
3. New eukaryotic genomes sequencing, gene prediction; RNA seq/
Transcriptomics  data analysis 

Human, Mouse, Rat, Cow, 
Sheep, Cat, Dog, Pig, Chicken, 
Drosophila, Bee, Zebrafish, 
Fugu, Nematodes 

Arabidopsis, Rice, Medicago, 
Soybean, Barley, Poplar, 
Tomato, Oat, Wheat, Corn 

S.cerevisiae, S.pombe, Aspergillus 
nidulans, 
Coprinus cinereus 
Cryptococcus neoformans, 
Fusarium graminearum 
Magnaporthe grisea 
Neurospora crassa 
Ustilago maydis  

Anopheles, P. falciparum, E. 
cuniculi, Chlamy, Ciona, Diatom, 
White rot, P. sojae 

Computational gene finding in genomic DNA is a 
problem of central importance to molecular biology due to 
the lack of extensive experimental information for many 
organisms 

The lecture 3 uses personal as well as publicly available WEB and publications materials 

Victor Solovyev 
Computer, Electrical and Mathematical Sciences and Engineering Division 

KAUST, Saudi Arabia 



Translation 

Enhancer 

3’- 5’- 

Core promoter 

Start of 
transcription 

Transcription, 5’-Capping and 3’-polyadenilation 

Splicing (removing of intron sequences) 

Pre-mRNA 

mRNA 

Protein 

5’-non-coding 
    exon 3’-non-coding 

       exon 

Poly-A 
signal Internal exons 

Introns 

ATG-
codon 

Stop-
codon 

Expression stages and structural organization of typical  
eukaryotic protein-coding gene 

The human fragile X mental retardation gene (HUMFMR1S) presents a typical 
example: 17 exons  (40 – 60 bp long) occupy just 3% of 67,000 bp gene sequence.  

the human pleiotrophin gene (HUMPLEIOT) includes a 1 bp exon and one of the 
 alternative forms of the human folate receptor (HSU20391) gene contains a 3 bp exon.  



Ab initio multiple gene prediction approaches 
using single genome sequence 

 
  Probabilistic   Pattern recognition 

Genescan (Burge, Karlin,1997) 
HMMgene (Krogh, 1977) 
Fgenesh (Salamov, Solovyev,1998) 
Genie (Reese et al., 2000) 
Augustus (Sankem Waack, 2003) 
GenMarkHmm (Besemer, Borodovsky, 2005) 
 

Fgenes (Solovyev,1997) 

HMM: Likelihoods of gene 
components 

Discriminant analysis 
 

Balanced score as production 
of  likelihoods, simple 
probabilistic features 

Flexible combinations 
of any discriminative features 

GeneID    (Guigo at al. 1992) 

Neural networks 



Formal Definition of HMMs 
•  A hidden Markov model describes a 

sequence X of symbols and a path π of 
states:  

X = (X1, X2,…,XL ); π = (π1, π2,…, πL):  
1. a finite set of states, Π	


2. a finite set of symbols, S  
3. transition probabilities between states:  
     k, l   Π : akl = P (πi = l/πi-1= k)  
4. emission probabilities  
    ek (b) = P (Xi = b/ πi = k)  

∈



Example – the dishonest casino	


•  In a casino, they use a fair die most of the 
time, but occasionally switch to an unfair 
die. The switch between dice can be 
represented by an HMM: 

1: 1/6 
2: 1/6 
3: 1/6 
4: 1/6 
5: 1/6 
6: 1/6 

1: 1/10 
2: 1/10 
3: 1/10 
4: 1/10 
5: 1/10 
6: 1/2 

FAIR UNFAIR 

0.05 

0.1 

0.95 
0.9 



Dishonest casino - continued	


•  The symbols (observations) are the sequence of 
rolls: 
3 5 6 2 1 4 6 3 6… 

•  What is hidden? 
If the die is fair or unfair: 
f f f f u u u f f 
This is a Markov chain. Except for that, we have:	


•  Emission probabilities: 
Given a state, we have 6 possible symbols, each 
with an emission probability.	




