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Overview of the three talks 

• Search Engines 
o Architecture, Size of the Web 

o Web Bots, Indexing 

o Elements of Search Ranking, Learning to Rank 

o Web Spam 

o PageRank 

• Distributed data processing systems 
o Hadoop – Word Count, Indexing 

o PageRank over Hadoop 

o Beyond Hadoop 

 



About the presenter 

• Head of a large young team 

• Research 
o Web (spam) classification 

o Hyperlink and social network analysis 

o Distributed software, Flink Streaming 

• Collaboration- EU 
o NADINE – Dima et al. 

o European Data Science research – EIT Digital 

 Berlin, Stockholm, Aalto, … 

o Future Internet Research 

 with Internet Memory 

• Collaboration- Hungary 
o Gravity, the recommender company 

o AEGON Hungary 

o Search engine for Telekom etc. 

o Ericsson mobile logs 

 

András Benczúr 

benczur@sztaki.hu 



Search Engines 

Architecture 

Size of the Web 

Crawling, Indexing, Ranking 
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Too deep stemming causes 
topic drift: 
Ad: give 
Ad-ó: tax 
Ad-ó-s: deptor 
Ad-ó-s-ság: dept 

szív 321 
(heart, suck) nagy 301 

(large, great) 

fog 278            
(tooth, take, catch) 
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szívandó szívet

szívasd szíveteknek

szívassanak szívetlen

szívat szívhassunk

szívathatja szívi

szívatlak szívjunk

szívatnak szívják

szívben szívnivaló

szívből szívod

szívd szívogathatják

szíve szívta

szívecske szívvel

szívedben szívétől

szíveikhez szívükből

szíveim szívüket

szívekig szívükön

szívem . . .

Number of forms 

My start with search engines in 2002 



Fully home developed around 2004 
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Fetch, Crawl 

documents 

preparsed 
html 

Metadata  
hyperlinks 

date, lang, etc 

wildcard (?,*) 
accent 

autocorrect 

Index 
(doc., position) 

Query 
Interface: 

• stemming 

• ranking 

• grouping 

• snippets 

• cached version 
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• Authenticate 

Search engine high level architecture 

Fast index update? desktop push? 

Am I allowed to see? 

Am I allowed to know 
about it at all? 



Size of the Web 

• 1990: 1 (info.cern.ch) 



Number of Web PAGES?? 

• Maybe infinite? 

  Andrei Broder: depends if my laptop is connected 

   generates an infinite number of pages  

 

 

 

• Google in 2008 claims to have reached 1012 URLs (?) 



Example: a calendar may be infinite 



Google 

Teoma 

AllTheWeb 

AltaVista 

Inktomi 

An estimate from the good old times 



„Big Data” 

• By Moore’s Law, hardware 
capabilities double in every 18 
months 

• But data seems to grow even 
faster 

• And disks are almost as slow as 
in the ’90s 



Mikroprocesszor Gyártási év A félvezetõk száma

4004 1971              2.300

8008 1972              2.500

8080 1974              4.500

8086 1978              29.000

Intel 286 1982              134.000

Intel 386 processor 1985              275.000

Intel 486 processor 1989              1.200.000

Intel Pentium processor 1993              3.100.000

Intel Pentium II processor 1997              7.500.000

Intel Pentium III processor 1999              9.500.000

Intel Pentium 4 processor 2000              42.000.000

Intel Itanium processor 2001              25.000.000

Intel Itanium 2 processor 2003              220.000.000

Intel Itanium 2 processor (9MB cache) 2004              592.000.000

E.g. 30-fold improvement between 1997 – 2003 …  

„Big Data” 



Google 

Teoma 

AllTheWeb 

AltaVista 

Inktomi 

But 30-fold increase in data 1997 - 2003  bad news 
for all super-linear agorithms, incl. sort  

„Big Data” 



Computation models keep getting „external” 

o Internal memory (RAM): direct data access 

o External memory (disk): one step reads ~10K data 

o Streaming data (network, sensors): no time to even 
store the data 

The 2005 Gödel Prize is awarded to 

Noga Alon, Yossi Matias and Mario Szegedy 
for their paper 

"The space complexity of approximating the frequency moments," 

Journal of Computer and System Sciences 58 (1999), 137-147, first 

presented at the 28th ACM STOC, 1996. 

