3. New eukaryotic genomes sequencing, gene prediction; RNA seq/ Transcriptomics data analysis

Computational gene finding in genomic DNA is a problem of central importance to molecular biology due to the lack of extensive experimental information for many organisms

Victor Solovyev

Human, Mouse, Rat, Cow, Sheep, Cat, Dog, Pig, Chicken, Drosophila, Bee, Zebrafish, Fugu, Nematodes Arabidopsis, Rice, Medicago, Soybean, Barley, Poplar,

Tomato, Oat, Wheat, Corn S.cerevisiae, S.pombe, Aspergillus nidulans,

Coprinus cinereus
Cryptococcus neoformans,
Fusarium graminearum
Magnaporthe grisea
Neurospora crassa

Ustilago maydis

Anopheles, P. falciparum, E. cuniculi, Chlamy, Ciona, Diatom, White rot, P. sojae

Computer, Electrical and Mathematical Sciences and Engineering Division KAUST, Saudi Arabia

The lecture 3 uses personal as well as publicly available WEB and publications materials

Expression stages and structural organization of typical eukaryotic protein-coding gene

The human fragile X mental retardation gene (HUMFMR1S) presents a typical example: 17 exons (40 – 60 bp long) occupy just 3% of 67,000 bp gene sequence.

the human pleiotrophin gene (HUMPLEIOT) includes a 1 bp exon and one of the alternative forms of the human folate receptor (HSU20391) gene contains a 3 bp exon.

Ab initio multiple gene prediction approaches using single genome sequence

Genescan (Burge, Karlin, 1997)

HMMgene (Krogh, 1977)

Fgenesh (Salamov, Solovyev, 1998)

Genie (Reese et al., 2000)

Augustus (Sankem Waack, 2003)

GenMarkHmm (Besemer, Borodovsky, 2005)

HMM: Likelihoods of gene components

Balanced score as production of likelihoods, simple probabilistic features

GeneID (Guigo at al. 1992)

Neural networks

Fgenes (Solovyev,1997)

Discriminant analysis

Flexible combinations of any discriminative features

Formal Definition of HMMs

• A hidden Markov model describes a sequence X of symbols and a path π of states:

$$X = (X1, X2,...,XL); \pi = (\pi 1, \pi 2,..., \pi L)$$
:

- 1. a finite set of states, Π
- 2. a finite set of symbols, S
- 3. transition probabilities between states:

$$k, \models \Pi : a_{kl} = P (\pi_i = l/\pi_{i-1} = k)$$

4. emission probabilities

$$e_{k}(b) = P(Xi = b/\pi_{i} = k)$$

Example – the dishonest casino

 In a casino, they use a fair die most of the time, but occasionally switch to an unfair die. The switch between dice can be represented by an HMM:

Dishonest casino - continued

 The symbols (observations) are the sequence of rolls:

356214636...

What is hidden?
 If the die is fair or unfair:
 f f f u u u f f

This is a Markov chain. Except for that, we have:

Emission probabilities:
 Given a state, we have 6 possible symbols, each
 with an emission probability.

Joint probability of X and π

It is easy to derive the formula for the joint probability of a sequence X and a path π : X = (X1, X 2,...,XL); π = (π 1, π 2,..., π L): The probability for Xi to be the emission from π_i is $\mathcal{C}_{\pi_i}(\mathcal{X}_i)$

The transition probability for given $\pi_{\rm i}$ it is followed by $\pi_{\rm i+1}$ is given by $\mathcal{A}_{\pi_i\pi_{i+1}}$

• Let $a\pi 1$ denote the probability for the path to start with $\pi 1$. Then

$$P(x,\pi) = a_{\pi_1} \prod_{i=1}^{L} e_{\pi_i}(x_i) a_{\pi_i \pi_{i+1}}$$

Hidden Markov Models

- Problem:
 - Path is hardly ever known
- Calculate:
 - Most Probable Path (Viterbi Algorithm)

Viterbi Algorithm

Most probable path through an HMM

Can be calculated recursively

- Implementation: Dynamic Programming
 - Initialization; Recursive Step; Trace-Back

Viterbi DP Matrix

Viterbi Algorithm: Recursion

Testing the Viterbi Algorithm

A sequence of 300 tosses of fair and loaded dice

Rolls Die Viterbi	315116246446644245311321631164152133625144543631656626566666 FFFFFFFFFFFFFFFFFFFFFFFFFFF	
Rolls Die Viterbi	651166453132651245636664631636663162326455236266666625151631 LLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	
Rolls Die Viterbi	222555441666566563564324364131513465146353411126414626253356 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	
Rolls Die Viterbi	366163666466232534413661661163252562462255265252266435353336 LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFF	
Rolls Die Viterbi	233121625364414432335163243633665562466662632666612355245242 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	

Example of Decoding Problem

Have observation sequence **O**, find state sequence **Q**.

- (1) Text Shakespeare (s) or monkey (m)
 - O = ..aefjkuhrgnandshefoundhappinesssdmcamoe...
- (2) Dice fair (F) or loaded (L) dice

```
O = \dots
```

132455644366366345566116345621661124536...

- (3) DNA coding (C) or non-coding (N)
 - O = ...AACCTTCCGCGCAATATAGGTAACCCCGG...
 - Q = ...NNCCCCCCCCCCCCCCNNNNNNN...

Hidden Markov model of multiple eukaryotic genes

Used in HMM based programs

E_i and I_i are different exon and intron states, respectively (*i*=0,1,2 reflect 3 possible different ORF).

E 5/3 marks non-coding exons and 15/13 are 5' - and 3' -introns adjacent to non-coding exons.

Gene prediction task:

• 27 states consist of 6 exon states (first, last, single and 3 types of internal exons due to 3 possible reading frames) and 7 non-coding states (3 intron, non-coding 5' - and 3' -, promoter and polyA) in each chain plus non-coding intergenic region.

Gene prediction task:

A gene structure can be considered as an ordered set of state/sub-sequence pairs, ϕ ={(q1,x1),(q2,x2),...,(qk,xk)}, called the parse. We call the predicted gene structure such parse ϕ that the probability of generating X according to ϕ is maximal over all possible parses.