Joint probability of X and π	


It is easy to derive the formula for the joint  
probability of a sequence X and a path π :  
X = (X1, X 2,…,XL ); π = (π1, π2,…, πL): The probability 

for Xi to be the emission from πi is    

The transition probability for given πi it is followed by πi+1 is given 

by  
•  Let aπ1 denote the probability for the 

path to start with π1. Then  

)( ixe
iπ

1+ii
a ππ

€ 

P(x,π)= aπ1 eπ i
i=1

L

∏ (xi)aπ iπ i+1



Hidden Markov Models 

•  Problem:  
– Path is hardly ever known  

•  Calculate: 
– Most Probable Path (Viterbi Algorithm) 



Viterbi Algorithm 

•  Most probable path through an HMM 

•  Can be calculated recursively 

•  Implementation: Dynamic Programming 
–  Initialization; Recursive Step; Trace-Back 



Viterbi DP Matrix 
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Viterbi Algorithm: Recursion 

For sequence position i = 0,1,…,L+1: 
  For state l = 0,1,…,n: 

   Vl(i+1)  =  max [Vk(i) akl )] el(Xi+1 )  k 

Come 
from state 

k 
probability of 

best path  
ending in k 

at time i 

transition  
to state 

l 
emit Xi+1 in 

state l 
probability of 

best path  
ending in l 
at time i+1 



Testing the Viterbi Algorithm  

  A sequence of 300 tosses of fair and loaded dice 



Example of Decoding Problem 
Have observation sequence O, find state sequence Q. 
 
(1) Text   Shakespeare (s) or monkey (m) 
 

      O = ..aefjkuhrgnandshefoundhappinesssdmcamoe… 
      Q = ..mmmmmmssssssssssssssssssssssssssssmmmmmm… 
 
(2) Dice   fair (F) or loaded (L) dice 
 

       O = …
132455644366366345566116345621661124536… 

       Q = …LLLLLLLLLLLLFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLL… 
        
(3) DNA   coding (C) or non-coding (N) 
     

       O = …AACCTTCCGCGCAATATAGGTAACCCCGG… 
       Q = …NNCCCCCCCCCCCCCCCCCNNNNNNNN… 
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Hidden Markov model  
of  

multiple eukaryotic  
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Used in  

HMM based 
programs 

Ei and Ii are different exon  
and intron states,  

respectively (i=0,1,2 reflect  
3 possible different ORF).  

E 5/3 marks non-coding exons 
and 

 I5/I3 are 5’- and 3’-introns  
adjacent to non-coding exons.  

 



Gene prediction task: 

•  27 states consist of  6 exon states (first, last, single and 
3 types of internal exons due to 3 possible reading 
frames) and 7 non-coding states (3 intron, non-coding 
5’- and 3’-, promoter and polyA) in each chain plus non-
coding intergenic region.   



The parse probability  

€ 

P(X,π) = P(q1) P(xi|l(xi
i=1

k−1
∏ ),qi)P(l(xi)|qi)(P(qi+1,qi)
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* *  P(xk|l(xk),qk)P(l(xk)|qk)   

where )( 1qP denotes the initial state probability;  

ii xlxP (|( )|)(()), iii qxlPq  and ),( 1 ii qqP + are the independent joint probabilities of 
generation the subsequence xi of length l in the state qi and transitioning to qi+1 state. 

ii xlxP (|( )|)(()), iii qxlPq  is a production of a probability of generation l-length 
sequence xi and the probability to observe such l-length sequence in the state qi,  
which are computed using the sequence of xi and the statistical data from a training 
set of known genes. 

A gene structure can be considered as an ordered set of state/sub-sequence  
pairs, φ={(q1,x1),(q2,x2),…,(qk,xk)}, called the parse. We call the predicted  
gene structure such parse φ that the probability of generating X according to φ is  
maximal over all possible parses.  
 

Gene prediction task: 



•   Successive states of this HMM model are generated 
according to the Markov process with inclusion of explicit 
state duration density.  

•  The optimal parse is identified by a dynamic programming 
method called the Viterbi algorithm (Forney, 1973).  

•  The algorithm requires o(N2D2L) calculations,  
where N is the number of states, D is the longest duration 

and L is the sequence length (Rabiner, Juang, 1993).  
 
     (Speech recognition: Rabiner, 1989).  
 





Show picture of predicted genes in PDF file  

 FGENESH 2.5 Prediction of potential genes in Homo_sapiens genomic DNA  
 Time    :   Sun Feb 25 09:58:3 9 2007  
 Seq name: 0  
 Length of sequence: 13903  
 Number of predicted genes 1 in +chain 0 in -chain 1  
 Number of predicted exons 9 in +chain 0 in -chain 9  
 Positions of predicted genes and exons: Variant   1 from 1,Score:27.782177  
   G Str   Feature   Sta rt        End    Score           ORF           Len  
 