 Low memory summaries, sketches, synopses 

 Goal is to pass all relevant information in memory 

 Communication complexity issues arise 
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Nodes = Pages 

Edges = hyperlinks 

WWW as a graph 



Web Robots (crawlers, spiders, bots, …) 

• Seemingly, just a Breadth-First Search 

o Would be easy to implement with external memory FIFO 

• Needs a URL hash table 

o Even if just 1 bit per URL 

o Average URL length is 40 characters 

o We may have 1012 URLs -> 40TB to store the text 

• Trouble with BFS is politeness 

o We designed our system to download 1000 pages/sec 

o 1012 URLs would still take ~20 years 

o Sites with a large number of pages fill up the queue 

o Jammed Web servers would only serve us left with no 
bandwidth to normal users 

• Robots Exclusion Protocol: robotstxt.org 

 



Robots.txt examples 

User-agent: Google  

Disallow:  

Crawl-delay: 10 

Sitemap: http://www.t-home.hu/static/sitemap.xml 

Visit-time: 0100-0400 

 

User-agent: *  

Disallow: / 

 

Also look at http://www.google.com/humans.txt   

http://www.t-home.hu/static/sitemap.xml
http://www.t-home.hu/static/sitemap.xml
http://www.t-home.hu/static/sitemap.xml
http://www.google.com/humans.txt


Illustration: A Web Bot Paper 
IRLbot: Scaling to 6 Billion Pages and Beyond WWW 2008 

DRUM: Disk Repository with Update Management 

• Based on disk bucket sort 

Pointing  

Pay Level 

Domain count 

Separate 

queues for 

URLs 

delayed by 

politeness 
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The Inverted Index 

• Each index term is associated with an inverted list 

o Contains lists of documents, or lists of word occurrences in 
documents, and other information 

o Each entry is called a posting 

o The part of the posting that refers to a specific document 
or location is called a pointer 

o Each document in the collection is given a unique number 

o Lists are usually document-ordered (sorted by document 
number) 

• To compute the index 

o Sort (document, term) pairs by term 

o More information may needed … 



Example “Collection” 

 

Example slides ©Addison Wesley, 2008 



The Simplest Inverted Index 



Index with counts 



Index with position (proximity info) 



Proximity Matches 

• Matching phrases or words within a window 
o e.g., "tropical fish", or “find tropical within 5 words of fish” 

• Word positions in inverted lists make these 
types of query features efficient 
o e.g., 



Other issues 

• Document structure is useful in search 

o field restrictions: e.g., date, from:, etc. 

o some fields more important, e.g., title 

o Options: 

• separate inverted lists for each field type 

• add information about fields to postings 

• use extent lists 

• Posting list may be very long, not just for stop words 

o Total index size can be 25-50% of the collection 

o Sort by rank not by DocID  

o Tricks to merge lists 

o Compression 



Ranking 
(Information Retrieval) 

Features (signals) 

Learning to Rank 

PageRank 

29 - 30 June 2015 Search Engines 
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Importance of ranking 
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[Granka,Joachims, 

Gay 2004] 

User studies reveal 

• Only top hits are viewed 

• Mostly even only the first TWO! 



Traditional ranking in text search 

• Very small number of features, e.g., 

o Term frequency 

o Inverse document frequency 

o Document length 

• Traditional evaluation: Mean Average Precision (MAP) 
o For each query 

• For each position in the list retrieved 

o Compute the precision (% relevant)  

• It was easy to tune weighting coefficients by hand 

o And people did it 



Basic ranking „signals” 

• Term frequency based, e.g. OKAPI BM25 

• Q = (q1, … ,qn) query terms 

• Doc D contains qi f(qi,D) times 

• We need lenght of D and avegare doc length 

• k1, b constants 

 

 

• „Inverse Document Frequency” 

• N documents, n contains qi (at least once) 



More complex signals 

• Term frequency formulas weighted by HTML 
 title, headers, size, face, etc. 

• Anchor text 

 <a href=“…”>Search Engine tutorial slides</a> 

• URL words (sometimes difficult to parse, e.g. 
airfrance.com) 

 – The above two has highest weight! 