The parse probability

$$P(X,\pi) = P(q_1) \begin{pmatrix} k-1 \\ \prod\limits_{i=1}^{k-1} P(x_i/l(x_i),q_i) P(l(x_i)/q_i) (P(q_{i+1},q_i)) \\ P(x_k/l(x_k),q_k) P(l(x_k)/q_k) \end{pmatrix} P(x_k/l(x_k),q_k) P(l(x_k)/q_k)$$

where $P(q_1)$ denotes the initial state probability;

 $P(x_i | l(x_i), q_i)P(l(x_i) | q_i)$ and $P(q_{i+1}, q_i)$ are the independent joint probabilities of generation the subsequence x_i of length l in the state q_i and transitioning to q_{i+1} state. $P(x_i | l(x_i), q_i)P(l(x_i) | q_i)$ is a production of a probability of generation l-length sequence x_i and the probability to observe such l-length sequence in the state q_i , which are computed using the sequence of x_i and the statistical data from a training set of known genes.

- Successive states of this HMM model are generated according to the Markov process with inclusion of explicit state duration density.
- The optimal parse is identified by a dynamic programming method called the Viterbi algorithm (Forney, 1973).
- The algorithm requires o(N²D²L) calculations,

where N is the number of states, D is the longest duration and L is the sequence length (Rabiner, Juang, 1993).

(Speech recognition: Rabiner, 1989).

FGENESH HMM-based gene structure prediction (multiple genes, both chains) Paste nucleotide sequence here: Alternatively, load a local file with sequence in Fasta format: Local file name: Browse... Organism: O Bos taurus O Chicken O Fish O Frog (Xenopodinae) O Human O Mouse ○ Anopheles gambiae ○ Culex ○ Drosophila ○ Honey Bee ○ Tribolium (red flour beetle) O Brugia malayi (parasitic nematode) O C.elegans O Sea urchin O Diatom O Plasmodium falciparum O Phytophthora O Dicot plants (Arabidopsis) O Medicago (legume plant) O Monocot plants (Corn, Rice, Wheat, Barley) O Tomato O Vitis vinifera Chlamydomonas (single celled green algae) O Aspergillus O Batrachochytrium O Botrytis O Coccidioides immitis O Coprinopsis cinerea O Cryt O Fusarium graminearum O Histoplazma (fungus) O Magnaporthe O Neurospora crassa O Phanerochaete chrysosporium (white rot) O Rhizopus oryzae O Schizosaccharomyces pombe O S O Stagnospora nodorum O Uncinocarpus reesii O Ustilago

Show picture of predicted genes in PDF file

FGENESH 2.5 Prediction of potential genes in Homo sapiens genomic DNA Sun Feb 25 09:58:3 9 2007 Seg name: 0 Length of sequence: 13903 Number of predicted genes 1 in +chain 0 in -chain 1 Number of predicted exons 9 in +chain 0 in -chain 9 Positions of predicted genes and exons: Variant 1 from 1, Score: 27.782177 G Str Feature Sta rt End Score ORF Len -5.68 1 -PolA 18 1 CDS1 151 **-**6.45 1 – 222 151 -222 72 2 CDSi 477 -575 0.18 99 1 – 477 -575 1415 3 CDSi 1350 **-**5.34 1350 -1415 66 2238 -4 CDSi 2309 2311 3.81 2238 -72 5 CDSi 2782 -2950 9.34 2783 -2950 168 1 -6 CDSi 4127 **-**4283 9.00 4127 -4282 156 1 – 7 CDSi 1 -4980 **-**5166 7.86 4982 **-**5164 183 1 - 8 CDSi 9808 -9946 -0.90 9809 -9946

10761

5.00

-6.29

10759 -

138

3

10761

Predicted protein(s):

1 - 9 CDSf

1 -

TSS

9 exon (s) 151 - 10761 321 aa, chain ->FGENESH: 1 MNPPTDPHPSLVPVTAALAFRPCOLLOALIKEASVHGVRLRGGFWEEGLLECCARCLVGA PFASLVATGLCFFGVALFCGCGHEALTGTEKLIETYFSKNYODYEYLI NVIHAFOYVIYG TASFFFLYGALLLAEGFYTTGAVROIFGDYKTTICGKGLSATFVGITYALTVVWLLVFAC SAVPVYIYFNTWTTCQSIAFPSKTSASIGSLCADARMYGVLPWNAFPGKVCGSNLLSICK TAEFQMTFHLFIAAFVGAAATLVSLQAPYDSKSLGHIDVAKPNIVHFPEENSVLDQTELT FMIAATYNFAVLKLMGRGTKF

10759 -

11307

Fgenesh/Fgenesh++ pipline applied in ~2500 published research projects on eukaryotic genome sequencing

Sort by date

include patents include citations

Create alert

LG Kral - Plant and Animal Genome XXII Conference, 2014 - pag.confex.com

... Date: Monday, January 13, 2014. Room: Grand Exhibit Hall. Leos G. Kral, University of West Georgia, Carrollton, GA. Adrian Caciula, Georgia State University ... The scaffolds were also imported into an instance of WebApollo along with gene evidence tracks generated by fgenesh ... Cite Save More

Identification of positional candidate genes for response to crowding stress in rainbow trout

S Liu - Plant and Animal Genome XXII Conference, 2014 - pag.confex.com

... Date: Monday, January 13, 2014. Room: Grand Exhibit Hall. Sixin Liu , USDA-ARS-NCCCWA, Kearneysville, WV. Caird E Rexroad, III, USDA-ARS-NCCCWA, Kearneysville ... In total, 980 putative genes in the stress QTL regions were identified using the online program FGENESH ... All 2 versions Cite Save More

[HTML] Application of Bioinformatics in Crop Improvement: Annotating the Putative Soybean Rust resistance gene Rpp3 for Enhancing Marker Assisted Selection

D Okii, AC Luseko, P Tukamuhabwa... - Journal of Proteomics & ..., 2014 - omicsonline.org ... doi: 10.4172/jpb.1000296. Copyright: @ 2014 Okii D, et al. ... i) Prediction of genes using the FGENESH program. The query sovbean FASTA sequence with masked repeats from the censor tool was uploaded to FGENESH tool where gene prediction was performed. ...

Plant Molecular Biology (2005), 57, 3, 445-460:

"Five ab initio programs (FGENESH, GeneMark.hmm, GENSCAN, GlimmerR and Grail) were evaluated for their accuracy in predicting maize genes. FGENESH yielded the most accurate and GeneMark.hmm the second most accurate predictions" (FGENESH identified 11% more correct gene models than GeneMark on a set of 1353 test genes).