   1 -      PolA        18               -5.68 
   1 -    1 CDSl       151 -       222    6.45       151 -       222     72  
   1 -    2 CDSi       477 -       575    0.18       477 -       575     99  
   1 -    3 CDSi      1350 -      1415    5.34      1350 -      1415     66  
   1 -    4 CDSi      2238 -      2311    3.81      2238 -      2309     72  
   1 -    5 CDSi      2782 -      2950    9.34      2783 -      2950    168  
   1 -    6 CDSi      4127 -      4283    9.00      4127 -      4282    156  
   1 -    7 CDSi      4980 -      5166    7.86      4982 -      5164    183  
   1 -    8 CDSi      9808 -      9946   -0.90      9809 -      9946    138  
   1 -    9 CDSf     10759 -     10761    5.00     10759 -     10761      3  
   1 -      TSS      11307               -6.29 
 
Predicted protein(s):  
>FGENESH:   1   9 exon (s)    151  -  10761   321 aa, chain - 
MNPPTDPHPSLVPVTAALAFRPCQLLQALIKEASVHGVRLRGGFWEEGLLECCARCLVGA  
PFASLVATGLCFFGVALFCGCGHEALTGTEKLIETYFSKNYQDYEYLI NVIHAFQYVIYG  
TASFFFLYGALLLAEGFYTTGAVRQIFGDYKTTICGKGLSATFVGITYALTVVWLLVFAC  
SAVPVYIYFNTWTTCQSIAFPSKTSASIGSLCADARMYGVLPWNAFPGKVCGSNLLSICK  
TAEFQMTFHLFIAAFVGAAATLVSLQAPYDSKSLGHIDVAKPNIVHFPEENSVLDQTELT  
FMIAATYNFAVLKLMGRGTKF  
 



Fgenesh/Fgenesh++ pipline applied in ~2500 published research 
projects on eukaryotic genome sequencing 

Plant	
  Molecular	
  Biology	
  (2005),	
  57,	
  3,	
  445-­‐460:	
  
	
  "Five	
  ab	
  ini&o	
  programs	
  (FGENESH,	
  GeneMark.hmm,	
  GENSCAN,	
  GlimmerR	
  and	
  Grail)	
  were	
  evaluated	
  for	
  their	
  

accuracy	
  in	
  predicFng	
  maize	
  genes.	
  FGENESH	
  yielded	
  the	
  most	
  accurate	
  and	
  GeneMark.hmm	
  the	
  second	
  
most	
  accurate	
  predicFons"	
  (FGENESH	
  idenFfied	
  11%	
  more	
  correct	
  gene	
  models	
  than	
  GeneMark	
  on	
  a	
  set	
  
of	
  1353	
  test	
  genes).	
  



Accuracy of human gene prediction using similar Mouse or Drosophila proteins.  
  

a) Similarity of mouse protein > 90%  in  921 sequences *)  
 

 Sn ex  Sno ex  Sp ex  Sn nuc  Sp nuc  CC %CG 
Fgenesh  86.2  91.7  88.6  93.9  93.4  0.9334  34 
Genwise  93.9  97.6  95.9  99.0  99.6 0.9926  66 
Fgenesh+  97.3  98.9  98.0  99.1  99.6  0.9936  81 
Prot_map  95.9  98.3  96.9  99.1  99.5  0.9924  73 

 
a) Similarity of Drosophila protein > 80% - 66 sequences  

 
 Sn ex  Sno ex  Sp ex  Sn nuc  Sp nuc  CC CG% 
Fgenesh  90.5  93.8  95.1  97.9  96.9  0.950  55 
Genewise  79.3  83.9  86.8  97.3  99.5  0.985  23 
Fgenesh+  95.1  97.8  97.0  98.9  99.5  0.9914  70 
Prot_map  86.4  95.3  88.1  97.6  99.0  0.982  41 

 
 

Ab initio 



Prot_map example of alignment 
         1        11   2146713   2146723   2146739   2146769 

          gatcacagaggctgg(..)agtgtctgtgtttca?[GGRIVSSKPFAPLNFRINSRNLSg 

          ...............(..)evdhqlkerfanmke  GGRIVSSKPFAPLNFRINSRNLS- 

        248       248       249       259       267       277 

 

    2146797   2146806   2147558   2147568   2147581   2147611 

          ]gtaagaaactctcat(..)ctgtggctcctgcag[acIGTIMRVVELSPLKGSVSWTGK 

           ---------------(..)--------------- -dIGTIMRVVELSPLKGSVSWTGK 

        286       286       286       286       289       299 

 

    2147641   2147671   2147686   2148919   2148926   2148937 

          PVSYYLHTIDRTI]gtgagtatctcgctg(..)ctttcttctttttag[LENYFSSLKNP 

          PVSYYLHTIDRTI ---------------(..)--------------- LENYFSSLKNP 

        309       319       322       322       322       323 

 

