3. New eukaryotic genomes sequencing, gene prediction; RNA seq/ Transcriptomics data analysis

Computational gene finding in genomic DNA is a problem of central importance to molecular biology due to the lack of extensive experimental information for many

Human, Mouse, Rat, Cow, Sheep, Cat, Dog, Pig, Chicken, Drosophila, Bee, Zebrafish, Fugu, Nematodes

Arabidopsis, Rice, Medicago,

 Soybean, Barley, Poplar, Tomato, Oat, Wheat, CornS.cerevisiae, S.pombe, Aspergillus nidulans, Coprinus cinereus Cryptococcus neoformans, Fusarium graminearum
Magnaporthe grisea
Neurospora crassa
Ustilago maydis organisms

Victor Solovyev
Computer, Electrical and Mathematical Sciences and Engineering Division
KAUST, Saudi Arabia
The lecture 3 uses personal as well as publicly available WEB and publications materials

Expression stages and structural organization of typical eukaryotic protein-coding gene

The human fragile X mental retardation gene (HUMFMR1S) presents a typical example: 17 exons ($40-60$ bp long) occupy just 3% of 67,000 bp gene sequence.
the human pleiotrophin gene (HUMPLEIOT) includes a 1 bp exon and one of the alternative forms of the human folate receptor (HSU20391) gene contains a 3 bp exon.

Ab initio multiple gene prediction approaches using single genome sequence

Genescan (Burge, Karlin,1997)
HMMgene (Krogh, 1977)
Fgenesh (Salamov, Solovyev,1998)
Genie (Reese et al., 2000)
Augustus (Sankem Waack, 2003)
GenMarkHmm (Besemer, Borodovsky, 2005)
HMM: Likelihoods of gene components

Balanced score as production of likelihoods, simple probabilistic features

GeneID (Guigo at al. 1992)
Neural networks
Fgenes (Solovyev, 1997)
Discriminant analysis
Flexible combinations
of any discriminative features

Formal Definition of HMMs

- A hidden Markov model describes a sequence X of symbols and a path π of states:
$X=(X 1, X 2, \ldots, X L) ; \pi=(\pi 1, \pi 2, \ldots, \pi L)$:

1. a finite set of states, Π
2. a finite set of symbols, S
3. transition probabilities between states:

$$
k, \mid \in \Pi: a_{k l}=P\left(\pi_{i}=I / \pi_{i-1}=k\right)
$$

4. emission probabilities

$$
e_{k}(b)=P\left(X i=b / \pi_{i}=k\right)
$$

Example - the dishonest casino

- In a casino, they use a fair die most of the time, but occasionally switch to an unfair die. The switch between dice can be represented by an HMM:

Dishonest casino - continued

- The symbols (observations) are the sequence of rolls:
$356214636 \ldots$
- What is hidden?

If the die is fair or unfair:
ffffuuuff
This is a Markov chain. Except for that, we have:

- Emission probabilities:

Given a state, we have 6 possible symbols, each with an emission probability.

Joint probability of X and π

It is easy to derive the formula for the joint probability of a sequence X and a path π : $\mathrm{X}=(\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{XL}) ; \pi=(\pi 1, \pi 2, \ldots, \pi \mathrm{~L})$: The probability for $X i$ to be the emission from π_{i} is $e_{\pi_{i}}\left(x_{i}\right)$
The transition probability for given π_{i} it is followed by π_{i+1} is given by $\quad a_{\pi_{i} \pi_{i+1}}$

- Let and denote the probability for the path to start with $\pi 1$. Then

$$
P(x, \pi)=a_{\pi 1} \prod_{i=1}^{L} e_{\pi_{i}}\left(x_{i}\right) a_{\pi_{i} \pi_{i+1}}
$$

Hidden Markov Models

- Problem:
- Path is hardly ever known
- Calculate:
- Most Probable Path (Viterbi Algorithm)

Viterbi Algorithm

- Most probable path through an HMM
- Can be calculated recursively
- Implementation: Dynamic Programming
- Initialization; Recursive Step; Trace-Back

Viterbi DP Matrix

Viterbi Algorithm: Recursion

For sequence position $i=0,1, \ldots, L+1$:
For state $I=0,1, \ldots, n$:

Testing the Viterbi Algorithm

A sequence of 300 tosses of fair and loaded dice

$$
\begin{array}{ll}
\text { Rolls } & 315116246446644245311321631164152133625144543631656626566666 \\
\text { Die } & \text { FFFLLLLLLLLLLLLLLL } \\
\text { Viterbi } & \text { FFFLLLLLLLLLLLL }
\end{array}
$$

Rolls 651166453132651245636664631636663162326455236266666625151631 Die LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF Viterbi LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF

Rolls 222555441666566563564324364131513465146353411126414626253356 Die FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLL Viterbi FFFL

Rolls $\quad 366163666466232534413661661163252562462255265252266435353336$ Die LLLLLLLLFF Viterbi LLLLLLLLLLLLFF

Rolls 233121625364414432335163243633665562466662632666612355245242 Die FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF

Example of Decoding Problem

Have observation sequence \boldsymbol{O}, find state sequence \mathbf{Q}.
(1) Text Shakespeare (s) or monkey (m)
$O=$..aefjkuhrgnandshefoundhappinesssdmcamoe...
$Q=$..mmmmmmssssssssssssssssssssssssssssmmmmmm...
(2) Dice fair (F) or loaded (L) dice $O=\ldots$
132455644366366345566116345621661124536... Q = ...LLLLLLLLLLLLFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLL...
(3) DNA coding (C) or non-coding (N)
$O=\ldots A A C C T T C C G C G C A A T A T A G G T A A C C C C G G \ldots$
$Q=\ldots N N C C C C C C C C C C C C C C C C C N N N N N N N . .$.

Hidden Markov model of
multiple eukaryotic genes

Used in HMM based programs
E_{i} and I_{i} are different exon and intron states, respectively ($i=0,1,2$ reflect 3 possible different ORF).
E5/3 marks non-coding exons 15/13 are 5^{\prime} - and 3^{\prime}-introns adjacent to non-coding exons.

