDNA microarray 



Gene 1 

Gene 2 Gene 3 

Microarray data Genetic regulation network 

Problem Definition 

Difficulty in Reconstructing Genetic Regulatory Network 
1. mRNA expression is only a partial picture 
2. the number of sample is much smaller than the number of genes 
3. high noise  

Exp. 1 .......... Exp. P 

Gene 1 0.78 .......... 0.50 

Gene 2 0.73 .......... 0.09 

Gene 3 0.99 .......... 0.56 

..... ..... .......... ..... 

Gene N 0.28 .......... 0.89 
Gene 6 

Gene 5 

Gene 4 



Eisen et al. (1998):

FIG. 1.  Cluster display of data from time course of serum
stimulation of primary human fibroblasts.

Expemeriments:
Foreskin fibroblasts were grown in culture and were
deprived of serum for 48 hr. Serum was added back and
samples taken at time 0, 15 min, 30 min, 1hr, 2 hr, 3 hr, 4
hr, 8 hr, 12 hr, 16 hr, 20 hr, 24 hr.

Clustering:
Correlation Coefficient + Centroid Hierarchical Clustering

Clusters:
(A) cholesterol biosynthesis,
(B) the cell cycle,
(C) the immediate-early response,
(D) signaling and angiogenesis,
(E) wound healing and tissue remodeling.

Clustering 



 Clustering 

ü  Grouping genes with similar patterns of expression 
     Common role gene clustered together 
     Uncharacterized gene function guessed 
 

Similarity measure : standard correlation coefficient, .. 
Method : Hierarchical clustering, K-means, SOM .. 
	
	

Can’t reveal the inner interaction structure ! 



Molecular Networks Constructed from 
High-throughput assays  

Bayesian networks:  
A directed, graphical representation of the 
probabilities of one observation given another. 
Nodes represent mRNA molecules; edges 
represent the probability of a particular 
expression value given the expression values 
of the parent nodes. 

Correlation or co-expression network: 
A graphical representation that averages 
over observed expression data. Nodes are 
mRNA molecules, edges represent 
correlations between expression levels of 
connected nodes. 



 Bayesian Network	

Gene A 
Gene B 

Gene E 

Gene D 

Gene C 

Probabilistic framework for inference of interactions in the 
presence of noise 
ü  G: a directed-acyclic graph structure 
ü  Θ: a set of parameters for conditional distribution of each variable 

= P(A) P(B) P(C|A,B) P(D|B) P(E|D) 
P( A, B, C, D, E ) = ∏ P ( Xi | Parent(Xi) ) 



Bayesian Network - Structure Learning	

S(G:D) = 56 

A B 
C 

S(G:D) = 56 A B 
C 

S(G:D) = 76 

A B 
C 

S(G:D) = 64 

A B 
C 

S(G:D) = 79 
A B 

C 

S(G:D) = 86 
A B 

C 
 	

ü  Heuristic Search Approaches 
    greedy-hill climbing, simulated annealing etc 

The two key components of a structure learning algorithm are 
a) searching for/generating ‘‘good’’ structures and  
b) scoring these structures  
 



  

   Model with the highest log likelihood is a model that is the best 
predictor of the data D 

 Bayesian Network – Structure Learning 

Get the score for each network with respect to the training data	

S(G:D) = log p(D, Sh) = log p(Sh) + log p(D|Sh) 	
 

prior likelihood 

 

Likelihood log p(D|Sh) = ∑ log p(xi | pa(xi), Sh) 



Summary 
 

 
 
 

Bayesian network is suitable for genetic network reconstruction 
ü  Can deal with stochastic nature 
ü  Ideal for sparse domain (Useful for locally interacting components) 
ü  Can handle noisy data 
ü  Missing data 
ü Inference reasoning 
 
 
More research needed 
ü  Incorporation of more biological information 
ü  To model feedback process 

 => Dynamic Bayesian networks  



References on networks building 

§  Differential Expression 
1.  Inferring Gene Regulator Networks from Time-Ordered Gene Expression Data Using 

 Differential Equation 
 by Michiel de Hoon et al. 2002. 