    2148967   2148982   2150384   2150391   2150402   2150432 

          KLR]gtaagtttgtgtgtt(..)ctgctctccttccag[EEQEAARRRQQRESKSNAATP 

          KLR ---------------(..)--------------- EEQEAARRRQQRESKSNAATP 

        333       336       336       336       337       347 

 

    2150462   2150492   2150513   2150523   2150609   2150619 

          TKGPEGKVAGPADAPM]gtaaggccccagcct(..)ccttgtgtcctccag[DSGAEEEK 

          TKGPEGKVAGPADAPM ---------------(..)--------------- DSGAEEEK 

        357       367       373       373       373       373 

 

     



FGENESH++: AUTOMATIC EUKARYOTIC GENOME 
ANNOTATION PIPELINE 

1.  RefSeq mRNA mapping by Est_map program - mapped genes are excluded 
from further gene prediction process. 

2.  Map all known proteins (NR) on genome by Prot_map program with gene 
structure reconstruction (find regions occupied by genes) 

3.  Run Fgenesh+ using mapped proteins and selected genome sequences 

4.  Run ab initio Fgenesh HMM gene prediction on the rest of genome. 

5.  Run of Fgenesh gene predictions in large introns of known and predicted 
genes. 

Fgenesh++ can use NGS data such as Transcripts and 
RNASeq reads mapping information on splice sites positions 



Organism specific signal differences: 
start of translation 



Developed	
  organism-­‐specific	
  parameters	
  
for	
  Fgenesh	
  group	
  of	
  programs:	
  

Totally:	
  128	
  eukaryoFc	
  organisms	
  
•  Human, Mouse,  Cow, Drosophila,  Bee, Tribolium, C. elegans, Frog, Fish 

(WUSTL, Baylor, CSHL, JGI)  
•  Dicots (Arabidopsis),  Nicotiana tabacum, Tomato, Grape; Monocots (Corn, 

Rice, Wheat, Barley) (TIGR, Rutgers University) 
       Medicago (University of Minnesota) 
•  Schizosaccharomyces pombe, Neurospora crassa,Aspergillus nidulans, 

Coprinus cinereus, Cryptococcus neoformans, Fusarium graminearum,  
Magnaporthe  grisea, Ustilago maydis, Histoplasma, Coccidioides immitis, 
Rhizopus_oryzae, Sclerotinia sclerotiorum, Stagnosporam nodorum, 
Uncinocarpus reesii  (MIT/Broad Institute), Brugie malayi (TIGR) 

•  Chlamydomonas (single celled green algae), Dictyostelium discoideum 
(amoeba), Entamoeba histolytica, Giardia lamblia,Guillardia theta, 
Hyaloperonospora arabidopsidis, Leischmania major, Phaeodactylum 
tricornutum, Plasmodium falciparum, Toxoplasma gondii, 
Trypanosoma_brucei   



Velasco R. et al (2007) A High 
Quality Draft Consensus 
Sequence of the Genome of a 
Heterozygous Grapevine Variety. 
PLoS ONE 2(12): e1326.  

 





Draft genome sequence of the oilseed species Ricinus communis 
Nature Biotechnology 28, 951–956 (2010) 
J. Craig Venter Institute (JCVI), United States Department of Agriculture 

Castor bean  is a highly valued oilseed crop for lubricant, 
cosmetic, medical and specialty chemical applications.  
It has also been proposed as a potential source of 
biodiesel. 

Jute Genome Project 

Rubber tree  
(Hevea brasiliensis)  
genome 

The genome 
information will 
enable researchers 
to understand 
genetic 
characteristics of 
different breeds of 
rubber trees 

A major trait 
that needs to be 
manipulated for 
jute is its fiber  
length and fiber 
quality.  

Fgenesh++ pipeline 
used to identify genes in 
these NGS projects 



Many gene variants are completely absent in 
genomic sequence annotations  

•  Non canonical splice sites 
•  Alternatively spliced genes 
•  Alternative promoters 
•  Alternative poly-A 

While a decade ago, alternative splicing of a gene was considered unusual.   
It turns out that it’s a nearly universal feature of human genes. 
 
Report of total cell mRNA sequencing to investigate alternative splicing  
in more than a dozen human tissue and cell lines (Nature, 2011) 
indicates that 92-94%of human genes undergo alternative splicing, "
86% with a minor isoform frequency of 15% or more. 

This new genes/gene variants can be discovered from RNASeq NGS data 





RNA-Seq:     Whole Transcriptome Sequencing  

 



RNASeq can be used to reveal tissue-specific alternative splicing, 
 novel genes and transcripts and genomic structural variations.  
 
As many genes have multiple isoforms, many of which share exons, 
 and many genes families have close paralogs, some reads cannot be  
assigned unequivocally to a transcript.  
 