Gene prediction task:

- 27 states consist of 6 exon states (first, last, single and 3 types of internal exons due to 3 possible reading frames) and 7 non-coding states (3 intron, non-coding 5 ' - and 3 ' -, promoter and polyA) in each chain plus noncoding intergenic region.

Gene prediction task:

A gene structure can be considered as an ordered set of state/sub-sequence pairs, $\phi=\{(\mathrm{q} 1, \mathrm{x} 1),(\mathrm{q} 2, \mathrm{x} 2), \ldots,(\mathrm{qk}, \mathrm{xk})\}$, called the parse. We call the predicted gene structure such parse ϕ that the probability of generating X according to ϕ is maximal over all possible parses.

The parse probability

$$
P(X, \pi)=P\left(q_{1}\right)\left(\prod_{i=1}^{k-1} P\left(x_{i} / l\left(x_{i}\right), q_{i}\right) P\left(l\left(x_{i}\right) / q_{i}\right)\left(P\left(q_{i+1}, q_{i}\right)\right) P\left(x_{k} l l\left(x_{k}\right), q_{k}\right) P\left(l\left(x_{k}\right) / q_{k}\right)\right.
$$

where $P\left(q_{1}\right)$ denotes the initial state probability;
$P\left(x_{i} \mid l\left(x_{i}\right), q_{i}\right) P\left(l\left(x_{i}\right) \mid q_{i}\right)$ and $P\left(q_{i+1}, q_{i}\right)$ are the independent joint probabilities of generation the subsequence x_{i} of length l in the state q_{i} and transitioning to $\mathrm{q}_{\mathrm{i}+1}$ state. $P\left(x_{i} \mid l\left(x_{i}\right), q_{i}\right) P\left(l\left(x_{i}\right) \mid q_{i}\right)$ is a production of a probability of generation l-length sequence x_{i} and the probability to observe such l-length sequence in the state q_{i}, which are computed using the sequence of x_{i} and the statistical data from a training set of known genes.

- Successive states of this HMM model are generated according to the Markov process with inclusion of explicit state duration density.
- The optimal parse is identified by a dynamic programming method called the Viterbi algorithm (Forney, 1973).
- The algorithm requires $o\left(\mathrm{~N}^{2} \mathrm{D}^{2} \mathrm{~L}\right)$ calculations, where N is the number of states, D is the longest duration and L is the sequence length (Rabiner, Juang, 1993).
(Speech recognition: Rabiner, 1989).

FGENESH

HMM-based gene structure prediction (multiple genes, both chains)

Paste nucleotide sequence here:
\square

Alternatively, load a local file with sequence in Fasta format:
Local file name: \square Browse...

Organism: \odot Bos taurus Ochicken OFish OFrog (Xenopodinae) OHuman OMouse

Anopheles gambiae Oculex ODrosophila OHoney Bee \bigcirc Tribolium (red flour beetle)Brugia malayi (parasitic nematode) C.elegans Sea urchinDiatom OPlasmodium falciparum ○PhytophthoraDicot plants (Arabidopsis) OMedicago (legume plant) OMonocot plants (Corn, Rice, Wheat, Barley)Tomato \bigcirc Vitis viniferaChlamydomonas (single celled green algae)Aspergillus Batrachochytrium \bigcirc Botrytis Coccidioides immitisCoprinopsis cinerea \qquad CryFusarium graminearum OHistoplazma (fungus) OMagnaporthe ONeurospora crassaPhanerochaete chrysosporium (white rot) ORhizopus_oryzae Oschizosaccharomyces pombeStagnospora nodorumUncinocarpus reesii OUstilagoShow picture of predicted genes in PDF file

Predicted protein(s):
>FGENESH: $1 \quad 9$ exon (s) 151 - 10761321 aa, chain -
MNPPTDPHPSLVPVTAALAFRPCQLLQALIKEASVHGVRLRGGFWEEGLLECCARCLVGA PFASLVATGLCFFGVALFCGCGHEALTGTEKLIETYFSKNYQDYEYLI NVIHAFQYVIYG TASFFFLYGALLLAEGFYTTGAVRQIFGDYKTTICGKGLSATFVGITYALTVVWLLVFAC SAVPVYIYFNTWTTCQSIAFPSKTSASIGSLCADARMYGVLPWNAFPGKVCGSNLLSICK TAEFQMTFHLFIAAFVGAAATLVSLQAPYDSKSLGHIDVAKPNIVHFPEENSVLDQTELT FMIAATYNFAVLKLMGRGTKF

Fgenesh/Fgenesh++ pipline applied in ~ 2500 published research projects on eukaryotic genome sequencing

Scholar

Sort by relevance
Sort by date
\checkmark include patents
\checkmark include citations
\checkmark Create alert

About 2,540 results (0.06 sec)

Assembly and Annotation of the Etheostoma tallapoosae Genome
LG Kral - Plant and Animal Genome XXII Conference, 2014 - pag.confex.com
... Date: Monday, January 13, 2014. Room: Grand Exhibit Hall. Leos G. Kral , University of West Georgia, Carrollton, GA. Adrian Caciula, Georgia State University ... The scaffolds were also imported into an instance of WebApollo along with gene evidence tracks generated by fgenesh ...
Cite Save More
Identification of positional candidate genes for response to crowding stress in rainbow trout
S Liu - Plant and Animal Genome XXII Conference, 2014 - pag.confex.com
... Date: Monday, January 13, 2014. Room: Grand Exhibit Hall. Sixin Liu , USDA-ARS-NCCCWA,
Kearneysville, WV. Caird E Rexroad, III , USDA-ARS-NCCCWA, Kearneysville ... In total, 980 putative genes in the stress QTL regions were identified using the online program FGENESH ...
All 2 versions Cite Save More

[HTML] Application of Bioinformatics in Crop Improvement: Annotating the Putative Soybean Rust resistance gene Rpp3 for Enhancing Marker Assisted Selection
D Okii, AC Luseko, P Tukamuhabwa... - Journal of Proteomics \& ..., 2014 - omicsonline.org ... doi: $10.4172 / \mathrm{jpb}$. 1000296 . Copyright: © 2014 Okii D, et al. ... i) Prediction of genes using the FGENESH program. The query soybean FASTA sequence with masked repeats from the censor tool was uploaded to FGENESH tool where gene prediction was performed. ...
-... - ..