• URL length, directory depth 

• Incoming link count 

• Centrality in the Web as a graph 

 



Modern systems – especially Web 

• Great number of features: 
• Arbitrary useful features – not a single unified model 

o Log frequency of query word in anchor text? 
o Query word in color on page? 
o # of images on page? 
o # of (out) links on page? 
o PageRank of page? 
o URL length? 
o URL contains “~”? 
o Page edit recency? 
o Page length? 
o User clickthrough (would take a separate lecture series) 

• The New York Times (2008-06-03) quoted Amit Singhal as 
saying Google was using over 200 such features 

• Yandex (RU, market leader) claims to extensively use 
machine learning for geo-localized ranking 



Learning to Rank 
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Ranking via a relevance function 

• Given a query q and a document d, estimate the relevance of 
d to q. 

• Web search results are sorted by relevance. 

• Binary / multiple levels of relevance (Excellent, Good, Bad,...) 

 

• Given a query and a document, construct a feature vector 
with 3 types of features: 

o Query only : Type of query, query length,... 

o Document only : Pagerank, length, spam,... 

o Query & document : match score, clicks,... 



Simple example: 

Using classification for ad hoc IR 

• Training corpus of (q, d, r) triples 

• Relevance r is here binary  (may also have 3–7 values) 

• Document is represented by a feature vector x = (α, ω) where  
o α is cosine similarity, ω is minimum query window size 

o ω is the the shortest text span that includes all query words 

• Query term proximity is a very important new factor 
o Machine learning to predict the class r of a document-query pair  

Sec. 15.4.1 



Simple example: 

Using classification for ad hoc IR 

• A linear score function is then  

Score(d, q) = Score(α, ω) = aα + bω + c 

• And the linear classifier is 

Decide relevant if Score(d, q) > θ 

 

• … just like when we were doing text classification 

Sec. 15.4.1 



Simple example: 

Using classification for ad hoc IR 
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Data Sets 

Queries 
Docs 
(1000) 

Relevance 
level 

Features Year 

Letor3.0 - .gov 575 568 2 64 2008 
Letor3.0 - medical 106 16 3 45 2008 
Letor4.0 2476 85 3 46 2009 
Yandex 20267 213 5 245 2009 
Yahoo Learning to 
Rank Challenge 

36251 883 5 700 2010 

Search Engines 



Evaluation beyond Precision, Recall, MAP 

• Normalized Discounted Cumulative Gain 

 

 

• Expected Reciprocal Rank 



Pointwise, Pairwise, Listwise 

• Simplifying assumptions 
o Linear feature space 

o SVM learning (both classification and regression) 

• But other models can also be used 
o E.g. neural net: Ranknet 

• Pointwise approach (see fig) 
o Traditional classification, regression 

o Can only optimize for traditional measures 

o Overweights queries with may docs 

• Pairwise approach 
o Optimizes for ordering pairs 

o Better suited for varying # docs per query 

• Listwise approach 
o Directly optimizes for NDCG, ERR, … 



Illustration: Pairwise 

• The pairwise space is 
transformed to another SVM 
learning problem 



Web Spam 

Reason and comparison w/ email spam 

Taxonomy 

Filtering techniques 

29 - 30 June 2015 Search Engines 



Why is Web Search so difficult? 

• Too large collection, too many matching results for virtually 
any query 

• Hard to measure and assess reliability, factuality, or bias, even 
for human experts 

• Manipulation, „Search Engine Optimization” – Black Hat … 
due to large financial gains 



Web information retrieval 

• Good ranking brings you many users (Google) 

• Top position is important for content provider (sponsored hits) 

Search Engines 

[Granka,Joachims,Gay 2004] 

„spam industry had a 
revenue potential of $4.5 

billion in year 2004 if they 
had been able to completely 
fool all search engines on all 

commercially viable 
queries” 

 
 
 
 

[Amitay 2004] 



A Web Spam example 

 



Web Spam vs. E-mail Spam 

• Web Spam not (necessarily) targeted 
against end user 
E.g. improve the Google ranking for a „customer” 

• More effectively fought against since 
o  No filter available for spammer to test 

o  Slow feedback (crawler finds, visits, gets into index) 

• But very costly if not fought against: 
10+% sites, near 20% HTML pages 

Waste of resources 

Loss of your search engine clients … 





Distribution of categories 

Reputable 70.0% 

Spam 16.5% 

Weborg 0.8% 

Ad 3.7% 

Non-existent 7.9% 

Empty 0.4% 

Alias 0.3% 
Unknown 0.4% 

2004 .de crawl 

Courtesy: T. Suel 



Spammers’ target is Google … 

• High revenue for top SE ranking 
o Manipulation, “Search Engine Optimization” 

o Content spam 

Keywords, popular expressions, mis-spellings 

o Link spam 

„Farms”: densely connected sites, redirects 

• Maybe indirect revenue 
o Affiliate programs, Google AdSense 

o Ad display, traffic funneling 



All elements of Web IR ranking spammed 

• Term frequency (tf in the tf.idf, Okapi BM25 etc. ranking 
schemes) 

• Tf weighted by HTML elements 
o title, headers, font size, face 

• Heaviest weight in ranking: 

• URL, domain name part  

• Anchor text: <a href”…”>best Bagneres-de-Luchon page</a> 

• URL length, depth from server root 

• Indegree, PageRank, link based centrality 

 



Web Spam Taxonomy 1. 