The analysis of RNA-Seq data presents major challenges  
in transcript assembly and abundance estimation,  
arising from the ambiguous assignment of reads to isoforms 
  
These computational challenges fall into three main categories:  
(i)  read mapping, 
(ii)  transcriptome reconstruction and 
(iii) expression quantification.  
 
 



Single Nucleotide 
Polymorphism 

• Occurrence: once in every 300-1000 bases. 
• SNPs (“snips”): Naturally occurring variants that affect a 
single nucleotide. 
• SNPs are responsible e.g. for hair colour, but are also the 
reason for individual differences in respons to drugs.  





100 000 deaths annually in USA 





ATTTTATATTACATTAACAAGCTAATTTGCA 
||||||||||||||||||||||||||||||| 
8898989988848889888888889889888 
ATTTTATATTACATTAACAAGCTAATTTGCA 
ATTTTATATTACATTAACAAGCTAA...... 
ATTTTATATTACATTAACAAGCTNA...... 
ATTTTATATTACATTAACAANCTAA...... 
ATTTTATATTATATTAACAAGCTAA...... 
ATTTTATATTACATTNNCANNNNAA...... 
NTTTTATATTACATTAACNNGCTAA...... 
ATTTTATATTATATTAACAAGCNNN...... 
NTTTTATATTNCATTAACAAGCTNA...... 
ANNTTATATTATATTAACAAGCTAA...... 
ATTTTATATTATATTAACAANNTNA...... 
NTTTTATATTATATTAACAAGNTNN...... 
ATTTTATATTACATTAACAAGCTAAT..... 
ATTTTATATTACATTAACNAGCTNNT..... 
NNTTTATATTATATTAACAAGCTAAT..... 
ATTTTATATTACNTTAACAAGCTNNT..... 
ATTTTATATTANATTAACAANCTAAN..... 
ATTTTATATTATATTAACAANCTAAT..... 
ATTTTATATTACATTAACAAGCTAATT.... 
ATTTTATATTACATTAACAAGCTAATT.... 
ANNTTATATTACATTAACAAGCTAATT.... 
ATTTTATATTACATTAACAAGCNAATT.... 
NTTTTANATTACATTAACAAGCTAATT.... 
ATTTTATATTATATTAACAAGCTAATT.... 
ATTTTATATTATATTAACAAGCTAATT.... 

SNP discovery and their 
effect analysis 



SNP Toolbox: to analyze and  select SNPs with given characteristics 
                genome group or or disease-specific   



How RNA-seq works 

Figure	
  from	
  Wang	
  et.	
  al,	
  RNA-­‐Seq:	
  a	
  revoluLonary	
  tool	
  for	
  transcriptomics,	
  Nat.	
  Rev.	
  GeneFcs	
  10,	
  57-­‐63,	
  2009).	
  

Next	
  generaFon	
  sequencing	
  (NGS)	
  

Sample	
  preparaFon	
  

Data	
  analysis:	
  
ü Mapping	
  reads	
  
ü VisualizaFon	
  (Gbrowser)	
  
ü De	
  novo	
  assembly	
  
ü QuanFficaFon	
  	
  



How do I quantify expression from RNA-seq? 
RPKM: Reads per Kb million (Mortazavi et al. Nature Methods 2008) 

Longer and more highly expressed transcripts are more likely be represented 
among RNA-seq reads 
 
RPKM normalizes by transcript length and the total number of reads captured 
and mapped in the experiment 
 
Sequencing depth can alter RPKM values 
 
 



Multiple mapping 

•  A single tag may occur more than once in 
the reference genome. 

•  The user may choose to ignore tags that 
appear more than n times. 

•  As n gets large, you get more data, but 
also more noise in the data. 



Inexact matching 

•  An observed tag may not exactly match any position in the reference 
genome. 

•  Sometimes, the tag almost matches one or more positions. 
•  Such mismatches may represent a SNP (single-nucleotide 

polymorphism, see wikipedia) or a bad read-out. 
•  The user can specify the maximum number of mismatches, or a 

phred-style quality score threshold. 
•  As the number of allowed mismatches goes up, the number of 

mapped tags increases, but so does the number of incorrectly 
mapped tags. 

? 



Mapping Reads to genomic sequence 

•  Hash Table (Lookup table) 
–  FAST, but requires perfect matches.  

•  Dynamic Programming (Smith Waterman) 
–  Indels 
–  Mathematically optimal solution 
–  Slow (most programs use Hash Mapping as a prefilter) 

•  Burrows-Wheeler Transform (BW Transform) 
–  FAST (without mismatch/gap) 
–  Memory efficient. 
–  But for gaps/mismatches, it lacks sensitivity 



Spaced seed 
alignment 

•  Tags and tag-sized 
pieces of reference are 
cut into small “seeds.” 