2.  Stability of Genetic Regulatory Network with Time Delay 
 by Luonan chen et al. 2002. 

3.  Modeling Gene Expression with Differential Equations 
 by Ting Chen et al. 1999. 

 
§  Bayesian Network 
1.  Estimating gene networks from gene expression data by combining Bayesian 

network model with promoter element detection 
 by Yoshinori et al. 2003. 

2.  Combining Location and Expression data for Principled Discovery of 
 Genetic Regulatory Network Models 
by Hartemink et al. 2002. 

3.  Inferrring Subnetworks from Perturbed Expression Profiles 
 by Pe’er et al. 2001. 

4.  Using Bayesian Networks to Analyze Expression Data 
by Friedman et al. 2000. 



Deciphering internal structure  of a cell networks 
through computational prediction is extremely 
challenging and exciting problem! 

Information Derivable from Chip Data 
•  The problem is the internal structure of a cell is very complex 

Cell 



Mutation network for S. Cerevisiae 
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Mutation  network filtered for the genes marked in red (mating) 

Thomas Schlitt, Johan Rung 





A Local Community Approach to Link Prediction  
 



• Cannistraci, C.V., Alanis-Lobato, G. & Ravasi, T. (2013) From link-prediction in brain connectomes 
and protein interactomes to the local-community-paradigm in complex networks. Scientific Reports 3, 
1613. http://dx.doi. org/10.1038/srep01613. ©The Author 2013. Published by Nature Publishing 
Group.  





10% of links removed. Mean prediction precision considered relative 
to the mean random predictor performance  
  







Autoimmune Disease Network 

• Alanis-Lobato, G., Cannistraci, C.V. & Ravasi, T. (2014) Exploring the 
Genetics Underlying Autoimmune Diseases with Network Analysis and Link 
Prediction. In Proceedings of the MECBME 2014, 167-170. http://dx.doi.org/
10.1109/MECBME.2014.6783232. ©IEEE 2014. All rights reserved.  
 





Folding of chymotrypsin protein 



Protein Folding Problem 
   A protein folds into a unique 3D structure under the 

physiological condition. 
 

Can we predict structure (fold)  from sequence? 
 
 
 
   Lysozyme sequence: 
  KVFGRCELAA AMKRHGLDNY  
  RGYSLGNWVC AAKFESNFNT  
  QATNRNTDGS TDYGILQINS 
  RWWCNDGRTP GSRNLCNIPC 
  SALLSSDITA SVNCAKKIVS  
  DGNGMNAWVA WRNRCKGTDV 
  QAWIRGCRL  



Many proteins with dissimilar sequences 
fold into similar structures 

n  Estimated number of folds: ~10000 

Protein Folds: sequential and spatial arrangement of secondary structures 



Examples of different Folds 

Refers to the spatial arrangement of its secondary 
structural elements (α-helices and β-strands) 

1l45.pd
b 

4bcl.pd
b 

1mbl.pd
b 

α/β-barrel β-barrel α/β-sandwich 



• Ab initio prediction  
(no similarity with any sequence of known structure) 
Given only the sequence, predict the 3D structure from “first 
principles”, based on energetic or statistical principles. 
 
• Sequence-structure threading = Fold recognition  
(sequences with <= 30% sequence identity to sequences of known 
structure) 
Given the sequence, and a set of folds observed in PDB, see if any 
of the sequences could adopt one of the known folds. 
 
• Homology Modelling 
Given a sequence with homology (> 30%) to a known structure in 
PDB, use known structure as template to create a 3D model 
from the sequence. 

