1. Bioinformatics and Computational tools for
high-throughput analysis of biological data

1. Bioinformatics and Big problems in Biology
Next Generation Sequencing, Genome
assembling and bacterial gene 1dentification

3. HMM eukaryotic gene finding, fast sequence
reads alignment, big data analysis
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Bioinformatics - The application of computer science
and mathematics to solve biological problems

Biologists

collect molecular data:
DNA & Protein sequences,
gene expreasion, etc.

Bioinformaticians

Study biological questions
by analyzing molecular
data

Computer scientists
(+Mathematicians, Statisticians, etc.)
Develop tools, softwares, algorithms

to store and analyze the data. .



) Life begins with the cell

= uclear membrane
- Plasma

membrane

Golgi vesicles
Mitochondrion
Peroxisome

Lysosome

Rough
endoplasmic
reticulum

Secretory
vesicle

» A cell 1s a smallest structural unit of an organism
that is capable of independent functioning

e All cells have some common features



THE SCHEME OF PREDICTION OF LOCATION OF PROTEINS BY PROTCOMP PROGRAM
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[ Preparation of input data for neural nets )
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Search for similarities | Neural nets for location predictions
with proteins in a) NN for all-against-all prediction
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Figure 2. Logical scheme of protein subcellular localization prediction by ProtComp.



ProtComp Identifying sub-cellular location (Plants)

Seq name: Q9LVV5 Location:Chloroplast DE Thylakoid lumenal 19.6 kDa
protein, chloroplast precursor. 179

Significant similarity in Potential Location DB - Location:Chloroplast
Database sequence: AC=Q9LVV5 Location:Chloroplast DE Thylakoid
lumenal 19.6 kDa protein, chloroplast

Score=9050, Sequence length=179, Alignment length=179

Predicted by Neural Nets - Chloroplast with score 2.7

**%**x*x** Chloroplast Transit peptide 1-31 is found

***k**x*** Transmembrane segments are found: .+52:75-.

Integral Prediction of protein location: Membrane bound Chloroplast
with score 3.7

Location weights: LocDB / PotLocDB / Neural Nets / Integral
Nuclear 0.0 / 0.0 / 0.73 / 0.73
Plasma membrane 0.0 / 0.0 / 0.87 / 0.87
Extracellular 0.0 / 0.0 / 0.80 / 0.80
Cytoplasmic 0.0 / 0.0 / 0.71 / 0.71
Mitochondrial 0.0 / 0.0 / 0.60 / 0.60
Chloroplast 0.0 / 9050.0 / 2.65 / 3.66
Endoplasm. retic. 0.0 / 0.0 / 0.71 / 0.71
Peroxisomal 0.0 / 0.0 / 0.60 / 0.60



Compartment Percent predicted correctly

ver. 5
Nucleus 88
Plasma Membrane 87
Extracellular 83
Cytoplasm 63
Mitochondria 82
Endoplasmic Retic 83
Peroxisome 97
Lysosome 91

Golgi 77



Cell Information and Machinery

* A cell stores all information to replicate itself
— Human genome 1s around 3 billion base pairs long
— Almost every cell in human body contains same set of genes
— But not all genes are used or expressed by those cells

* Machinery:
— Collect and manufacture components

— Carry out replication

— Kick-start its new offspring




All Iife depends on 3 critical molecules

 DNAs

— Hold information on how cell works

* RNAs

— Act to transfer short pieces of information to
different parts of cell

— Provide templates to synthesize into protein

* Proteins

— Form enzymes that send signals to other cells and
regulate gene activity

— Form body’s major components (e.g. hair, skin, etc.)



Chromosomes and genes
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Genes contain
instructions
for making
proteins
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Proteins act alone “Nim AL,
or in complexes to ] "t

perform many cellular
functions

From Genes to Proteins

DNA in the human
genome is arranged into
24 distinct
chromosomes

Each chromosome
contains many genes,
the basic physical and
functional units of
heredity. Genes are
specific sequences of
bases that encode
instructions on how to
make proteins.



DNA by the Numbers

- Each cell has about 2

m of DNA.

- The average human has
75 trillion cells.

+ The average human has
enough DNA to go from
the earth to the sun s Cban

more than 400 times. Ty cqrth is 150 billion m

- DNA has a diameter of or 93 million miles from

only 0.000000002 m. the sun.

18



Base Pairing in the DNA Double Helix

- fei: T - " The bases attract each other because
H - " of hydrogen bonds.
\N"'H.-.. \/&
/N B < '3 " Key:
\ / b SR H™ N
/N—_ N Y S ik Thymine (T)
Sugar N=' 0 DNA chain Adenine (A)
L':,gg“ Adenine Thymine Cytosine (C)
- - 3 Guanine
Deoxyribose
sugar
Sugar phosphate. Phosphate
backbone o Hydrogen bond
1.1 nm
S on
|



Chemical structure DNA
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Fig. 1.2 Chemical structure and base pairing in double-stranded DNA.