•  Pairs of spaced seeds 
are stored in an index. 

•  Look up spaced seeds for 
each tag. 

•  For each “hit,” confirm 
the remaining positions. 

•  Report results to the user. 



Prefix trie and string 
matching  
 

The prefix trie for 
string X is a tree 
where each edge is 
labeled with a symbol 
and the string 
concatenation of the 
edge symbols on the 
path from a leaf to the 
root gives a unique 
prefix of X.  
  
 











Burrows-Wheeler Transform 
•  To recreate T from BWT(T), repeatedly apply rule: 

•  T = BWT[ LF(i) ] + T; i = LF(i) 
•  Where LF(i) maps row i to row whose first character 

corresponds to i’s last per LF Mapping 

 

Final T 



The LF mapping is also used in exact matching. 
Because the matrix is sorted lexicographically, rows 
beginning with a given sequence appear 
consecutively.  
 

BWT Search  
 



Burrows-Wheeler 

•  Store entire reference 
genome. 

•  Align tag base by base 
from the end. 

•  When tag is traversed, all 
active locations are 
reported. 

•  If no match is found, then 
back up and try a 
substitution. 



Why Burrows-Wheeler? 

•  BWT very compact: 
–   Approximately ½ byte per base 
–   As large as the original text, plus a few 
“extras” 

–   Can fit onto a standard computer with 2GB of 
memory 

•  Linear-time search algorithm 
–   proportional to length of query for exact 

matches 



Inexact 
match 
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Main advantage of BWT against 
suffix array 

•  BWT needs less memory than suffix array 
•  For human genome m = 3 * 109 :  

– Suffix array: mlog2(m) bits = 4m bytes = 12GB 
– BWT: m/4 bytes plus extras = 1 - 2 GB 

•  m/4 bytes to store BWT (2 bits per char) 
•  Suffix array and occurrence counts array take 5 m 

log2 m bits = 20 n bytes 
•  In practice, SA and OCC only partially stored, most 

elements are computed on demand (takes time!) 
•  Tradeoff between time and space 



List of reads mappers: Bioinformatics. 2012 Dec 15;28(24):3169-77.  
 



List of reads mappers (continuation) 



!

%" #mapped" ReadsMap" #mapped" BWT"
mutations" reads" Sn" Sp" reads" Sn" Sp"

1" 18363276" 0.88783"" 0.92828" 20428.64" 0.91541" "0.91408"
2" 18368502" 0.75714"" 0.79191" 17334.35" 0.78026" "0.77373"
3" 18361496" 0.79248"" 0.82913" 17974.39" 0.81714" "0.78807"
4" 18365644" 0.64525"" 0.67502" 17068.01" 0.66489" "0.59820"
5" 18361920" 0.65808"" 0.68847" 16426.47" 0.67852" "0.53796"
6" 18364062" 0.63162"" 0.66118" 15978.07" 0.65195" "0.42795"
7" 18369140" 0.61925"" 0.64801" 15987.15" 0.63861" "0.32685"
8" 18367384" 0.59114"" 0.61875" 16378.48" 0.60893" "0.23003"
9" 18373472" 0.58140"" 0.60824" 17666.77" 0.60000" "0.16000"
10" 18371406" 0.54331"" 0.56774" 18658.51" 0.56072" "0.10136"

"

Mapping reads with mutated sequences 



ReadsMap  
Workflow	
  of	
  alignment	
  of	
  genomic	
  reads	
  (no	
  intron	
  inserFons)	
  to	
  the	
  reference	
  genome	
  

Draft alignment 

 
Creation of unaligned 

 reads list 
 

Try to find the most «obvious» alignments 
 (high speed)  60-80% of reads 

 
Fine alignment 

 

Try to find nontrivial alignments 
 (low speed) 

(Optional) 
Finding consensus 

 and realigning 

Replacement of original target  
contig with the «corrected» one can make 

alignments more reliable in their tail 
 positions 

Calculating the 
«coverage vector» 

Finding alignments  
(for each target contig) 

Identification оf valid  
aligned pairs 

Selecting the best 
variants Finding location with  the highest 

score for each read 

Creating the 
«remove vector» 

«Remove vector»  
contains flags for  

cleaning procedure 

Cleaning and recording 
the «final» variant of 

alignment 

Converting to the 
required output format 



 Tests	
  results	
  on	
  genome	
  reads	
  
Reads # Aligned 

(Percent) 
Alignments 

Number 
True 

alignments 
Sp Sn 

BWA (no pair) 18 363 068 18 277 290 
(0.99533) 