Accuracy of human gene prediction using similar Mouse or Drosophila proteins.

a) Similarity of mouse protein > 90% in 921 sequences *)

		Sn ex	Sno ex	Sp ex	Sn nuc	Sp nuc	CC	%CG
<i>†</i>	Fgenesh	86.2	91.7	88.6	93.9	93.4	0.9334	34
	Genwise	93.9	97.6	95.9	99.0	99.6	0.9926	66
	Fgenesh+	97.3	98.9	98.0	99.1	99.6	0.9936	81
	Prot_map	95.9	98.3	96.9	99.1	99.5	0.9924	73

a) \$\square\$ imilarity of Drosophila protein > 80% - 66 sequences

		Sn ex	Sno ex	Sp ex	Sn nuc	Sp nuc	CC	CG%
1	Fgenesh	90.5	93.8	95.1	97.9	96.9	0.950	55
	Genewise	79.3	83.9	86.8	97.3	99.5	0.985	23
	Fgenesh+	95.1	97.8	97.0	98.9	99.5	0.9914	70
Ī	Prot_map	86.4	95.3	88.1	97.6	99.0	0.982	41

Ab initio

Prot_map example of alignment

1	11	2146713	2146723	2146739	2146769	
gat	cacagaggc	tgg()agt	gtctgtgttt	ca?[GGRIVS	SKPFAPLNFR	INSRNLSg
		()evd	hqlkerfanm	ke GGRIVS	SKPFAPLNFR	INSRNLS-
248	248	249	259	267	277	
2146797	2146806	2147558	2147568	2147581	2147611	
]gt	aagaaactc	tcat()ct	gtggctcctg	c <mark>ag</mark> [acIGTI	MRVVELSPLK	GSVSWTGK
		()		dIGTI	MRVVELSPLK	GSVSWTGK
286	286	286	286	289	299	
2147641	2147671	2147686	2148919	2148926	2148937	
PVS	SYYLHTIDRT	I] <mark>gt</mark> gagtat	ctcgctg() ctttcttct	ttttag[LEN	YFSSLKNP
DIIC						
PVS	SYYLHTIDRT	I	()	LEN	YFSSLKNP
309			(322			YFSSLKNP
						YFSSLKNP
309	319	322		322	323	YFSSLKNP
309 2148967	319 2148982	322 2150384	322 2150391	322 2150402	323	
309 2148967 KLF	319 2148982 R] <mark>gt</mark> aagttt	322 215038 4 gtgtgtt(322 2150391) ctgctctcc	322 2150402 ttccag[EEQ	323 2150432	SKSNAATP
309 2148967 KLF	319 2148982 R] <mark>gt</mark> aagttt R	322 2150384 gtgtgtt((322 2150391) ctgctctcc	322 2150402 ttccag[EEQ EEQ	323 2150432 EAARRRQQRE	SKSNAATP
309 2148967 KLF KLF	319 2148982 R] <mark>gt</mark> aagttt R	322 2150384 gtgtgtt((322 2150391) ctgctctcc)	322 2150402 ttccag[EEQ EEQ	323 2150432 EAARRRQQRE	SKSNAATP
309 2148967 KLF KLF 333	319 2148982 R]gtaagttt R	322 2150384 gtgtgtt((336	322 2150391) ctgctctcc)	322 2150402 ttccag [EEQ EEQ 337	323 2150432 EAARRRQQRE EAARRRQQRE 347	SKSNAATP
309 2148967 KLF KLF 333 2150462	319 2148982 R]gtaagttt R 336 2150492	322 2150384 gtgtgtt((336 2150513	322 2150391)ctgctctcc) 336 2150523	322 2150402 ttccag[EEQ EEQ 337 2150609	323 2150432 EAARRRQQRE EAARRRQQRE 347	SKSNAATP
309 2148967 KLF KLF 333 2150462 TKG	319 2148982 R]gtaagttt R 336 2150492 GPEGKVAGPA	322 2150384 gtgtgtt((336 2150513 DAPM]gtaag	322 2150391) ctgctctcc) 336 2150523	322 2150402 ttccag[EEQ EEQ 337 2150609 ()ccttgt	323 2150432 2EAARRRQQRE 2EAARRRQQRE 347 2150619	SKSNAATP SKSNAATP DSGAEEEK

FGENESH++: AUTOMATIC EUKARYOTIC GENOME ANNOTATION PIPELINE

- 1. RefSeq mRNA mapping by *Est_map* program mapped genes are excluded from further gene prediction process.
- 2. Map all known proteins (NR) on genome by *Prot_map* program with gene structure reconstruction (find regions occupied by genes)
- 3. Run *Fgenesh*+ using mapped proteins and selected genome sequences
- 4. Run ab initio *Fgenesh* HMM gene prediction on the rest of genome.
- 5. Run of *Fgenesh* gene predictions in large introns of known and predicted genes.

Fgenesh++ can use NGS data such as Transcripts and RNASeq reads mapping information on splice sites positions

Organism specific signal differences: start of translation

Developed organism-specific parameters for Fgenesh group of programs:

Totally: 128 eukaryotic organisms

- Human, Mouse, Cow, Drosophila, Bee, Tribolium, C. elegans, Frog, Fish (WUSTL, Baylor, CSHL, JGI)
- Dicots (Arabidopsis), Nicotiana tabacum, Tomato, Grape; Monocots (Corn, Rice, Wheat, Barley) (TIGR, Rutgers University)
 Medicago (University of Minnesota)
- Schizosaccharomyces pombe, Neurospora crassa, Aspergillus nidulans, Coprinus cinereus, Cryptococcus neoformans, Fusarium graminearum, Magnaporthe grisea, Ustilago maydis, Histoplasma, Coccidioides immitis, Rhizopus_oryzae, Sclerotinia sclerotiorum, Stagnosporam nodorum, Uncinocarpus reesii (MIT/Broad Institute), Brugie malayi (TIGR)
- Chlamydomonas (single celled green algae), Dictyostelium discoideum (amoeba), Entamoeba histolytica, Giardia lamblia, Guillardia theta, Hyaloperonospora arabidopsidis, Leischmania major, Phaeodactylum tricornutum, Plasmodium falciparum, Toxoplasma gondii, Trypanosoma_brucei