0.24 nm

minor
groove

major
groove



The Central Dogma of Biology

Genetic information in genes flows into proteins: DNA — RNA — protein

transcription

translation

|

Protein

CCTGAGCCAACTATTGATGAA

CCUGAGCCAACUAUU GAA

PEPTI E

It was first stated by Francis Crick in 1958 and re-stated in a Nature paper

published in 1970



Genome si1zes

Species Chromosomes Genes
Human (Homo sapiens) 46 (23 pairs) 28-35,000
Mouse (Mus musculus) 40 22.5-30,000
Pufferfish (Fugu rubripes) 44 ~31,000
Malaria Mosquito
(Anopheles gambiae) b 00
Sea Squirt
(Ciona intestinalis) = e
Fruit Fly
(Drosophila melanogaster) 8 14,000
Roundworm (C. elegans) 12 19,000
Bacterium (£ coli) " ~5,000

*Bacterial chromosomes are chromonemes, not true chromosomes .

Base Pairs

~3.1 billion

~2.7 billion
~365 million

~289 million

~ 160 million

~137 million

~97 million
~4.1 million



Nitrogenous bases commonly
found in RNA and DNA

PURINES PYRIMIDINES RNA (AU GC)

I A
H EH, H
. 7
H
DNA (AT GC)
| b AT (A-U) G=C
: 3 5 Complementary
NH. N 0’ 6 pairs

Cytosine

Adem

Guanine



Hierarchical organization
of RNA molecules

Primary structure:

5" to 3’ list of covalently linked
nucleotides, named by the attached base

Commonly represented by a string S over
the alphabet 2={A,C,G,U}



Example of RNA Primary Structure

« InRNA, A, C, G, and U are linked by 3’ -5" ester bonds
between ribose and phosphate

RNA (ribonucleic acid)
NH,
?_ Free 5' /N
a
°='|’—°—C"z : N/) Adenine (A)
m [
O OH N
. (\)\ -
0=P—0—CH, N~ “o Cytosine (C)
| ,
o-
H H
HNEEY H o "
3'-5' Phosphodiester O OH Z
bond | “
°='|’—°—C“z NH, Guanine (G)
o @

’l\o Uracil (U)

OH OH
Free 3'



RNA synthesis and fold

 RNA immediately starts to fold when 1t 1s

S IltheSized H61 _HE2

“N&
|

N 1'$C6‘ c5” N\f

| C8—-HS8

— _Cc2, -
\ H2 3
Wobble (A)

Hel _H& Base Pairing

N
4 _HS

N3~ l(llffl
L2 Cé
‘ 'I;Il * ﬁ
(@ Rib

Guanine

() G

Cytosine



RNA secondary structures

Single stranded bases within a stem are called a bulge of bulge loop 1f
the single stranded bases are on only one side of the stem.

If single stranded bases interrupt both sides of a stem, they are called an
internal (interior) loop.

Hairpin
Internal A C
loop i




Transfer RNA
tRNA has a tertiary structure that 1s L-shaped

- one end attaches to the amino acid and the other binds to the mRNA
by a 3-base complimentary sequence

Acceptor stem 3'

- 0OH Forms ester bond
to amino acid

Acceptor stem

.....
.....

Complementary
bases form double
stranded section

(a) =+ Anticodon loop (b) Anticodon
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Genetic code

C

/

O

Growing
Polypeptide
Chain of Amino Acids

Translation

3

Ribosome

F) \
U C A anticodon AUG
A G U codon UA C mRNA 3
2nd base in codon
Phe | Ser Tyr Cys U
J | Phe | Ser Tyr Cys C W

S Leu | Ser | STOP |sTOP | A o
b Leu | Ser | STOP | Trp G 4
o Leu | Pro His Arg U o
£ C Leu | Pro His Arg D =5
- 4 Leu | Pro Gin Arg A 0
p Leu | Pro Gln Arg G 4
s lle Thr | Asn Ser U S
- A lle Thr Asn Ser k3

le Thr Lys Arg A

Met | Thr Lys Ary G

Val Ala | Asp Gly U

G Val Ala | Asp Gly C
Val Ala Glu Gly A
Val Ala Glu Gly G

@ Amino acid

mRNA



Amino acids - The protein building blocks

A.  Amino acids with electrically charged side chains

Positive
r - o
Arginine Histidine Lysine
(Arg) (His) (Lys)
COOr (|300' (IOO
|
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I |
CH; ﬁ”“ CH
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C.  Special cases
Cysteine Glycine Proline
(Cys) (Gly) (Pro)
(I'OO' COO- (;OO
| ,
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| | g
CH, H HLC - CH,
[ Seit,
SH
e  ® o
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B.  Amino acids with polar but wuncharged side chains