Plant Molecular Biology (2005), 57, 3, 445-460:

"Five $a b$ initio programs (FGENESH, GeneMark.hmm, GENSCAN, GlimmerR and Grail) were evaluated for their accuracy in predicting maize genes. FGENESH yielded the most accurate and GeneMark.hmm the second most accurate predictions" (FGENESH identified 11\% more correct gene models than GeneMark on a set of 1353 test genes).

Accuracy of human gene prediction using similar Mouse or Drosophila proteins.

a) Similarity of mouse protein $>90 \%$ in 921 sequences *)

	Sn ex	Sno ex	Sp ex	Sn nuc	Sp nuc	CC	\%CG
Fgenesh	86.2	91.7	88.6	93.9	93.4	0.9334	34
Genwise	93.9	97.6	95.9	99.0	99.6	0.9926	66
Fgenesh+	97.3	98.9	98.0	99.1	99.6	0.9936	81
Prot_map	95.9	98.3	96.9	99.1	99.5	0.9924	73

a) Similarity of Drosophila protein $>80 \%$ - 66 sequences

	Sn ex	Sno ex	Sp ex	Sn nuc	Sp nuc	CC	CG\%
Fgenesh	90.5	93.8	95.1	97.9	96.9	0.950	55
Genewise	79.3	83.9	86.8	97.3	99.5	0.985	23
Fgenesh +	95.1	97.8	97.0	98.9	99.5	0.9914	70
Prot_map	86.4	95.3	88.1	97.6	99.0	0.982	41

Ab initio

Prot_map example of alignment

FGENESH++: AUTOMATIC EUKARYOTIC GENOME ANNOTATION PIPELINE

1. RefSeq mRNA mapping by Est_map program - mapped genes are excluded from further gene prediction process.
2. Map all known proteins (NR) on genome by Prot_map program with gene structure reconstruction (find regions occupied by genes)
3. Run Fgenesh+ using mapped proteins and selected genome sequences
4. Run ab initio Fgenesh HMM gene prediction on the rest of genome.
5. Run of Fgenesh gene predictions in large introns of known and predicted genes.

Fgenesh++ can use NGS data such as Transcripts and RNASeq reads mapping information on splice sites positions

Organism specific signal differences: start of translation

Developed organism-specific parameters for Fgenesh group of programs: Totally: 128 eukaryotic organisms

- Human, Mouse, Cow, Drosophila, Bee, Tribolium, C. elegans, Frog, Fish (WUSTL, Baylor, CSHL, JGI)
- Dicots (Arabidopsis), Nicotiana tabacum, Tomato, Grape; Monocots (Corn, Rice, Wheat, Barley) (TIGR, Rutgers University)
Medicago (University of Minnesota)
- Schizosaccharomyces pombe, Neurospora crassa,Aspergillus nidulans, Coprinus cinereus, Cryptococcus neoformans, Fusarium graminearum, Magnaporthe grisea, Ustilago maydis, Histoplasma, Coccidioides immitis, Rhizopus_oryzae, Sclerotinia sclerotiorum, Stagnosporam nodorum, Uncinocarpus reesii (MIT/Broad Institute), Brugie malayi (TIGR)
- Chlamydomonas (single celled green algae), Dictyostelium discoideum (amoeba), Entamoeba histolytica, Giardia lamblia,Guillardia theta, Hyaloperonospora arabidopsidis, Leischmania major, Phaeodactylum tricornutum, Plasmodium falciparum, Toxoplasma gondii, Trypanosoma_brucei

Velasco R. et al (2007) A High Quality Draft Consensus Sequence of the Genome of a Heterozygous Grapevine Variety. PLoS ONE 2(12): e1326.
all'Adige (IASMA) in Trentino, Italy, announced that they were almost done sequencing the genome of a Pinot Noir grape used in many countries to make red and sparkling wines. Velasco had been involved in

first fleshy fruit and g plant to have its

Wine woes. Powdery mildew (above) and other fungal diseases can devastate vineyards.

A key motivation for deciphering the grape genome is to prevent a repeat of the economic devastation that struck the European wine industry in the late 1800s. At that time, phylloxera, sap-sucking insects from North America, ravaged European grapevines. Today, winemakers and grape researchers are struggling to combat new threats, particularly downy and powdery mildew, diseases that have made their way to Europe from the United States over the past century. These fungi are an environmental as well as an economic nightmare: plintered into rival rt sequencing was ess has brought both

Although only about 5\% of Europe's farmland is dedicated to wine vineyards, they account for about 70% of the region's fungicide use.

Draft genome sequence of the oilseed species Ricinus communes
Nature Biotechnology 28, 951-956 (2010)
J. Craig Venter Institute (JCVI), United States Department of Agriculture

Castor bean is a highly valued oilseed crop for lubricant, cosmetic, medical and specialty chemical applications.
It has also been proposed as a potential source of biodiesel.

Rubber tree (Hevea brasiliensis)
genome

The genome information will enable researchers to understand genetic characteristics of different breeds of rubber trees

Fgenesh++ pipeline used to identify genes in these NGS projects
 ,

Jute Genome Project

A major trait that needs to be manipulated for jute is its fiber length and fiber quality.

Many gene variants are completely absent in genomic sequence annotations

- Non canonical splice sites
- Alternatively spliced genes
- Alternative promoters
- Alternative poly-A

While a decade ago, alternative splicing of a gene was considered unusual. It turns out that it's a nearly universal feature of human genes.

Report of total cell mRNA sequencing to investigate alternative splicing in more than a dozen human tissue and cell lines (Nature, 2011) indicates that 92-94\%of human genes undergo alternative splicing, 86% with a minor isoform frequency of 15% or more.