Velasco R. et al (2007) A High Quality Draft Consensus Sequence of the Genome of a Heterozygous Grapevine Variety. **PLoS ONE** 2(12): e1326.

all'Adige (IASMA) in Trentino, Italy, announced that they were almost done sequencing the genome of a Pinot Noir grape used in many countries to make red and sparkling wines. Velasco had been involved in

first fleshy fruit and g plant to have its A key motivation for deciphering the grape genome is to prevent a repeat of the eco-

Wine woes. Powdery mildew (above) and other fungal diseases can devastate vineyards.

plintered into rival rt sequencing was ess has brought both nomic devastation that struck the European wine industry in the late 1800s. At that time, phylloxera, sap-sucking insects from North America, ravaged European grapevines. Today, winemakers and grape researchers are struggling to combat new threats, particularly downy and powdery mildew, diseases that have made their way to Europe from the United States over the past century. These fungi are an environmental as well as an economic nightmare:

Although only about 5% of Europe's farmland is dedicated to wine vineyards, they account for about 70% of the region's fungicide use.

Draft genome sequence of the oilseed species *Ricinus communis Nature Biotechnology 28, 951–956 (2010)*

J. Craig Venter Institute (JCVI), United States Department of Agriculture

Castor bean is a highly valued oilseed crop for lubricant, cosmetic, medical and specialty chemical applications. It has also been proposed as a potential source of biodiesel.

Rubber tree (*Hevea brasiliensis*) genome

The genome information will enable researchers to understand genetic characteristics of different breeds of rubber trees

Fgenesh++ pipeline used to identify genes in these NGS projects

Jute Genome Project

A major trait that needs to be manipulated for jute is its fiber length and fiber quality.

Many gene variants are completely absent in genomic sequence annotations

- Non canonical splice sites
- Alternatively spliced genes
- Alternative promoters
- Alternative poly-A

While a decade ago, alternative splicing of a gene was considered unusual. It turns out that it's a nearly universal feature of human genes.

Report of total cell mRNA sequencing to investigate alternative splicing in more than a dozen human tissue and cell lines (*Nature*, 2011) indicates that 92-94% of human genes undergo alternative splicing, 86% with a minor isoform frequency of 15% or more.

This new genes/gene variants can be discovered from RNASeq NGS data

One Gene, Many Sequences, One Cluster

GenBank is an archive of published sequences

May be many representatives of a given gene

UniGene is an automated system for cataloging putative gene sequences

Goal is one cluster per gene, including alternate splice forms

RNA-Seq: Whole Transcriptome Sequencing

RNASeq can be used to reveal tissue-specific alternative splicing, novel genes and transcripts and genomic structural variations.

As many genes have **multiple isoforms**, many of which share exons, and many genes families have **close paralogs**, some reads cannot be assigned unequivocally to a transcript.

The analysis of RNA-Seq data presents major challenges in transcript assembly and abundance estimation, arising from the ambiguous assignment of reads to isoforms

These computational challenges fall into three main categories:

- (i) read mapping,
- (ii) transcriptome reconstruction and
- (iii) expression quantification.

Single Nucleotide Polymorphism

- •Occurrence: once in every 300-1000 bases.
- •SNPs ("snips"): Naturally occurring variants that affect a single nucleotide.
- •SNPs are responsible e.g. for hair colour, but are also the reason for individual differences in respons to drugs.

Interindividual variability in drug action

NO/LITTLE RESPONSE

SSRIs, tricyclic antidepr 20-40% HMG-CoA reduct 30-75% B2 adrenergic agonist 40-75% RESPONSE

TOO MUCH RESPONSE (ADR)

6,7% serious 0,3% fatal

1000 Genomes Project

SNP Toolbox

A fast and effective tool for analysis of genome variations in human chromosomes.

Human genome variations:

- Analysis
- Visualization
- Filtering
- Damage effect

Built-in database:

- All human chromosomes
- Almost 100 000 genes

Damage effect:

Improved SIFT algorithm

Learn More

SNP discovery and their effect analysis

ATTTTATATTTACATTTAACAAGCTAATTTTGCA
88989899888 4 888988888888988988
$\texttt{ATTTTATATTA} \textcolor{red}{\textbf{C}} \texttt{ATTAACAAGCTAATTTGCA}$
$\texttt{ATTTTATATTA}{\color{red}\textbf{C}} \texttt{ATTAACAAGCTAA}$
$\texttt{ATTTTATATTA}{\color{red}\textbf{C}} \texttt{ATTAACAAGCTNA}$
ATTTTATATTACATTAACAANCTAA
$\texttt{ATTTTATATTA}^{\textbf{T}} \texttt{ATTAACAAGCTAA} \ldots \ldots$
$\texttt{ATTTTATATTA}{\color{red}\textbf{C}} \texttt{ATTNNCANNNNAA}$
$\verb"NTTTATATTA$^{\textbf{C}}$ ATTAACNNGCTAA$
$\texttt{ATTTTATATTA}^{\textbf{T}} \texttt{ATTAACAAGCNNN} \dots$
NTTTTATATTNCATTAACAAGCTNA
${\tt ANNTTATATTA}{\color{red}{\bf T}}{\tt ATTAACAAGCTAA}\dots.$
$\texttt{ATTTTATATTA}^{\textbf{T}} \texttt{ATTAACAANNTNA} \dots \dots$
$\verb"NTTTATATTA" \textbf{T} \verb"ATTAACAAGNTNN$
$\texttt{ATTTTATATTA}{\color{red}\textbf{C}} \texttt{ATTAACAAGCTAAT} \dots$
$\texttt{ATTTATATTA}{\color{red}\textbf{C}} \texttt{ATTAACNAGCTNNT}$
NNTTTATATTA T ATTAACAAGCTAAT
$\texttt{ATTTTATATTA}{\color{red}\textbf{C}} \texttt{NTTAACAAGCTNNT}$
ATTTTATATTANATTAACAANCTAAN
$\texttt{ATTTTATATTA}^{\textbf{T}} \texttt{ATTAACAANCTAAT} \dots$
$\texttt{ATTTTATATTA}{\color{red}\textbf{C}} \texttt{ATTAACAAGCTAATT}\dots$
$\texttt{ATTTTATATTA}{\color{red}\textbf{C}} \texttt{ATTAACAAGCTAATT}\dots$
${\tt ANNTTATATTA}{\color{red}{\bf C}}{\tt ATTAACAAGCTAATT}\dots$
$\texttt{ATTTTATATTA}{\color{red}\textbf{C}} \texttt{ATTAACAAGCNAATT}\dots$
NTTTTANATTACATTAACAAGCTAATT
$\texttt{ATTTTATATTA}^{\textbf{T}} \texttt{ATTAACAAGCTAATT} \dots$
ATTTTATATTATTATTAACAAGCTAATT

SNP Toolbox: to analyze and select SNPs with given characteristics genome group or or disease-specific

Figure from Wang et. al, RNA-Seq: a revolutionary tool for transcriptomics, Nat. Rev. Genetics 10, 57-63, 2009).