Negative
> x S Serine
Aspartic acid Glutamic acid (Ser)
(Asp) (Glu)
COO- €O (].00
HyN'=C —H Hd\"—(l‘ —H HN'=C =H
- |
5 CH,
Vi i CHLOH
CH,
| ‘..’
Coo :
$0
e,
»
D.  Amtino acids with hydrophobic side chains
Alanine Isoleucine Leucine Methionine  Phenylalanine
(Ala) (Ile) (Leu) (Met) (Phe)
COO- CIOO (fOO (ITOO‘ COO-
H,,N'-—C'—H H-.N'—(If—ll HN'—C—H HN-C-—H I-IAN'—cl‘—H
| |
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Threonine Asparagine Glutamine
(Thr) (Asn) (Gln)
H,N'—cl.-u HaN _ﬁ_” HiN —<} —H
H=C =0l ik e
| .
¢ CH,
Clly 7\ I
HN O C
e 2
SR IlALS N
B T T S 5
Tryptophan Tyrosine Valine
(Trp) (Tyr) (Vval)
H.zN'—(" —H H_\N’—ﬁ‘ —H  HN ‘—cl —H
CH, Cli, CH
I 7N\
C=CH HC  CHs
\




Protein Folding

The structure that a
protein adopts is vital to
its chemistry

Its structure determines
which of its amino acids
are exposed to carry out
the protein’s function

Its structure also
determines what
substrates it can react
with

Alpha helix
Secondary protein structure
occurs when the saquence of amino

g
are linked by hydrogen bonds

Quaternary protein structure
is a protein consisting of more than one




How do we commonly represent
DNA sequences?

* Both strands depicted with bases only
e 5’ ATCTTTGGCTCAGTCTAGTGCACCCAGTT 3’
e 3’ TAGAAACCGAGTCAGATCACGAGGGTCAA 5’

o The coding strand, 5’ to 3°. The coding strand is the

strand whose sequence is the same as the corresponding
mRNA sequence

DNA ATCTTTGGCTCAGTCTAGTGCACCCAGTT

mRNA AUCUUUGGCUCAGUCUAGUGCACCCAGUU
e Proteini. F G S V



Molecular Bioinformatics

Molecular Bioinformatics involves the use
of computational tools to discover new
information in complex data sets (from the
one-dimensional information of DNA through
the two-dimensional information of RNA and
the three-dimensional information of proteins,
to the four-dimensional information of
evolving living systems).

33




Examples of some important
Problems from the Biological side

Protein folding

Find Homologies (Similarities)

Finding genes in new genomes

Phylogenetic Trees

Analysis of Gene Expression data

Prediction of special (regulatory) sites in DNA
Determine Pathways/gene interaction networks
Databases/Data mining