Content spam 

[Gyöngyi, Garcia-Molina, 2005] 
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Spammed ranking elements 

• Domain name 
adjustableloanmortgagemastersonline.compay.dahannusaprima.co.uk 

 buy-canon-rebel-20d-lens-case.camerasx.com 

• Anchor text (title, H1, etc) 
 <a href=“target.html”>free, great deals, cheap, inexpensive, cheap, 

free</a> 

• Meta keywords (anyone still relying on that??) 

 <meta name="keywords" content="UK Swingers, UK, swingers, swinging, 

genuine, adult contacts, connect4fun, sex, … > 



Query monetizability 
Google AdWords 
Competition 
 
10k 
10th wedding anniversary 
128mb, 1950s, … 
abc, abercrombie, … 
b2b, baby, bad credit, … 
digital camera 
earn big money, easy, … 
f1, family, flower, fantasy 
gameboy, gates, girl, … 
hair, harry potter, … 
ibiza, import car, … 
james bond, janet jackson 
karate, konica, kostenlose 
ladies, lesbian, lingerie, … 
…  



Generative content models 

 

honest topic 4 honest topic 10 

club (0.035) music (0.022) 

team (0.012) band (0.012) 

league (0.009) film (0.011) 

win (0.009) festival (0.009) 

Spam topic 7 

loan (0.080) 

unsecured (0.026) 

credit (0.024) 

home (0.022) 

Excerpt: 20 spam and 50 honest topic models 
[Bíró, Szabó, Benczúr 2008] 



 

<div style="position:absolute; top:20px; width:600px; height:90px; overflow:hidden;"><font size=-1>atangledweb.co.uk currently 
offline<br>atangledweb.co.uk back soon<br></font><br><br><a href="http://www.atangledweb.co.uk"><font size=-
1>atangledweb.co.uk</font></a><br><br><br>Soundbridge HomeMusic WiFi Media Play<a class=l href="http://www.atangledweb.co.uk/index01.html">-
</a>>... SanDisk Sansa e250 - 2GB MP3 Player -<a class=l href="http://www.atangledweb.co.uk/index02.html">-</a>>... AIGO F820+ 1GB Beach inspired 
MP3 Pla<a class=l href="http://www.atangledweb.co.uk/index03.html">-</a>>... Targus I-Pod Mini Sound Enhancer<a class=l 
href="http://www.atangledweb.co.uk/index04.html">-</a>>... Sony NWA806FP.CE7 4GB video WALKMAN <a class=l 
href="http://www.atangledweb.co.uk/index05.html">-</a>>... Ministry of Sound 512MB MP3 player<a class=l 
href="http://www.mp3roze.co.uk/cat7000.html">-</a>>... Nokia 6125 - Fold Design - 1.3 Megapi<a class=l href="http://www.mp3roze.co.uk/cat7001.html">-
</a>>... Samsung E350 - Camera Phone With Flas<a class=l 

Parking Domain (may still have old inlinks) 



Keyword stuffing, generated copies 



Google ads 

 



Web Spam Taxonomy 2. 

Link spam 
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Hyperlinks: Good, Bad, Ugly 

 “hyperlink   structure   contains   an  enormous   
amount of  latent   human  annotation   that   can  be   
extremely valuable  for automatically  inferring  
notions  of authority.” (Chakrabarti et. al. ’99) 

 

o Honest link, human annotation 

o No value of recommendation, e.g. „affiliate 
programs”, navigation, ads … 

o Deliberate manipulation, link spam 
 

   



Link farms 

W W W  

Entry point from honest web:  
• Honey pots: copies of quality content 
• Dead links to parking domain 
• Blog or guestbook comment spam 