How do I quantify expression from RNA-seq?

RPKM: Reads per Kb million (Mortazavi et al. Nature Methods 2008)

Longer and more highly expressed transcripts are more likely be represented among RNA-seq reads

RPKM normalizes by transcript length and the total number of reads captured and mapped in the experiment

Sequencing depth can alter RPKM values

Multiple mapping

- A single tag may occur more than once in the reference genome.
- The user may choose to ignore tags that appear more than *n* times.
- As n gets large, you get more data, but also more noise in the data.

Inexact matching

- An observed tag may not exactly match any position in the reference genome.
- Sometimes, the tag almost matches one or more positions.
- Such mismatches may represent a SNP (single-nucleotide polymorphism, see <u>wikipedia</u>) or a bad read-out.
- The user can specify the maximum number of mismatches, or a phred-style quality score threshold.
- As the number of allowed mismatches goes up, the number of mapped tags increases, but so does the number of incorrectly mapped tags.

Mapping Reads to genomic sequence

- Hash Table (Lookup table)
 - FAST, but requires perfect matches.
- Dynamic Programming (Smith Waterman)
 - Indels
 - Mathematically optimal solution
 - Slow (most programs use Hash Mapping as a prefilter)
- Burrows-Wheeler Transform (BW Transform)
 - FAST (without mismatch/gap)
 - Memory efficient.
 - But for gaps/mismatches, it lacks sensitivity

Spaced seed alignment

- Tags and tag-sized pieces of reference are cut into small "seeds."
- Pairs of spaced seeds are stored in an index.
- Look up spaced seeds for each tag.
- For each "hit," confirm the remaining positions.
- Report results to the user.

Fig. 1. Prefix trie of string 'GOOGOL'. Symbol ∧ marks the start of the string. The two numbers in a node give the SA interval of the string represented by the node (see Section 2.3). The dashed line shows the route of the brute-force search for a query string 'LOL', allowing at most one mismatch. Edge labels in squares mark the mismatches to the query in searching. The only hit is the bold node [1,1] which represents string 'GOL'.

Prefix trie and string matching

The prefix trie for string *X* is a tree where each edge is labeled with a symbol and the string concatenation of the edge symbols on the path from a leaf to the root gives a unique prefix of *X*.

Burrows-Wheeler Transform

Reversible permutation used originally in compression

Fig. 2. Constructing suffix array and BWT string for X = googo1\$. String X is circulated to generate seven strings, which are then lexicographically sorted. After sorting, the positions of the first symbols form the suffix array (6,3,0,5,2,4,1) and the concatenation of the last symbols of the circulated strings gives the BWT string 10\$oogg.

Recovering the string

Burrows-Wheeler Transform

- Property that makes BWT(T) reversible is "LF Mapping"
 - ith occurrence of a character in Last column is same text occurrence as the ith occurrence in First

Burrows-Wheeler Transform

- To recreate T from BWT(T), repeatedly apply rule:
 - T = BWT[LF(i)] + T; i = LF(i)
 - Where LF(i) maps row i to row whose first character corresponds to i's last per LF Mapping

```
Final T
                                                         acaacg
                                     aacg
                                               caacg
                           a c g
$acaacq
           $acaacg
                      $acaacg
                                 $acaacg
                                            $acaacg
                                                       $acaacg
aacg$ac
           aacq$ / c
                      aacg$ac
                                 aacg$ac
                                                       aacq$ac
acaacg$
                      acaacg$
                                 acaacg$
                                            acaacg$
                                            acg$aca
acg$aca
                      acg$aca
caacg$a
                      caacq$a
                                            caacq$a
                                 cg$acaa
                                            cg$acaa
cq$acaa
                      c <del>sack</del>a
                                                       cq$acaa
q $ a c a a c
                      q $ a c a a c
                                 g $ a c a a c
                                            q $ a c a a c
                                                       q $ a c a a c
```

BWT Search

The LF mapping is also used in exact matching. Because the matrix is sorted lexicographically, rows beginning with a given sequence appear consecutively.

Short read Reference genome (> 3 gigabases) Т ACTCCCGTACTCTAAT Chr3 Chr4 Concatenate into single string Burrows-Wheeler transform and indexing Bowtie index (~2 gigabytes) ACTCCCGTACTCTAAT Look up 'suffixes' of read ACTCCCGTACTCTAAT Hits identify positions in genome where read is found Convert each hit back to genome location

Burrows-Wheeler

- Store entire reference genome.
- Align tag base by base from the end.
- When tag is traversed, all active locations are reported.
- If no match is found, then back up and try a substitution.

Why Burrows-Wheeler?

BWT very compact:

Approximately ½ byte per base

As large as the original text, plus a few "extras"

Can fit onto a standard computer with 2GB of memory

Linear-time search algorithm
 proportional to length of query for exact matches

Inexact match

References

- (Bowtie) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Langmead et al, Genome Biology 2009, 10:R25
- SOAP: short oligonucleotide alignment, Ruiqiang Li et al. Bioinformatics (2008) 24: 713-4
- (BWA) Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform, Li Heng and Richard Durbin, (2009) 25:1754–1760
- SOAP2: an improved ultrafast tool for short read alignment, Ruiqiang Li, (2009) 25: 1966–1967
- (MAQ) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Li H, Ruan J, Durbin R. Genome Res. (2008) 18:1851-8.