Stochastic Modelling / Simulation of biosystems



Find genes 1n DNA sequence

GAATTCTAATCTCCCTCTCAACCCTACAGTCACCCATTTGGTATATTAAAGATGTGTTGTCTACTGTCTAGTATCCCTCA
AGTAGTGTCAGGAATTAGTCATTTAAATAGTCTGCAAGCCAGGAGTGGTGGCTCATGTCTGTAATTCCAGCACTGGAGAG
GTAGAAGTGGGAGGACTGCTTGAGCTCAAGAGTTTGATATTATCCTGGACAACATAGCAAGACCTCGTCTCTACTTAAAA
AAAAAAAAATTAGCCAGGCATGTGATGTACACCTGTAGTCCCAGCTACTCAGGAGGCCGAAATGGGAGGATCCCTTGAGC
TCAGGAGGTCAAGGCTGCAGTGAGACATGATCTTGCCACTGCACTCCAGCCTGGACAGCAGAGTGAAACCTTGCCTCACG
AAACAGAATACAAAAACAAACAAACAAAAAACTGCTCCGCAATGCGCTTCCTTGATGCTCTACCACATAGGTCTGGGTAC
TTTGTACACATTATCTCATTGCTGTTCGTAATTGTTAGATTAATTTTGTAATATTGATATTATTCCTAGAAAGCTGAGGC
CTCAAGATGATAACTTTTATTTTCTGGACTTGTAATAGCTTTCTCTTGTATTCACCATGTTGTAACTTTCTTAGAGTAGT
AACAATATAAAGTTATTGTGAGTTTTTGCAAACACATGCAAACACAACGACCCATATAGACATTGATGTGAAATTGTCTAT
TGTCAATTTATGGGAAAACAAGTATGTACTTTTTCTACTAAGCCATTGAAACAGGAATAACAGAACAAGATTGAAAGAAT
ACATTTTCCGAAATTACTTGAGTATTATACAAAGACAAGCACGTGGACCTGGGAGGAGGGTTATTGTCCATGACTGGTGT
GTGGAGACAAATGCAGGTTTATAATAGATGGGATGGCATCTAGCGCAATGACTTTGCCATCACTTTTAGAGAGCTCTTGG
GGACCCCAGTACACAAGAGGGGACGCAGGGTATATGTAGACATCTCATTCTTTTTCTTAGTGTGAGAATAAGAATAGCCA
TGACCTGAGTTTATAGACAATGAGCCCTTTTCTCTCTCCCACTCAGCAGCTATGAGATGGCTTGCCCTGCCTCTCTACTA
GGCTGACTCACTCCAAGGCCCAGCAATGGGCAGGGCTCTGTCAGGGCTTTGATAGCACTATCTGCAGAGCCAGGGCCGAG
AAGGGGTGGACTCCAGAGACTCTCCCTCCCATTCCCGAGCAGGGTTTGCTTATTTATGCATTTAAATGATATATTTATTT
TAAAAGAAATAACAGGAGACTGCCCAGCCCTGGCTGTGACATGGAAACTATGTAGAATATTTTGGGTTCCATTTTTTTTT
CCTTCTTTCAGTTAGAGGAAAAGGGGCTCACTGCACATACACTAGACAGAAAGTCAGGAGCTTTGAATCCAAGCCTGATC

Gene Structure - Prokaryotes

5% - Gene - 3
ATGCTACCGOATG. . ........ ;

Regulatory  Promoter Start codon Stop codon
Region




Phylogenetic Trees

How did our genome evolve? How close are we
related to other species?

Primate evolution




Morphological vs. Molecular

* Classical phylogenetic analysis:
morphological features

— number of legs, lengths of legs, etc.

* Modern biological methods allow to use
molecular features

— (Gene sequences
— Protein sequences



Gene Expression

How do genes in one cell work together over time?

What is the difference of gene activity between a young and old
cell or between healthy and sick cell?

What set of genes is activated in cancer cells?



RIIA fragments with fluorescent tags from sample to be tested

RITA fragmeat hybridizes with DITA on GenaeChip



GeneCh ip o

Expression Analysis

GeneChip® Expression Analysis Process

| v /N Biotinylated RNA

- _\ /~/ . from experiment
v
GeneChip expression Each probe cell contains a
millions of copies of a specific B B

analysis probe array

oligonucleotide probe NP S
S~ ~

>, N - — @
NP5 v o

< O Streptavidin-

s A | phycoerythrin
Image of hybridized probe array conjugate



Determine Pathways

Which genes work together? Which genes are active at which times in
which situations in which cells?
How are the functions of different proteins interconnected?

PHOTOSYNTHESRIS
/—Phycobilisomeﬁ

¥

hw hw

N\

N\ 7/

)

ON&ADPH

€ 1

S - A
,‘ ONADP* ooy
Chloroplast : )} on+ \OH* .
Stfoma’_',:;:.,.:; = 6\, S »ih . vg-:.g:;;; ;::5;:;,.. . 2
STRIRroreran, ; (L0 S PRy
TSR o et Cythg
Y ok Ty o T :
Thgtait ||| eBdEf & -

Thylakoid
lumen

Photosystem I
o | (Synechococcus
elongatus)

Photosystem II bg!f

{Synechococcus
elongatus) e 5 [ Carbon fixation in ]
hotosynthe tic organisms
H,0 2H* —02 2% 2H* i - 3H*




Information Derivable from Chip Data

* Microarray data is becoming a key source of data
for computational inference of biological networks

— who iteract with who G vontons <N ——uor-cuu JEETH- EEERR
GLU-6-P :T]
— who regulate who

5.8
Pentose Phosphate
8
Glucose %@—»GLU 6-P—> Pathwa y RNA DNA,
Protei

(TP -GA-3-P gluconeo: genesis

How does this
work?