This new genes/gene variants can be discovered from RNASeq NGS data

NCBI

One Gene, Many Sequences, One Cluster

GenBank is an archive of published sequences

May be many representatives of a given gene

UniGene is an automated system for cataloging putative gene sequences

Goal is one cluster per gene, including alternate splice forms

RNA-Seq: Whole Transcriptome Sequencing

RNASeq can be used to reveal tissue-specific alternative splicing, novel genes and transcripts and genomic structural variations.

As many genes have multiple isoforms, many of which share exons, and many genes families have close paralogs, some reads cannot be assigned unequivocally to a transcript.

The analysis of RNA-Seq data presents major challenges
in transcript assembly and abundance estimation, arising from the ambiguous assignment of reads to isoforms

These computational challenges fall into three main categories:
(i) read mapping,
(ii) transcriptome reconstruction and
(iii) expression quantification.

Single Nucleotide Polymorphism

-Occurrence: once in every 300-1000 bases.
-SNPs ("snips"): Naturally occurring variants that affect a single nucleotide.
-SNPs are responsible e.g. for hair colour, but are also the reason for individual differences in respons to drugs.

Interindividual variability in drug action

Absorption / Excretion
Slow Rapid Slow Rapid

drug-food
interactions

Receptor interactions
 Poor Efficient

GENES

NO/ LITTLE RESPONSE
SSRIs, tricyclic antidepr 20-40\%
HMG-CoA reduct $30-75 \%$
B2 adrenergic agonist 40-75\%

RESPONSE

TOO MUCH RESPONSE (ADR)

6,7\% serious
0,3\% fatal

1000 Genomes Project

Enzyme
Characterization of enzyme
Prediction of drug response

SNP discovery and their effect analysis

ATTTTATATTACATTAACAAGCTAATTTGCA |||||||||||||||||||||||||||| 8898989988848889888888889889888 ATTTTATATTACATTAACAAGCTAATTTGCA ATTTTATATTACATTAACAAGCTAA. ATTTTATATTACATTAACAAGCTNA. ATTTTATATTACATTAACAANCTAA. ATTTTATATTATATTAACAAGCTAA. ATTTTATATTACATTNNCANNNNAA. NTTTTATATTACATTAACNNGCTAA. ATTTTATATTATATTAACAAGCNNN NTTTTATATTNCATTAACAAGCTNA. ANNTTATATTATATTAACAAGCTAA. ATTTTATATTATATTAACAANNTNA. NTTTTATATTATATTAACAAGNTNN ATTTTATATTACATTAACAAGCTAAT ATTTTATATTACATTAACNAGCTNNT NNTTTATATTATATTAACAAGCTAAT..... ATTTTATATTACNTTAACAAGCTNNT ATTTTATATTANATTAACAANCTAAN. ATTTTATATTATATTAACAANCTAAT..... ATTTTATATTACATTAACAAGCTAATT.... ATTTTATATTACATTAACAAGCTAATT.... ANNTTATATTACATTAACAAGCTAATT.... ATTTTATATTACATTAACAAGCNAATT NTTTTANATTACATTAACAAGCTAATT.... ATTTTATATTATATTAACAAGCTAATT.... ATTTTATATTATATTAACAAGCTAATT

SNP Toolbox: to analyze and select SNPs with given characteristics genome group or or disease-specific

Figure from Wang et. al, RNA-Seq: a revolutionary tool for transcriptomics, Nat. Rev. Genetics 10, 57-63, 2009).

How do I quantify expression from RNA-seq?

RPKM: Reads per Kb million (Mortazavi et al. Nature Methods 2008)

Gene A 600 bases Gene B 1100 bases Gene C 1400 bases

Longer and more highly expressed transcripts are more likely be represented among RNA-seq reads

RPKM normalizes by transcript length and the total number of reads captured and mapped in the experiment

Sequencing depth can alter RPKM values

Multiple mapping

- A single tag may occur more than once in the reference genome.
- The user may choose to ignore tags that appear more than n times.
- As n gets large, you get more data, but also more noise in the data.

Inexact matching

- An observed tag may not exactly match any position in the reference genome.
- Sometimes, the tag almost matches one or more positions.
- Such mismatches may represent a SNP (single-nucleotide polymorphism, see wikipedia) or a bad read-out.
- The user can specify the maximum number of mismatches, or a phred-style quality score threshold.
- As the number of allowed mismatches goes up, the number of mapped tags increases, but so does the number of incorrectly mapped tags.

Mapping Reads to genomic sequence

- Hash Table (Lookup table)
- FAST, but requires perfect matches.
- Dynamic Programming (Smith Waterman)
- Indels
- Mathematically optimal solution
- Slow (most programs use Hash Mapping as a prefilter)
- Burrows-Wheeler Transform (BW Transform)
- FAST (without mismatch/gap)
- Memory efficient.
- But for gaps/mismatches, it lacks sensitivity

Spaced seed alignment

- Tags and tag-sized pieces of reference are cut into small "seeds."
- Pairs of spaced seeds are stored in an index.
- Look up spaced seeds for each tag.
- For each "hit," confirm the remaining positions.
- Report results to the user.

Index seed pairs
Seed index

Prefix trie and string matching

The prefix trie for string X is a tree where each edge is labeled with a symbol and the string concatenation of the edge symbols on the path from a leaf to the root gives a unique prefix of X.

Fig. 1. Prefix trie of string 'GOOGOL'. Symbol \wedge marks the start of the string. The two numbers in a node give the SA interval of the string represented by the node (see Section 2.3). The dashed line shows the route of the brute-force search for a query string 'LOL', allowing at most one mismatch. Edge labels in squares mark the mismatches to the query in searching. The only hit is the bold node $[1,1]$ which represents string 'GOL'.

Burrows-Wheeler Transform

- Reversible permutation used originally in compression

	\$acarcg	\$ acaacg
	a acg \$ a c	a acg\$ac
	acaacg\$	acaacg\$
acaacg\$	acg\$aca	acg\$aca
T	c a acg\$ a	caacg ${ }^{\text {a }}$
T	c g \$ a caa	c g \$ aca a
	g\$ acaac	g \$ acaac
	Burrows Wheeler Matrix	Last column

Fig. 2. Constructing suffix array and BWT string for $X=$ googol\$. String X is circulated to generate seven strings, which are then lexicographically sorted. After sorting, the positions of the first symbols form the suffix array ($6,3,0,5,2,4,1$) and the concatenation of the last symbols of the circulated strings gives the BWT string lo\$oogg.