Main advantage of BWT against suffix array

- BWT needs less memory than suffix array
- For human genome $m = 3 * 10^9$:
 - Suffix array: mlog₂(m) bits = 4m bytes = 12GB
 - BWT: m/4 bytes plus extras = 1 2 GB
 - m/4 bytes to store BWT (2 bits per char)
 - Suffix array and occurrence counts array take 5 m log₂ m bits = 20 n bytes
 - In practice, SA and OCC only partially stored, most elements are computed on demand (takes time!)
 - Tradeoff between time and space

List of reads mappers: Bioinformatics. 2012 Dec 15;28(24):3169-77.

Mapper	Data	Seq.Plat.	Input	Output	Avail.	Version	Cit.	Citations Years	Reference
BFAST	DNA	I,So,4, Hel	(C)FAST(A/Q)	SAM TSV	os	0.7.0	94	37.11	Homer et al. (2009)
Bismark	Bisulfite	I	FASTA/Q	SAM	OS	0.7.3	7	6.21	Krueger and Andrews (2011)
Blat	DNA	N	FASTA	TSV BLAST	OS	34	2844	275.67	Kent (2002)
Bowtie	DNA	I,So,4,Sa,P	(C)FAST(A/Q)	SAM TSV	OS	0.12.7	1168	363.42	Langmead et al. (2009)
Bowtie2	DNA	I,4,Ion	FASTA/Q	SAM TSV	OS	2.0beta5		0.00	Langmead and Salzberg (2012)
BS Seeker	Bisulfite	I	FASTA/Q	SAM	OS		19	9.26	Chen et al. (2010)
BSMAP	Bisulfite	I	FASTA/Q	SAM TSV	OS	2.43	31	11.06	Xi and Li (2009)
BWA	DNA	I,So,4,Sa,P	FASTA/Q	SAM	OS	0.6.2	738	224.20	Li and Durbin (2009)
BWA-SW	DNA	I,So,4,Sa,P	FASTA/Q	SAM	OS	0.6.2	160	67.69	Li and Durbin (2010)
BWT-SW	DNA	N	FASTA	TSV	OS	20070916	45	10.42	Lam et al. (2008)
CloudBurst	DNA	N	FASTA	TSV	OS	1.1	146	46.97	Schatz (2009)
DynMap	DNA	N	FASTA	TSV	OS	0.0.20		0.00	Flouri et al. (2011)
ELAND	DNA	I	FASTA	TSV	Com	2	7	1.09	Unpublished ¹
Exonerate	DNA	N	FASTA	TSV	OS	2.2	255	34.69	Slater and Birney (2005)
GEM	DNA	I, So	FASTA/Q	SAM, Counts	Bin	1.x	4	1.35	Unpublished ²
GenomeMapper	DNA	I	FASTA/Q	BED TSV	OS	0.4.3	31	11.66	Schneeberger et al. (2009)
GMAP	DNA	I,4,Sa,Hel,Ion,P	FASTA/Q	SAM, GFF	OS	2012-04-27	217	29.52	Wu and Watanabe (2005)
GNUMAP	DNA	I	FASTA/Q Illumina	SAM TSV	OS	3.0.2	15	5.73	Clement et al. (2010)
GSNAP	DNA	I,4,Sa,Hel,Ion,P	FASTA/Q	SAM	os	2012-04-27	72	31.61	Wu and Nacu (2010)
MapReads	DNA	So	FASTA/Q	TSV	OS	2.4.1		0.00	Unpublished ³
MapSplice	RNA	I	FASTA/Q	SAM BED	OS	1.15.2	50	28.17	Wang et al. (2010)
MAQ	DNA	I,So	(C)FAST(A/Q)	TSV	OS	0.7.1	957	251.66	Li et al. (2008a)
MicroRazerS	miRNA	N	FASTA	SAM TSV	OS	0.1	7	2.75	Emde et al. (2010)
MOM	DNA	I,4	FASTA	TSV	Bin	0.6	18	5.55	Eaves and Gao (2009)
MOSAIK	DNA	I,So,4,Sa,Hel,Ion,P	(C)FAST(A/Q)	BAM	os	2.1	4	1.18	Unpublished ⁴
mrFAST	miRNA	I	FASTA/Q	SAM	OS	2.1.0.4	158	58.34	Alkan et al. (2009)
mrsFAST	miRNA	I,So	FASTA/Q	SAM	OS	2.3.0	32	18.03	Hach et al. (2010)
Mummer 3	DNA	N	FASTA	TSV	OS	3.23	683	81.58	Kurtz et al. (2004)
Novoalign	DNA	I,So,4,Ion,P	(C)FAST(A/Q) Illumina	SAM TSV	Bin	V2.08.01	137	34.49	Unpublished ⁵
PASS	DNA	I,So,4	(C)FAST(A/Q)	SAM GFF3 BLAST	Bin	1.62	45	13.67	Campagna et al. (2009)
Passion	RNA	I,4,Sa,P	FASTA/Q	BED	OS	1.2.0		0.00	Zhang et al. (2012)
PatMaN	miRNA	N	FASTA	TSV	OS	1.2.2	38	9.36	Prüfer et al. (2008)
PerM	DNA	I,So	(C)FAST(A/Q)	SAM TSV	os	0.4.0	30	10.88	Chen et al. (2009)

List of reads mappers (continuation)