Glyoxylate

D Cycle

14.7
ruvate
2
3.1 | PoBi
D1
PDX1
Acetyl-COA s
Oxaloacetate
23 mﬁ:ﬂ Oxaloacetate
2.6,
6.2
uTm S 7.
SOCi

° l};\‘lm e




Genetic Regulatory Network

the set of mutually activating and repressing genes
and gene products and their interactions

Cytoplasm
Transcription _cissites

Fact .
Intracellular 208 Genetic

Signaling Regulatorv
Network

Receptors Translation + Nucleus

processing
lon

Channels

Extracellular




Microarray analysis model using gene expression profiles

O

\

P

) i\i\

DNA —-Q- iL- L—

Protein



Gene Regulatory Systems

Module B Module A BP
, — — if CY & CBY it = 1 ifi5=0 i7 = OTX(1)
e else it=05 else i7=0
CY CBf u R OB oGt P OTX Z CG2 SPGOFt CG3 (G4 Stk
0=10+1
2= ifeUl()
[10] L 072 i [1[] !jl 0_0 [ 5 if (ForEorDC) &2 i9=1
{ L : : \ e’ else i9=0
Y fsimh ) NAK if R i3 = CB2(t)
P else B=KkeCBA) | ifiget 10 = 0
‘ (1<ke2) else i10 = i8
| | ifP & CG1 & CB2 =2
! |@> T | else 420 (€62 & G3 & CG4) it =2
Y ‘ else i1 =1
@ | |<7> """" F.E,0C if Ul (fthreshold &R & 440 5= 1 12 = 41010
else i5=0
. Y

i6 = ide(i243)
O =0t

“Programs built into the DNA of every animal.
Eric H. Davidson
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mRNA Expression Data Format

From cDNA microarray E X P matrix
Intensity In.tensity Ratio
(treated) | (wild type) 0.78 | ...... 0.50
Gene A 0.22 0.24 0.917 0.73 | ...... 0.09
Gene B 0.67 1.21 0.598 0.99 |...... 0.56
Gene C 1.13 0.43 2.630 0.60 |...... 0.41
Gene D 2.45 2.44 1.01 0.44 |...... 0.86
0.07 |...... 0.05
0 < ratio < Inf.
0.28 |...... 0.89
-Inf. < log,(ratio) < + Inf. 091 |...... 0.00
where
log,(ratio) > 0: increase = p— "~ 177 '
log,(ratio) < 0: decrease 0.28 |...... 0.89




Problem Definition

Gene 4 Gene 2 Gene 3
)
Gene 1
Gene 5
Gene 6
Microarray data Genetic regulation network

Difficulty in Reconstructing Genetic Regulatory Network
1. mRNA expression is only a partial picture
2. the number of sample i1s much smaller than the number of genes

3. high noise



Time

TR, i)

Q w

o

Clustering

Eisen ef al. (1998):

FIG. 1. Cluster display of data from time course of serum
stimulation of primary human fibroblasts.

Expemeriments:

Foreskin fibroblasts were grown in culture and were
deprived of serum for 48 hr. Serum was added back and
samples taken at time 0, 15 min, 30 min, 1hr, 2 hr, 3 hr, 4
hr, 8 hr, 12 hr, 16 hr, 20 hr, 24 hr.

Clustering:
Correlation Coefficient + Centroid Hierarchical Clustering

Clusters:

(A) cholesterol biosynthesis,

(B) the cell cycle,

(C) the immediate-early response,

(D) signaling and angiogenesis,

(E) wound healing and tissue remodeling.



Clustering

v Grouping genes with similar patterns of expression
Common role gene clustered together
Uncharacterized gene function guessed

| W
-~ D e = 11 =

Similarity measure : standard correlation coefficient, ..
Method : Hierarchical clustering, K-means, SOM ..

Can’t reveal the inner interaction structure !



Molecular Networks Constructed from
High-throughput assays

Correlation or co-expression network: =™ 7T ~
A graphical representation that averages > B A
over observed expression data. Nodes are
mRNA molecules, edges represent
correlations between expression levels of
connected nodes.

Bayesian networks:

A directed, graphical representation of the
probabilities of one observation given another.
Nodes represent mRNA molecules; edges
represent the probability of a particular
expression value given the expression values
of the parent nodes.




Bayesian Network

Probabilistic framework for inference of interactions in the
presence of noise

v G: a directed-acyclic graph structure

v ©: a set of parameters for conditional distribution of each variable

P(A, B, C,D,E)=TP(X | Parent(X))
= P(A) P(B) P(C|A,B) P(D[B) P(E|D)



Bayesian Network - Structure Learning

The two key components of a structure learning algorithm are
a) searching for/generating ‘“‘good” structures and
b) scoring these structures

v" Heuristic Search Approaches
greedy-hill climbing, simulated annealing etc

| @y B

R B B~ 5B
®@<

E P




Bayesian Network — Structure Learning
Get the score for each network with respect to the training data

p[ior Iilfelihood
S(G:D) = log p(D, S") = log p(S™) + log p(D|S™)

Likelihood log p(D|S") = ¥ log p(x; | pa(x;), SP)

Model with the highest log likelihood is a model that is the best
predictor of the data D



Summary

Bayesian network is suitable for genetic network reconstruction
v Can deal with stochastic nature

v" Ideal for sparse domain (Useful for locally interacting components)

v" Can handle noisy data

v’ Missing data

v'Inference reasoning

More research needed
v" Incorporation of more biological information
v To model feedback process

=> Dynamic Bayesian networks



References on networks building

Differential Expression

Inferring Gene Regulator Networks from Time-Ordered Gene Expression Data Using
Differential Equation

by Michiel de Hoon et al. 2002.