Link farms 

Multi-
domain, 

Multi-IP 

411fashion.com 

  411 sites A-Z list 

Honey pot: quality content copy 

411amusement.com 

  411 sites A-Z list 

411zoos.com 

  411 sites A-Z list 

target 



ρ=0.97 ρ=0.61 

Honest: 

fhh.hamburg.de 
Spam: radiopr.bildflirt.de 
(part of www.popdata.de farm) 

PageRank supporter distribution 

low                                 high 

PageRank 

low                                high 

PageRank 

[Benczúr,Csalogány,Sarlós,Uher 2005] 

 



Know your neighbor [Debora, Chato et al 2006] 

• Honest pages rarely point to spam 

• Spam cites many, many spam 

 

1. Predicted spamicity 

p(v) for all pages 

2. Target page u,   

new feature f(u)   

by neighbor p(v) 

aggregation 

3. Reclassification by 

adding the new 

feature 

? 
u 

v1 

v2 

v7 



Web Spam Taxonomy 3. 

Cloaking and hiding 
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Formatting 
• One-pixel image 

 
• White over 

 white 

 

 

 

• Color, position from stylesheet 

• … 

Idea: crawlers do simplified HTML processing 

Importance for crawlers to run rendering and script execution! 



Obfuscated JavaScript 

<SCRIPT language=javascript> 
var1=100;var3=200;var2=var1 + var3; 
var4=var1;var5=var4 + var3; 
if(var2==var5) 
document.location="http://umlander.info/ 
mega/free software downloads.html"; 

</SCRIPT> 

 

• Redirection through window.location 

• eval: spam content (text, link) from random looking 
static data 

• document.write  

 



HTTP level cloaking 

• User agent, client host filtering 

 

 

 

 

 

• Different for users and for GoogleBot 

• „Collaboration service” of spammers for crawler IPs, agents 
and behavior 



Web Spam Taxonomy 4. 

Spam in social media 
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More recent target: blogs, guest books 

 



Fake blogs 

 



Spam Hunting 

• Machine learning 

• Manual labeling 

• Crawl time? 

• Benchmarks 



No free lunch: no fully automatic filtering 

• Manual labels (black AND white lists) primarily 
determine quality 

• Can blacklist only a tiny fraction 

o Recall 10% of sites are spam 

o Needs machine learning 

• Models quickly decay 

 Measurement: training on intersection with WEBSPAM-UK2006 
labels, test WEBSPAM-UK2007 



Discovery Challenge 2010 labeling 

 



Crawl-time vs. post-processing 

• Simple filters in crawler 
o cannot handle unseen sites 

o needs large bootstrap crawl 

• Crawl time feature generation and 
classification 
o Needs interface in crawler to access content 

o Needs model from external crawl (may be smaller) 

o Sounds expensive but needs to be done only once per site 



Web Spam and Quality Challenges 

•  UK-WEBSPAM2006 [Debora, Chato] 
o  9000 Web sites, 500,000 links 

o  767 spam, 7472 nonspam 

• UK-WEBSPAM2007 [Debora, Chato] 
o 114,000 Web sites, 3 bio links 

o 222 spam, 3776 nonspam 

o 3 TByte full uncompressed data 

• ECML/PKDD Discovery Challenge 2010 [Andras, Chato] 
o 190,000 Web sites, 430 spam, 5000 nonspam 

o Also trust, neutrality, bias  

• The Reconcile project C3 data set (WebQuality 2015 data) 
o 22 325 Web page evaluations, scale: 0 – 4; 5 for missing 

o credibility, presentation, knowledge, intentions, completeness 

o 5704 pages by 2499 assessors  



Machine Learning 

• Originally, many features of linkage and content processing 

• Worked because spam farms were cut into training and testing 

• Recently, we realized only terms are needed 

o TF, TF-IDF, BM25 

o Distance: Jensen-Shannon or Euclidean (L2) 

o Support Vector Machines  

 (a new similarity kernel worked very well) 

• Advantage: the prediction model is just a set of vectors 
and inner products need to be computed 

o See our results over the C3 data set (2015) 

 All non-
term 

TF  TFIDF  BM25 BM25 + 
nonterm 

All 

J-S L2 J-S L2 J-S L2 + 

AUC .66 .70 .65 .70 .66 .67 .71 .72 .73 .73 



PageRank 
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Hyperlink analysis: Goals 

• Ranking, PageRank  

 … well that is obvious? 

• Features for network classification 

• Propagation, Markov Random Fields 

• Centrality 

 … PageRank why central? 