		,								127
ProbeMatch	DNA	I,4,Sa	FASTA	ELAND	OS		6	1.92	Kim et al. (2009)	S
QPALMA	RNA	I,4	Specific	TSV	os	0.9.2	75	21.11	De Bona et al. (2008)	oxfordjournals.org/ by guest on June 26, 2014
RazerS	DNA	I,4	FASTQ	TSV ELAND	OS	1.1	58	20.17	Weese et al. (2009)	
REAL	DNA	I	FASTA/Q	TSV	os	0.0.28		0.00	Frousios et al. (2010)	2
RMAP	DNA	I,So,4	(C)FAST(A/Q)	BED	OS	2.05	162	38.27	Smith et al. (2008)	Ĭ
RNA-Mate	RNA	So	CFASTA	BED Counts	os	1.1	28	10.04	Cloonan et al. (2009)	Dai
RUM	RNA	I,4	FASTA/Q	SAM TSV BED	OS	1.11	2	2.36	Grant et al. (2011)	S.C
SeqMap	DNA	I	FASTA	ELAND	os	1.013	142	37.34	Jiang and Wong (2008)	Ē
SHRiMP	DNA	I,So,4,Hel	(C)FAST(A/Q)	TSV	OS	1.3.2	155	50.91	Rumble et al. (2009)	l le
SHRiMP 2	DNA	I,So,4	FASTA/Q	SAM	os	2.2.2	15	11.76	David et al. (2011)	779
Slider	DNA	I	Illumina	TSV	OS	0.6	39	10.98	Malhis et al. (2009)	S
Slider II	DNA	I	Illumina	TSV	os	1.1	16	7.25	Malhis and Jones (2010)	5
Smalt	DNA	I,4,Sa,Ion,P	FASTA/Q	SAM	OS	0.6.1		0.00	Unpublished ⁶	
SOAP	DNA	I	FASTA/Q	TSV	os	1.11	451	104.41	Li et al. (2008b)	ΙĘ
SOAP2	DNA	I	FASTA/Q	SAM TSV	OS	2.21	294	99.38	Li et al. (2009b)	6
SOAPSplice	RNA	I,4	FASTA/Q	TSV	Bin	1.8	3	3.54	Huang et al. (2011a)	:
SOCS	DNA	So	(C)FAST(A/Q)	TSV	OS	2.1.1	49	14.15	Ondov et al. (2008)	3
SpliceMap	RNA	I	FASTA/Q	SAM BED	os	3.3.5.2	63	29.80	Au et al. (2010)	4
SSAHA	DNA	N	FASTA/Q	TSV	OS	3.1	483	42.29	Ning et al. (2001)	
SSAHA2	DNA	I,4,Sa	FASTA/Q	SAM	Bin	2.5.5	483	44.99	Ning et al. (2001)	
Stampy	DNA	I	FASTA/Q	SAM TSV	Bin	1.0.16	26	16.19	Lunter and Goodson (2011)	
Supersplat	RNA	N	FASTA	TSV	os	1.0	21	9.93	Bryant Jr et al. (2010)	
TopHat	RNA	I	FASTA/Q, GFF	BAM	OS	1.4.1	389	121.04	Trapnell et al. (2009)	
VMATCH	DNA	N	FASTA	TSV	Bin		26	2.75	Unpublished ⁷	
WHAM	DNA	N	FASTQ	SAM	OS	0.1.4	3	3.33	Li et al. (2011)	
X-Mate	DNA	I,So,4	(C)FAST(A/Q)	SAM BED Counts	os	1	1	0.74	Wood et al. (2011)	
ZOOM	DNA	I,So,4	(C)FAST(A/Q)	SAM BED GFF	Com	1.5	109	28.66	Lin et al. (2008)	

Mapping reads with mutated sequences

%	#mapped	ReadsMap		#mapped	BA	WT
mutations	reads	Sn	Sp	reads	Sn	Sp
1	18363276	0.88783	0.92828	20428.64	0.91541	0.91408
2	18368502	0.75714	0.79191	17334.35	0.78026	0.77373
3	18361496	0.79248	0.82913	17974.39	0.81714	0.78807
4	18365644	0.64525	0.67502	17068.01	0.66489	0.59820
5	18361920	0.65808	0.68847	16426.47	0.67852	0.53796
6	18364062	0.63162	0.66118	15978.07	0.65195	0.42795
7	18369140	0.61925	0.64801	15987.15	0.63861	0.32685
8	18367384	0.59114	0.61875	16378.48	0.60893	0.23003
9	18373472	0.58140	0.60824	17666.77	0.60000	0.16000
10	18371406	0.54331	0.56774	18658.51	0.56072	0.10136

ReadsMap

Workflow of alignment of genomic reads (no intron insertions) to the reference genome

Tests results on genome reads

	Reads #	Aligned (Percent)	Alignments Number	True alignments	Sp	Sn
BWA (no pair)	18 363 068	18 277 290 (0.99533)	18 277 290	17 836 240	0.97587	0.97131
BWA (pair)	18 363 068	18 359 440 (0.99980)	18 359 440	18 087 459	0.98519	0.98499
TopHat (no pair)	18 363 068	17 527 411 (0.95449)	19 039 852	17 4988 77	0.91907	0.95294
TopHat (pair)	18 363 068	18 076 620 (0.98440)	19 018 097	18 047 001	0.94894	0.98279
Bowtie (no pair)	18 363 068	18 186 084 (0.99036)	19 782 028	18 170 026	0.91851	0.98949
Bowtie (pair)	18 363 068	18 010 584 (0.98080)	19 337 086	17 997 376	0.93072	0.98009
ReadsMap_unspl (no pair)	18 363 068	18 363 057 (0.99999)	19 887 669	18 252 554	0.91778	0.99398
ReadsMap_unspl (pair)	18 363 068	18 363 036 (0.99999)	19 048 464	18 257 367	0.95847	0.99424
CleanReads ReadsMap_unspl (no pair)	18 363 068	18 363 058 (0.99999)	19 889 301	18 312 219	0.92071	0.99723
CleanReads ReadsMap_unspl (pair)	18 363 068	18 363 038 (0.99999)	19 047 654	18 315 257	0.96155	0.99740

Example of read alignment disrupted by intron close to the read end

ReadsMap: (generates right alignment)

```
1), S:
                           1. L:
                                   76 3
[DD] Sequence:
            3 (
Block of alignment: 2
  1 E: 16275272
              6 [-- CT] P: 16275272
                                1, L: 6, H:100.00, W:
                                                   60, S:0
  2 E: 16277748
             70 [AC --] P: 16277748
                                7, L:
                                      70, H:100.00, W:
                                                   700, S:0
           11 16275256 16275266 16275276 16275285 16277732 16277739
      nnnnnnnnnnnnnnn(..)qtcaqaaaqtaactqqCAAATT]ctatqtataaaattqt(..)taatqtaaacacttac[
      ......(..)....(..)
      -----CAAATT ------(..)------
                                    7
                        1
 16277748 16277758 16277768 16277778 16277788 16277798 16277808 16277818
```

Bowtie (Langmead et al., 2010) (generates random alignment of the left short segment)

```
[DD] Sequence:
                3 (
                      1), S:
                                    1. L:
                                              76 3
Block of alignment: 2
                                                                  -22, S:8
   1 E: 16277745
                  4 [ct CA] P: 16277745
                                       1, L:
                                                 4, H: 50.00, W:
   2 E: 16277749
                 69 [CA tq] P: 16277749
                                          8, L:
                                                   69, H:100.00, W:
                                                                  690. S:8
               11 16277729 16277739 16277747 16277752 16277762 16277772
       nnnnnnnnnnnnnnn(..)ttttaatgtaaacact?[TACA]---[CATTATGACGACTAGAAACAGCATACTCTCTGG
        ----- CAAA tta CATTATGACGACTAGAAACAGCATACTCTCTGG
                                              11
                                                              31
  16277782 16277792 16277802 16277812 16277820 16277830 51304553 51304563
       CCGTCTGTCCAGATAGATCTTGAGAAGATACATCAA]?tgttttgctcaagtag(..)nnnnnnnnnnnnnnnnn
                                      CCGTCTGTCCAGATAGATCTTGAGAAGATACATCAA -----(..)------
                               71
                                       77
                                              77
```

ReadsMap Intron Restoration example using reliably mapped reads

Intron restoration procedure in the case of short unaligned flanks.