Stability of Genetic Regulatory Network with Time Delay

by Luonan chen et al. 2002.

Modeling Gene Expression with Differential Equations

by Ting Chen et al. 1999.

Bayesian Network

Estimating gene networks from gene expression data by combining Bayesian
network model with promoter element detection

by Yoshinori et al. 2003.

Combining Location and Expression data for Principled Discovery of
Genetic Regulatory Network Models

by Hartemink et al. 2002.

Inferrring Subnetworks from Perturbed Expression Profiles

by Pe'er et al. 2001.

Using Bayesian Networks to Analyze Expression Data

by Friedman et al. 2000.



Information Derivable from Chip Data

e The problem is the internal structure of a cell is very complex

Deciphering internal structure of a cell networks
through computational prediction is extremely

challenging and exciting problem!

High-throughput Gl detection
reliability (Costanzo et al., 2010)

0.7

/

70%
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035 1T— 40% — —

0.175 1+— I —

Spurious Missing




Mutation network for S. Cerevisiae
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Mutation network filtered for the genes marked in red (mating)
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Topological link prediction

Observed network Real/Future topology



A Local Community Approach to Link Prediction

People You May Know See All

— — *®
3 mutual friends
251 Add as friend

CN(z,y) = [[(z) NT(y)|




Shift from nodes to links: local community links
and CAR

Local community

Local community links (LCL)

CAR(z,y) =CN(z,y)-LCL=3-3=9

 Cannistraci, C.V., Alanis-Lobato, G. & Ravasi, T. (2013) From link-prediction in brain connectomes
and protein interactomes to the local-community-paradigm in complex networks. Scientific Reports 3,
1613. http://dx.doi. org/10.1038/srep01613. ©The Author 2013. Published by Nature Publishing

Group.



CAR variants of classical link predictors

_F@nT@l_ CN@y _ CAR(z,y)
0@ = N UTw)| ~ T@) UGl > OJCEY) = T uTw))

Internal links, i, = i, = CN(z,y)

External links: €z, €y

PA(z,y) = I'(z)| - [T'(y)|
= (iz + €z)(iy + €y)

l

CPA(z,y) = (CAR(z,y) + ex)(CAR(z,y) + ey)



Testing CAR in brain connectomes
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p<10% p <10° p=0.12

10% of links removed. Mean prediction precision considered relative
to the mean random predictor performance



Network 2 PPIN Macaque cortical connectome San Franosco road network
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LCP-corr(G) = Pearson(CN,v LCL)



LCP and non-LCP networks
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Autoimmune Disease Network

Bipartite network Weighted one-mode projection of
the bipartite network

Diseases Genes

Figure 6.1: One-mode projection of the bipartite network of genes and diseases. In the highlighted example, gene
c is associated with diseases B and D whereas gene e is associated with diseases A, B, C and D. Since they have two
diseases in common (B and D), they are linked with a weight of 2 in the projection of the bipartite network to the
gene space.

 Alanis-Lobato, G., Cannistraci, C.V. & Ravasi, T. (2014) Exploring the
Genetics Underlying Autoimmune Diseases with Network Analysis and Link
Prediction. In Proceedings of the MECBME 2014, 167-170. http://dx.doi.org/
10.1109/MECBME.2014.6783232. ©IEEE 2014. All rights reserved.



Eosinophilic
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Primary biliary cirrhosis 208 /

Type | diabetes,

Vitiligo
\

Restless legs

syndrome
\
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Endometrio
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/ Diabetic retinopathy,
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Folding of chymotrypsin protein




Protein Folding Problem

A protein folds into a unique 3D structure under the
physiological condition.

Can we predict structure (fold) from sequence?

Lysozyme sequence:

KVFGRCELAA
RGYSLGNWVC
QATNRNTDGS
RWWCNDGRTP
SALLSSDITA
DGNGMNAWVA

QAWIRGCRL

AMKRHGLDNY
AAKFESNENT
TDYGILQINS
GSRNLCNIPC
SVNCAKKIVS
WRNRCKGTDV




Many proteins with dissimilar sequences
fold into similar structures

Estimated number of folds: ~10000

Protein Folds: sequential and spatial arrangement of secondary structures




Examples of different Folds

Refers to the spatial arrangement of 1ts secondary
structural elements (o-helices and (-strands)




*Ab initio prediction

(no similarity with any sequence of known structure)

Given only the sequence, predict the 3D structure from “first
principles”, based on energetic or statistical principles.