Predicting Protein Structure: 
Alternative Methods 



Approaches to Ab-initio Prediction	
Molecular Mechanics 
•  folded form is the minimal energy 

conformation of the protein 
Molecular Dynamics 
•  Simulates the forces that governs the protein 

within water 
Problems: 
•  Thousands of atoms 
•  Huge number of time steps to reach folded protein 
•  There is no correct energy function 
•  Optimization in multi-minima space (most methods can reach 

only local minimum) 

èIntractable problem 



Forces Involved in Molecular Interactions 

–  Bond stretch 
–  Bond angle bending 
–  Torsion (bond rotation) 
–  Hydrogen bonding 
–  van der Waals interactions 
–  Electrostatic interactions 
–  Empirical solvation free energy 

V = Σbond 1/2Kb (r-req)2 + 
       Sangle ½ Kθ (θ-θeq)2 + 
       Σtorsions 1/2 Vn [ 1 + cos(nφ-γ') ] +  
       ΣH bonds [ V0 (1-e-a(r-r0) )2 - V0 ] +  
       Σnon bonded [ Aij/rij

12 - Bij/rij
6 + qiqj /εr rij] + 

       Σatoms i  Δσi Ai 
 



 
 

•  Problem: Inhomogeneous permittivity 

  

ε ∼ 2-4	


ε ∼ 80	


Electrostatic interactions: Solvent dielectric model?   

Depends on local structure and 
interactions with water 



Folding Free Energy Landscape 
Molecular 

Dynamics Simulations 
  

100-200 structures  
to sample  

Rgyr	


ρ	




  

Physical time for simulation     10–4 seconds  
Typical time-step size      10–15 seconds  
Number of MD time steps     1011  
Atoms in a typical protein and water simulation   32’000  
Approximate number of interactions in force calculation   109  
Machine instructions per force calculation    1000  
Total number of machine instructions    1023  
BlueGene capacity (floating point operations per second)   (1015)   

Ab initio protein folding simulation 

è Blue Gene will need 3 years to simulate 100 µsec. 



Why Do We Need Homology Modelling? 

§  Ab Initio protein folding (“random” sampling): 
–  100 aa, 10 conf./residue gives approximately 10100 

different overall conformations! 

§  Random sampling is NOT feasible, even if conformations 
can be sampled at picosecond (10-12 sec) rates. 
–  Levinthal’s paradox if a protein were to attain its correctly folded configuration 

by sequentially sampling all the possible conformations, it would require a time longer than the 
age of the universe to arrive at its correct native conformation 

§  Do fold recognition or homology modelling instead. 



? 

KQFTKCELSQNLYDIDGYGRIALPELICTMFH
TSGYDTQAIVENDESTEYGLFQISNALWCKSS
QSPQSRNICDITCDKFLDDDITDDIMCAKKIL
DIKGIDYWIAHKALCTEKLEQWLCEKE 

Comparative Modeling 
(homology modeling) 

Use as template 
& model 

8lyz 1alc 

KVFGRCELAAAMKRHGLDNYRGYSLGNWVCAAKF
ESNFNTQATNRNTDGSTDYGILQINSRWWCNDGR
TPGSRNLCNIPCSALLSSDITASVNCAKKIVSDG
NGMNAWVAWRNRCKGTDVQAWIRGCRL Share 

Similar 
Sequence 

Homologous 



Comparative modelling of protein structure 

KDHPFGFAVPTKNPDGTMNLMNWECAIP 
KDPPAGIGAPQDN----QNIMLWNAVIP 
** * *   *  *     * * *   ** 

 … … 

 
scan 
align 

 

build initial model 
construct non-conserved 

side chains and main chains 

refine 



Fold Recognition 
Homology modeling refers to the easy case when the 
template structure can be identified using BLAST alone.  

What to do when BLAST fails to identify a template? 

• Use more sophisticated sequence methods 
• Profile-based BLAST: PSIBLAST 
• Hidden Markov Models (HMM) 

• Use secondary structure prediction to guide the selection  
of a template, or to validate a template 

• Use threading programs: sequence-structure alignments 

• Use all of these methods! Meta-servers 



A Library of Protein Folds  (finite number) 

Query sequence 

  MTYGFRIPLNCERWGHKLSTVILKRP... 