18 277 290 17 836 240 0.97587 0.97131 

BWA (pair) 18 363 068 18 359 440 
(0.99980) 

18 359 440 18 087 459 0.98519 0.98499 

TopHat (no 
pair) 

18 363 068 17 527 411 
(0.95449) 

19 039 852 17 4988 77 0.91907 0.95294 

TopHat (pair) 
 

18 363 068 18 076 620 
(0.98440) 

19 018 097 18 047 001 0.94894 0.98279 

Bowtie (no 
pair) 

18 363 068 
 

18 186 084 
(0.99036) 

19 782 028 18 170 026 0.91851 0.98949 

Bowtie (pair) 18 363 068 
 

18 010 584 
(0.98080) 

19 337 086 17 997 376 0.93072 0.98009 

ReadsMap_unspl 
(no pair) 

18 363 068 18 363 057 
(0.99999) 

19 887 669 18 252 554 0.91778 0.99398 

ReadsMap_unspl 
(pair) 
 

18 363 068 18 363 036 
(0.99999) 

19 048 464 18 257 367 0.95847 0.99424 

CleanReads 
ReadsMap_unspl 
(no pair) 

18 363 068 18 363 058  
(0.99999) 

19 889 301 18 312 219 0.92071 0.99723 

CleanReads 
ReadsMap_unspl 
(pair) 
 

18 363 068 18 363 038 
(0.99999) 

19 047 654 18 315 257 0.96155 0.99740 
 



ReadsMap:  (generates right alignment) 

Bowtie (Langmead et al., 2010) (generates random alignment of the left short segment) 

Example of read alignment disrupted by intron close to the read end 



ReadsMap	
  Intron	
  RestoraFon	
  example	
  using	
  reliably	
  
mapped	
  reads	
  

Intron restoration procedure in the case of short unaligned flanks. 
 

А. Initial "draft" alignment. At the left end there is the short unaligned flank 
of 3 nucleotides length (marked by red color). 
 

nnnnnn(..)ttgaatataaaagtatACCTTTCTATCACCACCCTTATTTATTTCTGGTTCTTGAGACATTTCctgcagatgcaaaaac(..) 
......(..)................|||||||||||||||||||||||||||||||||||||||||||||||................(..) 
------(..)-------------tcaACCTTTCTATCACCACCCTTATTTATTTCTGGTTCTTGAGACATTTC----------------(..) 
 

В. Reliable(intron containing) alignment that «support» a potential intron. At the 
edges of blocks there are classic splicing sites (CT-AC in complement chain) and 
size of blocks is sufficient to postulate the «correctness» of the current 
alignment. 
 

tt  CATTTCTTCTTCAAC]cttgaatgaaagtttg(..)gaatataaaagtatac[CTTTCTATCACCACCCTTATTTATTTCTGGTTCTT  ga 
..  ||||||||||||||| ................(..)................ |||||||||||||||||||||||||||||||||||  .. 
--  CATTTCTTCTTCAAC ----------------(..)---------------- CTTTCTATCACCACCCTTATTTATTTCTGGTTCTT  -- 
 
 

С. Result of intron restoration. Based on «supporting» alignments, not only 3 
unaligned nucleotides (see A) but also 2 neighboring ones, that were originally 
the part of the main block (marked with color), were moved to the left exon. As a 
result the read is not just fully aligned, but the intron is also correctly 
located. 
 

ctTCAAC]cttgaatgaaagtttg(..)gaatataaaagtatac[CTTTCTATCACCACCCTTATTTATTTCTGGTTCTTGAGACATTTCct 
..||||| ................(..)................ |||||||||||||||||||||||||||||||||||||||||||||.. 
--TCAAC ----------------(..)---------------- CTTTCTATCACCACCCTTATTTATTTCTGGTTCTTGAGACATTTC-- 





ReadsMap	
  	
  
Workflow	
  of	
  alignment	
  of	
  RNASeq	
  reads	
  (with	
  possible	
  intron	
  inserFons)	
  

Finding the «core» of 
a potential alignment  

Finding alignments (for each target contig) 

Have potential 
 intron? 