A. Initial "draft" alignment. At the left end there is the short unaligned flank of 3 nucleotides length (marked by red color). nnnnnn(..) ttgaatataaaagtatACCTTTCTATCACCACCCTTATTTATTTCTGGTTCTTGAGACATTTCctgcagatgcaaaaac(..) ----(..)-----tcaACCTTTCTATCACCACCCTTATTTATTTCTGGTTCTTGAGACATTTC-----(..) B. Reliable (intron containing) alignment that «support» a potential intron. At the edges of blocks there are classic splicing sites (CT-AC in complement chain) and size of blocks is sufficient to postulate the «correctness» of the current alignment. tt CATTTCTTCTAAC]cttgaatgaaagtttq(..)gaatataaaagtatac[CTTTCTATCACCACCCTTATTTATTTCTGGTTCTT -- CATTTCTTCTAAC -----(..)------CTTTCTATCACCACCCTTATTTATTCTGGTTCTT C. Result of intron restoration. Based on «supporting» alignments, not only 3 unaligned nucleotides (see A) but also 2 neighboring ones, that were originally the part of the main block (marked with color), were moved to the left exon. As a result the read is not just fully aligned, but the intron is also correctly located. ctTCAAC]cttqaatqaaaqtttq(..)qaatataaaaqtatac[CTTTCTATCACCACCCTTATTTATTTCTGGTTCTTGAGACATTTCct

ReadsMap

Workflow of alignment of RNASeq reads (with possible intron insertions)

Test sets for read mapping software

Genomic reads (generated from 22 Human chromosome)

Length	Reads Count	InDel	Parametrs
76bp	18 363 068		insert size = 200 bp, standard deviation = 20 bp, coverage = 40

mRNA reads

Length	Reads Count	Introns	Parametrs
50bp	2 979 624	492 743 (16.5%)	insert size = 200 bp, standard deviation = 20 bp, coverage = 40
76bp	1 960 300	485 857 (24.8%)	insert size = 200 bp, standard deviation = 20 bp, coverage = 40
100bp	1 489 796	469 319 (33.3%)	insert size = 300 bp, standard deviation = 30 bp, coverage = 40

Spliced reads tests results

Read length	50bp		76	bp	100bp		
	Sp Sn		Sp Sn		Sp	Sn	
TopHat	0.92411	0.99418	0.95145	0.98644	0.95673	0.91890	
PASS v 2.1.1	0.89005	0.91547	0.88750	0.90603	0.86458	0.87765	
ReadsMap	0.93715	0.99172	0.96349	0.99404	0.96220	0.99327	
CleanReads <i>ReadsMap</i>	0.93727	0.99309	0.96478	0.99537	0.96478	0.99537	

Transomics pipeline for Transcript identification and quantification

Sequence Explorer to analyze discovered alternative splice forms identifyed using nextgen reads or est mapping to genome sequence

Compute a relative abundance of alternative transcripts generated

We can use a solution of a system of linear equations. Let we have a set of n transcripts from a gene locus $T = (t_1, t_2, ..., t_n)$.

Let these transcripts can generated altogether a variety of m reads $R=(r_1,r_2,...,r_m)$. Each transcript can produce just some of these reads or all of them. Let matrix $G=(g_{ij})$ will have $g_{i,j}=1$ if transcript j can generate read r_i and $g_{i,j}=0$ otherwise. The i-th column $(g_{1i},g_{2i},...,g_{mi})$ of this matrix shows which reads the transcript i can generate. If the quantities of j-th transcript would be x_j , then the number of reads of some type produced by n transcripts can be computed as a component of the vector G X, where the vector $\mathbf{x}=(x_1,...,x_n)$. If we have observed numbers of reads from R mapped to the gene locus under consideration $\mathbf{b}=(\mathbf{b}_1,\mathbf{b}_2,...,\mathbf{b}_k)$, than we have a system of linear equations: $G\mathbf{x}'=\mathbf{b}'$,

which need to be solved to determine **unknown quantities of transcripts x**. This system of linear equations is overdetermined as there are more equations than unknowns (the number of reads is much bigger than the number of transcripts: m >> n). **The method of least squares** can be used to find an approximate solution.

Correlation Coefficient of Spike-ins

Relative accuracy of spike-in transcript quantification submitted by 11 participants of the RGASP assessment experiment (presented at the workshop by Dr. Kokocinski, The Sanger Institute, Cambridge, member of the assessor's group).

Reconstructing Genetic Regulatory Network

RNASeq data nnotation and quantification of all genes and their isoforms across samples.

With microarray data we analyze predefined splicing isoforms, but it could not be used to identify previously uncharacterized events

Ongoing research projects in developing Computational tools for high-throughput analysis of biological data

Eukaryotic genome analysis tools

Bacterial genome analysis tools

Annotation of new genomes
FGENESH++: an automatic
eukaryotic gene identification and
annotation pipeline

FGENESB: a complex pipeline for annotation of bacterial genomes: genes, operons, promoters and terminators identification

Software for analysis of next generation sequencing data

- > ab initio genome assembling, reconstruction of sequence using a reference genome
- > mutation profiling and SNP discovery
- > assembling transcripts from RNASeq data

Gene expression regulation

- Promoter identification
- > De novo functional motifs discovery
- > Gene Expression data analysis
- > Gene networks construction
- > Databases of regulatory sequences

High-throughput experimental technique created vast amounts of biological data

Digging out the "treasure" from massive biological data represents the primary challenge in bioinformatics, consequently placing unprecedented demands on big data storage, data manipulation and efficient analysis of this information.