Recovering the string

Burrows-Wheeler Transform

- Property that makes BWT(T) reversible is " LF Mapping"
- $\mathrm{i}^{\text {th }}$ occurrence of a character in Last column is same text occurrence as the $i^{\text {th }}$ occurrence in First column

Burrows Wheeler Matrix

Burrows-Wheeler Transform

- To recreate T from $\mathrm{BWT}(\mathrm{T})$, repeatedly apply rule:
- T = BWT[LF(i)] + T; i = LF(i)
- Where LF(i) maps row i to row whose first character corresponds to i's last per LF Mapping

BWT Search

The LF mapping is also used in exact matching.
Because the matrix is sorted lexicographically, rows beginning with a given sequence appear consecutively.

Burrows-Wheeler

- Store entire reference genome.
- Align tag base by base from the end.
- When tag is traversed, all active locations are reported.
- If no match is found, then back up and try a substitution.

Why Burrows-Wheeler?

BWT very compact:
Approximately $1 / 2$ byte per base
As large as the original text, plus a few
"extras"
Can fit onto a standard computer with 2GB of memory

- Linear-time search algorithm
proportional to length of query for exact matches

References

- (Bowtie) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Langmead et al, Genome Biology 2009, 10:R25
- SOAP: short oligonucleotide alignment, Ruiqiang Li et al. Bioinformatics (2008) 24: 713-4
- (BWA) Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform, Li Heng and Richard Durbin, (2009) 25:1754-1760
- SOAP2: an improved ultrafast tool for short read alignment, Ruiqiang Li, (2009) 25: 1966-1967
- (MAQ) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Li H, Ruan J, Durbin R. Genome Res. (2008) 18:1851-8.

Main advantage of BWT against suffix array

- BWT needs less memory than suffix array
- For human genome $m=3$ * 10^{9} :
- Suffix array: $\operatorname{mlog}_{2}(\mathrm{~m})$ bits $=4 \mathrm{~m}$ bytes $=12 \mathrm{~GB}$
- BWT: m/4 bytes plus extras =1-2 GB
- m/4 bytes to store BWT (2 bits per char)
- Suffix array and occurrence counts array take 5 m $\log _{2} \mathrm{~m}$ bits $=20 \mathrm{n}$ bytes
- In practice, SA and OCC only partially stored, most elements are computed on demand (takes time!)
- Tradeoff between time and space

List of reads mappers: Bioinformatics. 2012 Dec 15;28(24):3169-77.

Mapper	Data	Seq.Plat.	Input	Output	Avail.	Version	Cit.	$\frac{\text { Citations }}{\text { Years }}$	Reference
BFAST	DNA	I,So,4, Hel	(C)FAST(A/Q)	SAM TSV	OS	0.7.0	94	37.11	Homer et al. (2009)
Bismark	Bisulfite	I	FASTA/Q	SAM	OS	0.7.3	7	6.21	Krueger and Andrews (2011)
Blat	DNA	N	FASTA	TSV BLAST	OS	34	2844	275.67	Kent (2002)
Bowtie	DNA	I,So,4,Sa,P	(C)FAST(A/Q)	SAM TSV	OS	0.12 .7	1168	363.42	Langmead et al. (2009)
Bowtie2	DNA	I,4,Ion	FASTA/Q	SAM TSV	OS	2.06 eta5		0.00	Langmead and Salzberg (2012)
BS Seeker	Bisulfite	I	FASTA/Q	SAM	OS		19	9.26	Chen et al. (2010)
BSMAP	Bisulfite	I	FASTA/Q	SAM TSV	OS	2.43	31	11.06	Xi and Li (2009)
BWA	DNA	I,So,4,Sa,P	FASTA/Q	SAM	OS	0.6.2	738	224.20	Li and Durbin (2009)
BWA-SW	DNA	I,So,4,Sa,P	FASTA/Q	SAM	OS	0.6.2	160	67.69	Li and Durbin (2010)
BWT-SW	DNA	N	FASTA	TSV	OS	20070916	45	10.42	Lamet al. (2008)
CloudBurst	DNA	N	FASTA	TSV	OS	1.1	146	46.97	Schatz (2009)
DynMap	DNA	N	FASTA	TSV	OS	0.0.20		0.00	Flouri et al. (2011)
ELAND	DNA	I	FASTA	TSV	Com	2	7	1.09	Unpublished ${ }^{1}$
Exonerate	DNA	N	FASTA	TSV	OS	2.2	255	34.69	Slater and Birney (2005)
GEM	DNA	I, So	FASTA/Q	SAM, Counts	Bin	1.x	4	1.35	Unpublished ${ }^{2}$
GenomeMapper	DNA	I	FASTA/Q	BED TSV	OS	0.4.3	31	11.66	Schneeberger et al. (2009)
GMAP	DNA	I,4,Sa,Hel,Ion, P	FASTA/Q	SAM, GFF	OS	2012-04-27	217	29.52	Wu and Watanabe (2005)
GNUMAP	DNA	I	FASTA/Q Illumina	SAM TSV	OS	3.0.2	15	5.73	Clement et al. (2010)
GSNAP	DNA	I,4,Sa,Hel,Ion, P	FASTA/Q	SAM	OS	2012-04-27	72	31.61	Wu and Nacu (2010)
MapReads	DNA	So	FASTA/Q	TSV	OS	2.4.1		0.00	Unpublished ${ }^{3}$
MapSplice	RNA	I	FASTA/Q	SAM BED	OS	1.15 .2	50	28.17	Wang et al. (2010)
MAQ	DNA	I,So	(C)FAST(A/Q)	TSV	OS	0.7.1	957	251.66	Li etal. (2008a)
MicroRazerS	miRNA	N	FASTA	SAM TSV	OS	0.1	7	2.75	Emde et al. (2010)
MOM	DNA	I,4	FASTA	TSV	Bin	0.6	18	5.55	Eaves and Gao (2009)
MOSAIK	DNA	I,So,4,Sa,Hel,Ion,P	(C)FAST(A/Q)	BAM	OS	2.1	4	1.18	Unpublished ${ }^{4}$
mrFAST	miRNA	I	FASTA/Q	SAM	OS	2.1.0.4	158	58.34	Alkan et al. (2009)
mrsFAST	miRNA	I,So	FASTA/Q	SAM	OS	2.3.0	32	18.03	Hach et al. (2010)
Mummer 3	DNA	N	FASTA	TSV	OS	3.23	683	81.58	Kurtz et al. (2004)
Novoalign	DNA	I,So, 4,Ion, P	(C)FAST(A/Q) Illumina	SAM TSV	Bin	V2.08.01	137	34.49	Unpublished ${ }^{5}$
PASS	DNA	I,So,4	(C)FAST(A/Q)	SAM GFF3 BLAST	Bin	1.62	45	13.67	Campagna et al. (2009)
Passion	RNA	I,4,Sa,P	FASTA/Q	BED	OS	1.2.0		0.00	Zhang et al. (2012)
PatMaN	miRNA	N	FASTA	TSV	OS	1.2.2	38	9.36	Prüfer et al. (2008)
PerM	DNA	I,So	(C)FAST(A/Q)	SAM TSV	OS	0.4.0	30	10.88	Chen et al. (2009)