Adding to list of 
non-spliced reads 

Trying to find introns 

Add to list of spliced 

Searching for introns is a very  
time consuming procedure 

Building a list of paired alignments 

Yes 

No 

Building the list of introns with their scores 

Postprocessing 

Adding to list of spliced 

Restoring introns 

Using the introns list we can  
«find» introns at the tails of some alignments  

Finding best alignments  

Using the «coverage» 
vector in the same 

manner as for  
«genomic» alignments 

Forming a new list of introns 
and using it for next 

attempt to find introns 

Converting to the 
required output format 



Test	
  sets	
  for	
  read	
  mapping	
  so_ware	
  

Length Reads Count Introns Parametrs 

50bp 2 979 624 492 743 (16.5%) insert size = 200 bp, standard deviation = 20 bp, 
coverage = 40 

76bp 1 960 300 485 857 (24.8%) insert size = 200 bp, standard deviation = 20 bp, 
coverage = 40 

100bp 1 489 796 469 319 (33.3%) insert size = 300 bp, standard deviation = 30 bp, 
coverage = 40 

Length Reads Count InDel Parametrs 

76bp 18 363 068 704 (0.002%) 
1-4bp 

insert size = 200 bp, standard deviation = 20 bp, 
coverage = 40 

Genomic reads (generated from 22 Human chromosome) 

mRNA reads 



Spliced reads tests results 
Read length 50bp 76bp 100bp 

Sp Sn Sp Sn Sp Sn 

TopHat 0.92411 0.99418 0.95145 0.98644 0.95673 0.91890 

PASS v 2.1.1 0.89005 0.91547 0.88750 0.90603 0.86458 0.87765 

ReadsMap 0.93715 0.99172 0.96349 0.99404 0.96220 0.99327 

CleanReads 
ReadsMap 

0.93727 0.99309 0.96478 0.99537 0.96478 0.99537 



Transomics pipeline for Transcript identification and quantification 



Sequence Explorer to analyze discovered alternative splice forms 
identifyed using nextgen reads or est mapping to genome sequence 



 
We can use a solution of a system of linear equations. Let we have a set of  
n transcripts from a gene locus  T= (t1,t2,…,tn). 
 
 Let these transcripts can generated altogether a variety of m reads  
R=(r1,r2,…,rm). Each transcript can produce just some of these reads or all of them.  
Let matrix G = (gij) will have gi,j =1 if transcript j can generate  
read ri and gi,j =0 otherwise. The i-th column (g1i g2i,…,gmi) of this matrix shows  
which reads the transcript i can generate. If the quantities of j-th transcript would  
be xj, then the number of reads of some type produced by n transcripts can be  
computed as a component of the vector G x’, where the vector x =(x1,….,xn).  
If we have observed numbers of reads from R mapped to the gene locus under 
 consideration b =(b1, b2, …, bk), than we have a system of linear equations:   
                      Gx’ = b’,  
which need to be solved to determine unknown quantities of transcripts x.   
This system of linear equations is overdetermined as there are  
more equations than unknowns (the number of reads is much bigger than the  
number of transcripts: m >> n). The method of least squares can be used to  
find an approximate solution.  

  
Compute a relative abundance of alternative transcripts 

generated 



 

Relative accuracy of spike-in transcript quantification submitted by 
11 participants of the RGASP assessment experiment (presented at 
the workshop by Dr. Kokocinski, The Sanger Institute, Cambridge, 
member of the assessor’s group).  



Gene 1 

Gene 2 Gene 3 

Microarray data Genetic regulation network 

Reconstructing Genetic Regulatory Network 

With microarray data we analyze predefined splicing 
isoforms , but it could not be used to identify previously 
uncharacterized events  

Exp. 1 .......... Exp. P 

Gene 1 0.78 .......... 0.50 

Gene 2 0.73 .......... 0.09 

Gene 3 0.99 .......... 0.56 

.....
 ..... .......... ..... 

Gene N 0.28 .......... 0.89 
Gene 6 

Gene 5 

Gene 4 

RNASeq data   nnotation and quantification of all genes 
and their isoforms across samples.  
    



Ongoing research projects in developing Computational 
tools for high-throughput analysis of biological data 

FGENESH++:  an automatic 
eukaryotic gene identification and 
annotation pipeline	



FGENESB:  a complex pipeline for 	


annotation of bacterial genomes: genes, 	


operons, promoters and terminators	


 identification 

Ø  ab initio genome assembling, reconstruction of 
sequence using a reference genome 

Ø  mutation profiling and SNP discovery  
Ø  assembling transcripts from RNASeq data 

Software for analysis of next 
generation sequencing data 

Gene expression regulation  
Ø  Promoter identification 
Ø  De novo functional motifs discovery 
Ø  Gene Expression data analysis 
Ø  Gene networks construction 
Ø  Databases of regulatory sequences 

Eukaryotic genome analysis tools Bacterial genome analysis tools 
Annotation of new genomes 

High-throughput experimental technique created vast amounts of biological data 
 
Digging out the “treasure” from massive biological data represents the 
primary challenge in bioinformatics, consequently placing unprecedented 
demands on big data storage, data manipulation and efficient analysis of this 
information.  
 