Goal: find to what folding template the sequence fits best 

Fold Recognition: problem definition 

Find ways to evaluate sequence-structure fit  



Essentials of GenTHREADER 



Structure-Based Drug Design 

HIV protease inhibitor 

   Structure-based 
rational drug design is 
still a major method 
for drug discovery. 



The role of Bioinformatics in support of 
genomics 

 
 
 
 
 
 
 
 

ATCGCGCTA 

Sequencing/ 
Sequence assembling 

Genome 
 databases 

Gene prediction in  
new genomes 

Genome Annotation 



The role of bioinformatics 
supporting genetics 

Identification of sequence 
functions and functional signals 

Phylogenetic trees 

Alignments 

Structures 



Bioinformatics in support of Post-
Genomic Research 

Genomes: Comparative  
Genomics (homology, evolution)  

 

SNPs  
Individual Genome 
mutations/variations 

Proteomics 
(proteins in cells) 

DNA microarrays 
Transcriptome Sequencing 

Functional 
Genomics 
(mRNAs) 

  



Bioinformatics in support of 
Systems Biology 

Metabolic 
Pathways 

Genetic 
Networks 

Signaling  
pathways 

Interactions 



Sequence analysis: overview 

Nucleotide sequence file 

Search databases for 
similar sequences 

Sequence comparison 

Multiple sequence analysis 

Design further experiments 
l Restriction mapping 
l PCR planning 

Translate 
into protein 

Search for 
known motifs 

RNA structure 
prediction 

non-coding 

coding 

Protein 
sequence 
analysis 

Search for protein 
coding regions 

Manual 
sequence entry 

Sequence database 
browsing 

Sequencing project 
management  

Protein sequence file 

Search databases for 
similar sequences 

Sequence comparison 

Search for 
known motifs 

Predict 
secondary 
structure 

Predict 
tertiary 

structure Create a multiple 
sequence alignment 

Edit the alignment 

Format the alignment 
for publication 

Molecular 
phylogeny 

Protein family 
analysis 

Nucleotide 
sequence 
analysis 

Sequence 
entry 



Why is Computing and Mathematics  
necessary to solve bio-medical problems? 

The big change: New technology 
allows biologists to perform 
experiments much more 
efficiently (using complex 
machines).  

•  This provides a growing amount 
of information/data from 
experiments. 

•  The data has to be analyzed in a 
hopefully efficient way.  

The European Bioinformatics Institute 
(EBI) in Hinxton, UK, 
currently stores 20 petabytes (1 petabyte 
is 1015 bytes) of data  
and back-ups about genes, proteins and 
small molecules. 





Data exceeds analysis 

Bioinformaticianioi
nformatician 

Data 

 
 A tsunami of NGS data:  
 1 run ~ 200 GBs of sequence  
and TBs of raw data   

1-2 days 
days-months 



High-throughput experimental technique created 
vast amounts of biological data 
 
Digging out the “treasure” from massive 
biological data represents the primary 
challenge in bioinformatics, consequently placing 
unprecedented demands on big data storage, data 
manipulation and efficient analysis of this 
information.  
 

Biologists are increasingly finding that the management of complex  
data sets is becoming a bottleneck for scientific advances.  
Therefore, bioinformatics is rapidly become a key technology in all  
fields of biology.  



Bioinformatics and Medicne 

Genome 

Information 

Individualised 
healthcare 

Genotyping 
 
Haplotyping 
  

Functional 
genomics 
 
proteomics 

Individual 
genomics 
(SNPs and 
mutations) 
 

Gene 
Expression 
DNA arrays 
MS, 2D ef 

Disease 
classification 
Pharmaco-
genomics 

Diagnosis 
 
Pharmaco-
genetics 

Molecular  
medicine 

Human 
Genetic 
Variation 

Molecular 
causes of 
diseases 

Technologies Data Applications 

BIOINFORMATICS & MEDICAL INFORMATICS 