List of reads mappers (continuation)

ProbeMatch	DNA	1,4,Sa	FASTA	ELAND	OS		6	1.92	Kimet al. (2009)	2\%
QPALMA	RNA	I, 4	Specific	TSV	OS	0.9 .2	75	21.11	De Bona et al. (2008)	\bigcirc
RazerS	DNA	I, 4	FASTQ	TSV ELAND	OS	1.1	58	20.17	Weese et al. (2009)	0
REAL	DNA	I	FASTA/Q	TSV	OS	0.0.28		0.00	Frousios et al. (2010)	$\stackrel{\square}{6}$
RMAP	DNA	I,So,4	(C)FAST(A/Q)	BED	OS	2.05	162	38.27	Smith et al. (2008)	E
RNA-Mate	RNA	So	CFASTA	BED Counts	OS	1.1	28	10.04	Cloonan et al. (2009)	星
RUM	RNA	I, 4	FASTA/Q	SAM TSV BED	OS	1.11	2	2.36	Grant et al. (2011)	\%
SeqMap	DNA	I	FASTA	ELAND	OS	1.013	142	37.34	Jiang and Wong (2008)	迹
SHRiMP	DNA	I,So,4,Hel	(C)FAST(A/Q)	TSV	OS	1.3 .2	155	50.91	Rumble et al. (2009)	\%
SHRiMP 2	DNA	I,So,4	FASTA/Q	SAM	OS	2.2.2	15	11.76	David et al. (2011)	p9
Slider	DNA	I	Illumina	TSV	OS	0.6	39	10.98	Malhis et al. (2009)	\%
Slider II	DNA	I	Illumina	TSV	OS	1.1	16	7.25	Malhis and Jones (2010)	0
Smalt	DNA	I,4,Sa,Ion, P	FASTA/Q	SAM	OS	0.6 .1		0.00	Unpublished ${ }^{6}$	\bigcirc
SOAP	DNA	I	FASTA/Q	TSV	OS	1.11	451	104.41	Li et al. (2008b)	E
SOAP2	DNA	I	FASTA/Q	SAM TSV	OS	2.21	294	99.38	Li et al. (2009b)	N
SOAPSplice	RNA	I, 4	FASTA/Q	TSV	Bin	1.8	3	3.54	Huang et al. (2011a)	
SOCS	DNA	So	(C)FAST(A/Q)	TSV	OS	2.1 .1	49	14.15	Ondov et al. (2008)	O
SpliceMap	RNA	I	FASTA/Q	SAM BED	OS	3.3.5.2	63	29.80	Au et al. (2010)	A
SSAHA	DNA	N	FASTA/Q	TSV	OS	3.1	483	42.29	Ning et al. (2001)	
SSAHA2	DNA	I,4,Sa	FASTA/Q	SAM	Bin	2.5 .5	483	44.99	Ning et al. (2001)	
Stampy	DNA	I	FASTA/Q	SAM TSV	Bin	1.0.16	26	16.19	Lunter and Goodson (2011)	
Supersplat	RNA	N	FASTA	TSV	OS	1.0	21	9.93	Bryant Jr et al. (2010)	
TopHat	RNA	I	FASTA/Q, GFF	BAM	OS	1.4.1	389	121.04	Trapnell et al. (2009)	
VMATCH	DNA	N	FASTA	TSV	Bin		26	2.75	Unpublished ${ }^{7}$	
WHAM	DNA	N	FASTQ	SAM	OS	0.1 .4	3	3.33	Li et al. (2011)	
X-Mate	DNA	I,So,4	(C)FAST(A/Q)	SAM BED Counts	OS	1	1	0.74	Wood et al. (2011)	
ZOOM	DNA	I,So,4	(C)FAST(A/Q)	SAM BED GFF	Com	1.5	109	28.66	Lin et al. (2008)	