*Sequence-structure threading = Fold recognition

(sequences with <= 30% sequence identity to sequences of known
structure)

Given the sequence, and a set of folds observed in PDB, see if any
of the sequences could adopt one of the known folds.

Homology Modelling

Given a sequence with homology (> 30%) to a known structure in
PDB, use known structure as template to create a 3D model

from the sequence.



Approaches to Ab-initio Prediction

Molecular Mechanics
+ folded form is the minimal energy

conformation of the protein

Molecular Dynamics
« Simulates the forces that governs the protein

within water

Problems:

Thousands of atoms
Huge number of time steps to reach folded protein
There is no correct energy function

Optimization in multi-minima space (most methods can reach
only local minimum)

=» Intractable problem



Forces Involved in Molecular Interactions

— Bond stretch

— Bond angle bending

— Torsion (bond rotation)

— Hydrogen bonding

— van der Waals interactions

— Electrostatic interactions

— Empirical solvation free energy

V = Zpong 1/2K, (r-reg)? +
Sangle 2 K, (6-0¢.)? +
Ziorsions 112V, [ 1 + cos(ng-y') | +
24 ponds L Vo (1-€200) )2 -V ] +
non bonded L A/ 1% = By/ri® + dig; /e, 1] +
Zatomsi AC; A;

T

~

i
| |
1Il}
| |
i




Electrostatic interactions: Solvent dielectric model?

* Problem: Inhomogeneous permittivity

Depends on local structure and
interactions with water



Folding Free Energy Landscape

/\_/\olec.ulcu" ‘
Dynamics Simulations

100-200 structures
to sample



Ab initio protein folding simulation

Ia
G I L2
. N § . \ l Y = A

\ s (} 7/

V4
Physical time for simulation 10~ seconds
Typical time-step size 10-"% seconds
Number of MD time steps 10™
Atoms in a typical protein and water simulation 32’000
Approximate number of interactions in force calculation 10°
Machine instructions per force calculation 1000
Total number of machine instructions 1023
BlueGene capacity (floating point operations per second) (107%)

= Blue Gene will need 3 years to simulate 100 psec.



Why Do We Need Homology Modelling?

= Ab Initio protein folding (“random” sampling):

— 100 aa, 10 conf./residue gives approximately 10'""
different overall conformations!

* Random sampling i1s NOT feasible, even if conformations
can be sampled at picosecond (10-!% sec) rates.
— LeVinthal, S paradOX if a protein were to attain its correctly folded confignration

by sequentially sampling all the possible conformations, it would require a time longer
age of the universe to arrive at its correct native conformation

= Do fold recognition or homology modelling instead.




Comparative Modeling
(homology modeling)

KOFTKCELSONLYDIDGYGRIALPELICTMFH
TSGYDTQAIVENDESTEYGLEFQISNALWCKSS
QSPOSRNICDITCDKFLDDDITDDIMCAKKIL
DIKGIDYWIAHKALCTEKLEQWLCEKE

Homologous
ﬁ

Share
Similar
Sequence

—

Use as template
& model

KVFGRCELAAAMKRHGLDNYRGYSLGNWVCAAKE
ESNENTQATNRNTDGSTDYGILQINSRWWCNDGR
TPGSRNLCNIPCSALLSSDITASVNCAKKIVSDG
NGMNAWVAWRNRCKGTDVQAWIRGCRL




Comparative modelling of protein structure

scan
align

... KDHPFGFAVPTKNPDGTMNLMNWECAIP

KDPPAGIGAPQDN----OQNIMLWNAVIP
*k * * * Kk * * %

. construct non-conserved
build 1nitial model : : . .

~




Fold Recognition

Homology modeling refers to the easy case when the
template structure can be identified using BLAST alone.

What to do when BLAST fails to identify a template?

*Use more sophisticated sequence methods
*Profile-based BLAST: PSIBLAST
*Hidden Markov Models (HMM)

*Use secondary structure prediction to guide the selection
of a template, or to validate a template

*Use threading programs: sequence-structure alignments

*Use all of these methods! Meta-servers



Fold Recognition: problem definition

A Library of Protein Folds (finite number)

MTYGFRIPLNCERWGHKLSTVILKRP...