Mapping reads with mutated sequences

$\%$	\#mapped	ReadsMap		\#mapped	BWT	
mutations	reads	Sn	Sp	reads	Sn	Sp
$\mathbf{1}$	$\mathbf{1 8 3 6 3 2 7 6}$	$\mathbf{0 . 8 8 7 8 3}$	$\mathbf{0 . 9 2 8 2 8}$	$\mathbf{2 0 4 2 8 . 6 4}$	$\mathbf{0 . 9 1 5 4 1}$	$\mathbf{0 . 9 1 4 0 8}$
$\mathbf{2}$	$\mathbf{1 8 3 6 8 5 0 2}$	$\mathbf{0 . 7 5 7 1 4}$	$\mathbf{0 . 7 9 1 9 1}$	$\mathbf{1 7 3 3 4 . 3 5}$	$\mathbf{0 . 7 8 0 2 6}$	$\mathbf{0 . 7 7 3 7 3}$
$\mathbf{3}$	$\mathbf{1 8 3 6 1 4 9 6}$	$\mathbf{0 . 7 9 2 4 8}$	$\mathbf{0 . 8 2 9 1 3}$	$\mathbf{1 7 9 7 4 . 3 9}$	$\mathbf{0 . 8 1 7 1 4}$	$\mathbf{0 . 7 8 8 0 7}$
$\mathbf{4}$	$\mathbf{1 8 3 6 5 6 4 4}$	$\mathbf{0 . 6 4 5 2 5}$	$\mathbf{0 . 6 7 5 0 2}$	$\mathbf{1 7 0 6 8 . 0 1}$	$\mathbf{0 . 6 6 4 8 9}$	$\mathbf{0 . 5 9 8 2 0}$
$\mathbf{5}$	$\mathbf{1 8 3 6 1 9 2 0}$	$\mathbf{0 . 6 5 8 0 8}$	$\mathbf{0 . 6 8 8 4 7}$	$\mathbf{1 6 4 2 6 . 4 7}$	$\mathbf{0 . 6 7 8 5 2}$	$\mathbf{0 . 5 3 7 9 6}$
$\mathbf{6}$	$\mathbf{1 8 3 6 4 0 6 2}$	$\mathbf{0 . 6 3 1 6 2}$	$\mathbf{0 . 6 6 1 1 8}$	$\mathbf{1 5 9 7 8 . 0 7}$	$\mathbf{0 . 6 5 1 9 5}$	$\mathbf{0 . 4 2 7 9 5}$
$\mathbf{7}$	$\mathbf{1 8 3 6 9 1 4 0}$	$\mathbf{0 . 6 1 9 2 5}$	$\mathbf{0 . 6 4 8 0 1}$	$\mathbf{1 5 9 8 7 . 1 5}$	$\mathbf{0 . 6 3 8 6 1}$	$\mathbf{0 . 3 2 6 8 5}$
$\mathbf{8}$	$\mathbf{1 8 3 6 7 3 8 4}$	$\mathbf{0 . 5 9 1 1 4}$	$\mathbf{0 . 6 1 8 7 5}$	$\mathbf{1 6 3 7 8 . 4 8}$	$\mathbf{0 . 6 0 8 9 3}$	$\mathbf{0 . 2 3 0 0 3}$
$\mathbf{9}$	$\mathbf{1 8 3 7 3 4 7 2}$	$\mathbf{0 . 5 8 1 4 0}$	$\mathbf{0 . 6 0 8 2 4}$	$\mathbf{1 7 6 6 6 . 7 7}$	$\mathbf{0 . 6 0 0 0 0}$	$\mathbf{0 . 1 6 0 0 0}$
$\mathbf{1 0}$	$\mathbf{1 8 3 7 1 4 0 6}$	$\mathbf{0 . 5 4 3 3 1}$	$\mathbf{0 . 5 6 7 7 4}$	$\mathbf{1 8 6 5 8 . 5 1}$	$\mathbf{0 . 5 6 0 7 2}$	$\mathbf{0 . 1 0 1 3 6}$

ReadsMap

Workflow of alignment of genomic reads (no intron insertions) to the reference genome

Tests results on genome reads

	Reads \#	Aligned (Percent)	Alignments Number	True alignments	Sp	Sn
BWA (no pair)	18363068	$\begin{gathered} 18277290 \\ (0.99533) \end{gathered}$	18277290	17836240	0.97587	0.97131
BWA (pair)	18363068	$\begin{gathered} 18359440 \\ (0.99980) \end{gathered}$	$18 \quad 359440$	18087459	0.98519	0.98499
TopHat (no pair)	18363068	$\begin{gathered} 17527411 \\ (0.95449) \end{gathered}$	19039852	17498877	0.91907	0.95294
TopHat (pair)	18363068	$\begin{gathered} 18076620 \\ (0.98440) \end{gathered}$	19018097	18047001	0.94894	0.98279
Bowtie (no pair)	18363068	$\begin{gathered} 18 \\ 186 \\ (0.99036) \end{gathered}$	19782028	18170026	0.91851	0.98949
Bowtie (pair)	18363068	$\begin{array}{ccc} 18 & 010 & 584 \\ (0.98080) \end{array}$	19337086	17997376	0.93072	0.98009
ReadsMap unspl (no pair)	18363068	$\begin{gathered} 18363057 \\ (0.99999) \end{gathered}$	19887669	$18 \quad 252554$	0.91778	0.99398
ReadsMap unspl (pair)	18363068	$\begin{gathered} 18363036 \\ (0.99999) \end{gathered}$	19048464	18257367	0.95847	0.99424
CleanReads ReadsMap_unspl (no pair)	18363068	$\begin{array}{ccc} 18 & 363 & 058 \\ (0.99999) \end{array}$	19889301	18312219	0.92071	0.99723
CleanReads ReadsMap_unspl (pair)	18363068	$\begin{gathered} 18363038 \\ (0.99999) \end{gathered}$	19047654	18315257	0.96155	0.99740

Example of read alignment disrupted by intron close to the read end

ReadsMap: (generates right alignment)

Bowtie (Langmead et al., 2010) (generates random alignment of the left short segment)


```
16277782 16277792 16277802 16277812 16277820
    CCGTCTGTCCAGATAGATCTTGAGAAGATACATCAA]?tgttttgctcaagtag(..)nnnnnnnnnnnnnnnnnn
```



```
    CCGTCTGTCCAGATAGATCTTGAGAAGATACATCAA ------------------------------------------
        41 
```


ReadsMap Intron Restoration example using reliably mapped reads

```
Intron restoration procedure in the case of short unaligned flanks.
A. Initial "draft" alignment. At the left end there is the short unaligned flank
of 3 nucleotides length (marked by red color).
nnnnnn(..)ttgaatataaaagtatACCTTTCTATCACCACCCTTATTTATTTCTGGTTCTTGAGACATTTCctgcagatgcaaaaac(..)
```



```
B. Reliable(intron containing) alignment that «support» a potential intron. At the
edges of blocks there are classic splicing sites (CT-AC in complement chain) and
size of blocks is sufficient to postulate the <correctness» of the current
alignment.
tt CATTTCTTCTTCAAC]cttgaatgaaagtttg(..)gaatataaaagtatac[СтTTСTATCACCACCCTTATTTATTTCTGGTTCTT ga
.. |||||||||||||................(..)................ ||||||||||||||||||||||||||||||
```



```
C. Result of intron restoration. Based on <supporting» alignments, not only 3
unaligned nucleotides (see A) but also 2 neighboring ones, that were originally
the part of the main block (marked with color), were moved to the left exon. As a
result the read is not just fully aligned, but the intron is also correctly
located.
ctTCAAC]cttgaatgaaagtttg(..)gaatataaaagtatac[CTTTCTATCACCACCCTTATTTATTTCTGGTTCTTGAGACATTTCct
```


ReadsMap
 Workflow of alignment of RNASeq reads (with possible intron insertions)

Test sets for read mapping software

Genomic reads (generated from 22 Human chromosome)

Length	Reads Count	InDel	Parametrs
76 bp	18363068	$704(0.002 \%)$ $1-4 \mathrm{bp}$	insert size $=200 \mathrm{bp}$, standard deviation $=20 \mathrm{bp}$, coverage $=40$

mRNA reads

Length	Reads Count	Introns	Parametrs
50 bp	2979624	$492743(16.5 \%)$	insert size $=200 \mathrm{bp}$, standard deviation $=20 \mathrm{bp}$, coverage $=40$
76 bp	1960300	$485857(24.8 \%)$	insert size $=200 \mathrm{bp}$, standard deviation $=20 \mathrm{bp}$, coverage $=40$
100 bp	1489796	$469319(33.3 \%)$	insert size $=300 \mathrm{bp}$, standard deviation $=30 \mathrm{bp}$, coverage $=40$

Spliced reads tests results

Read length	50 bp		76bp		100 bp		
	Sp		Sn	Sp	Sn	Sp	Sn
TopHat	$\mathbf{0 . 9 2 4 1 1}$	$\mathbf{0 . 9 9 4 1 8}$	0.95145	0.98644	0.95673	0.91890	
PASS v 2.1.1	0.89005	0.91547	0.88750	0.90603	0.86458	0.87765	
ReadsMap	0.93715	0.99172	0.96349	0.99404	0.96220	0.99327	
CleanReads ReadsMap	$\mathbf{0 . 9 3 7 2 7}$	$\mathbf{0 . 9 9 3 0 9}$	$\mathbf{0 . 9 6 4 7 8}$	$\mathbf{0 . 9 9 5 3 7}$	$\mathbf{0 . 9 6 4 7 8}$	$\mathbf{0 . 9 9 5 3 7}$	

Transomics pipeline for Transcript identification and quantification

Sequence Explorer to analyze discovered alternative splice forms identifyed using nextgen reads or est mapping to genome sequence

Compute a relative abundance of alternative transcripts generated

We can use a solution of a system of linear equations. Let we have a set of n transcripts from a gene locus $\mathrm{T}=\left(\mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}\right)$.

Let these transcripts can generated altogether a variety of m reads $\mathbf{R}=\left(\mathbf{r}_{1}, r_{2}, \ldots, \mathbf{r}_{\mathbf{m}}\right)$. Each transcript can produce just some of these reads or all of them. Let matrix $\mathbf{G}=\left(\mathbf{g}_{\mathrm{ij}}\right)$ will have $\mathbf{g}_{\mathrm{i}, \mathrm{j}}=1$ if transcript j can generate read r_{i} and $g_{i, j}=\mathbf{0}$ otherwise. The \mathbf{i}-th column ($\left.g_{1 i} g_{2 i}, \ldots, g_{m i}\right)$ of this matrix shows which reads the transcript i can generate. If the quantities of j-th transcript would be \mathbf{x}_{j}, then the number of reads of some type produced by n transcripts can be computed as a component of the vector $\mathbf{G} \mathbf{x}^{\prime}$, where the vector $\mathbf{x}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}\right)$. If we have observed numbers of reads from R mapped to the gene locus under consideration $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{k}\right)$, than we have a system of linear equations:

$$
\mathbf{G x} \mathbf{x}^{\prime}=\mathbf{b}^{\prime},
$$

which need to be solved to determine unknown quantities of transcripts \mathbf{x}.
This system of linear equations is overdetermined as there are more equations than unknowns (the number of reads is much bigger than the number of transcripts: $m \gg n$). The method of least squares can be used to find an approximate solution.

Correlation Coefficient of Spike-ins

Relative accuracy of spike-in transcript quantification submitted by 11 participants of the RGASP assessment experiment (presented at the workshop by Dr. Kokocinski, The Sanger Institute, Cambridge, member of the assessor's group).

Reconstructing Genetic Regulatory Network

	Exp. 1	Exp. P
Gene 1	0.78	0.50
Gene 2	0.73	0.09
Gene 3	0.99	0.56
.....)
Gene \mathbf{N}	0.28	0.89

Microarray data

Genetic regulation network

RNASeq data nnotation and quantification of all genes and their isoforms across samples.

With microarray data we analyze predefined splicing isoforms, but it could not be used to identify previously uncharacterized events

Ongoing research projects in developing Computational tools for high-throughput analysis of biological data

Eukaryotic genome analysis tools Bacterial genome analysis tools Annotation of new genomes FGENESH++: an automatic eukaryotic gene identification and annotation pipeline

Software for analysis of next generation sequencing data
> ab initio genome assembling, reconstruction of sequence using a reference genome
$>$ mutation profiling and SNP discovery
> assembling transcripts from RNASeq data

FGENESB: a complex pipeline for annotation of bacterial genomes: genes, operons, promoters and terminators identification

Gene expression regulation

> Promoter identification
$>$ De novo functional motifs discovery
> Gene Expression data analysis
$>$ Gene networks construction
$>$ Databases of regulatory sequences

High-throughput experimental technique created vast amounts of biological data
Digging out the "treasure" from massive biological data represents the primary challenge in bioinformatics, consequently placing unprecedented demands on big data storage, data manipulation and efficient analysis of this information.