Goal: find to what folding template the sequence fits best

l

Find ways to evaluate sequence-structure fit




Essentials of GenTHREADER

Pair Energy —

Solv. Energy —*

Alignment score —* —* Proteins related

Alignment length —» —* Proteins unrelatec

len] (Struct) —» / Output Layer

len2 (Seq) —»



Structure-Based Drug Design

Structure-based
rational drug design is
still a major method
for drug discovery.

HIV protease inhibitor



The role of Bioinformatics in support of
genomics

Gene prediction in

Sequencing/ new genomes

Sequence assembling

ATCGCGCTA
_ w
2
(==
Genome Annotation

Genome

databases




The role of bioinformatics
supporting genetics

1321 agoagottct aatttgggtg ogtggttgag agogotcage tLcagecct goctttgagy ——
1301 gotgggtece ttttoccatc actgggtcat taagagcaag tgggggcgag gogacagoce
1441 tCOCgCacge CLQOUttgcag CLgCacaggt AgOCAcgetg Cagtoectige tgoctggogt
1501 tggggcoccag ggacogotgt gggtttgeooe ttcagatgge cctgocagea gotgeoctge
1561 g993cctgyg getgagccty gacctggcty agcagggcce tocttggcag grggggcagy
1621 agaccctgta ggaggaccece gogoeegcagy cooctgagga gogatgacgg aatataaget
1681 ggrggtggty 99cgcogucy grgtgoQgcaa gagtgegetg ACCATCCAgC LOALCCAGAA
1741 ccattttgtg gacgaatacg accccactat agaggtgage ctagegeoge ogtocaggtg
1801 ccagcagety Ctglgggoga goccaggaca cagocaggat agggotgget goageocctg
1861 grcoocctgea tggtgetgty geccigtets CLOCticcte tageaggacgy gagtcoctog
1921 tctcagcoace ccaggagagg agggggcatg aggggcatga gaggtaccag ggagaggctyg
1981 gctgtgtgaa ctocococac ggaaggtoct gagggggtec ctgagooctg toctoctgea
2041 ggattcctac cggaagcagy togtcattga tggggagacy tgootgttgg acatcctgga

R

|dentification of sequence
functions and functional signals L

viammals

Structures

Phylogenetic trees



Bioinformatics in support of Post-
Genomic Research

-

- e

Genomes: Comparative

Genomics (homology, evolution)

SNPs

Individual Genome
mutations/variations
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(proteins in cells)

DNA microarrays
Transcriptome Sequencing

Functional
Genomics
(mMRNAS)



Bioinformatics in support of
Systems Biology
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Sequence analysis: overview
-

Nucleotide sequence file

Nucleotide
sequence
analysis

sequence
analysis
- coding - Protein sequence file

non-COding - - -

Multiple sequence analysis -




Why 1s Computing and Mathematics
necessary to solve bio-medical problems?

The big change: New technology
allows biologists to perform
experiments much more
efficiently (using complex
machines).

e This provides a growing amount
of information/data from
experiments.

* The data has to be analyzed 1n a
hopefully efficient way.

The European Bioinformatics Institute
(EBI) in Hinxton, UK,

currently stores 20 petabytes (1 petabyte
is 1015 bytes) of data

and back-ups about genes, proteins and

small molecules.

DATA EXPLOSION

The amount of genetic sequencing data stored
at the European Bioinformatics Institute takes
less than a year to double in size.

200

Sequencers begin
giving flurries of data

Terabases

2004 2006 2008 2010 2012



Tools 2010: 1230 databases

2006: 856 databases and tools
and tools Nucleic Acids
2000: 230 databases Nucleic Acids Research
1996: first annual and tools listed in Research :
compilation of compilation »1

databases and tools
lists 57 databases and

tools E

The annual database issue of Nucleic Acids Research (NAR) has grown exponentially

- - . -
-

~ = o8 — -

ate e o -

The online 2011 NAR Database Collection lists
1330 molecular biology databases
http://www.oxfordjournals.org/nar/database/a/




Data exceeds analysis

Data | ,»*

Bioinformatician

days-months

e — — T — T — e a—
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£ LTI

High-throughput experimental technique created
vast amounts of biological data

ARARGEARS

TTEELLL
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Digging out the “treasure” from massive -
biological data represents the primary HE e
challenge in bioinformatics, consequently placing ===
unprecedented demands on big data storage, data

manipulation and efficient analysis of this
information.

Integrated
Data

Systems .
‘ i Itl

Biologists are increasingly finding that the management of complex
data sets is becoming a bottleneck for scientific advances.
Therefore, bioinformatics is rapidly become a key technology 1n all
fields of biology.

|||||
|||||




Bioinformatics and Medicne

Technologies  Data .. Applications

Individual
genomics

Individualised
healthcare

Information

Gene

Molecular
medicine