• Similarity of graph nodes 



A quality page is pointed to 
by several quality pages 

PageRank as Quality 

“hyperlink   structure   contains an  enormous 
amount of  latent   human  annotation that can be   
extremely valuable for automatically  inferring   
notions  of  authority.” (Chakrabarti et. al. ’99) 
 
NB: not all links are useful, quality, … 
 The Good, the Bad and the Ugly 



PR(k+1) = PR(k) ( (1 - ) M +  · U ) 

PR(k+1) = PR(k) M 

            = PR(1) ( (1 - ) M +  · U )k  

PageRank as Quality 

A quality page is pointed to 
by several quality pages 

Brin, Page 98 

U could represent jump to any fixed 

(personalized) distribution   



u 

The Random Surfer Model 

Nodes = Web pages 

Edges = hyperlinks 

Starts at a random page—arrives at quality page 



u 

The Random Surfer Model 

Chooses random neighbor with probability 1-  



u 

The Random Surfer Model 

Or with probability  “teleports” to random 
(personalized)  page—gets bored and types a new 
URL or chooses a random bookmark 



The Random Surfer Model 

 And continues with the random walk … 



The Random Surfer Model 

 And continues with the random walk … 



The Random Surfer Model 

Until convergence … ? 

[Brin, Page 98] 



Assume PageRank is  > 0 

 fraction  of time spent here 

Walk will stuck here for  

time proportional to  2k 

Exponential gain of the manipulator  

k „manipulative” nodes 

 

Teleportation – less obvious reasons 



PageRank as a Big Data problem 

• Estimated 10+ billions of Web pages worldwide 

• PageRank (as floats)  

o fits into 40GB storage 

• Personalization just to single pages: 

o 10 billions of PageRank scores for each page 

o Storage exceeds several Exabytes! 

 

• NB single-page personalization is enough: 

 )()()( 1111 kkkk vPPRvPPRvvPPR   



For certain things are just too big? 

• For light to reach the other side of the Galaxy … takes rather 
longer: five hundred thousand years. 

• The record for hitch hiking this distance is just under five 
years, but you don't get to see much on the way. 

D Adams, The Hitchhiker's Guide to the Galaxy. 1979 



Equivalence with short walks 

Jeh, Widom ’03, Fogaras ’03 
o Random walk starts from distribution (or page) u 

o Follows random outlink with probability 1-ε, stops with ε 

o PPR(u,v)=Pr{ the walk from u stops at page v }  

 

 u i = 0 (1 - )i   Mi  + PR(1) (1 - ) k Mk  
k-1 

paths of length i  
Terminate with probability   

Continue with probability (1 - ) 

           PR(1) ( (1 - ) M +  · U )k  = 



Stop! 

Appreciate the simplicity 

• Few lines completely elementary proof 

• Convergence follows w/o any theory 

• Convergence speed follows (eigengap) 

• Meaning: centrality through short walks 

• Solves algorithmics (to come) 



Monte Carlo Personalized PageRank 

• Markov Chain Monte Carlo algorithm 

• Pre-computation 
o From u simulate N independent random walks 

o Database of fingerprints: ending vertices of the walks from all vertices 

• Query 
o PPR(u,v) :=  # ( walks u→v ) / N 

o N ≈ 1000 approximates top 100 well  

• Fingerprinting techniques 

 

Fogaras-Racz: Towards Scaling Fully Personalized PageRank 



Semi-Supervised Learning 

• Idea: Objects in a network are similar to neighbors 
o Web: links between similar content;    neighbors of spam are likely spam 

o Telco: contacts of churned more likely to churn 

o Friendship, trust 

• Implementations: 
o Stacked graphical learning [Cohen, Kou 2007] 

o Propagation [Zhou et al, NIPS 2003] 

 

 (u)predMvpredvpred t

uv

t )()1( )1()()( 



u 

 (u)predMvpredvpred t

uv

t )()1( )1()()( 

Random link with probability 1-  

 

v 



v 

 (u)predMvpredvpred t

uv

t )()1( )1()()( 

Personalized teleport with prob  

 



Other uses – mostly for spam hunting 

• Google BadRank 

• TrustRank: personalized on quality seed [Gyongyi,Garcia-
Molina 2005] 

• SpamRank: statistics of short incoming walks 
[B,Csalogany,Sarlos,Uher 2005] 

• Truncated PageRank versions, neighborhood features, ratios, 
host level statistics [Castillo et al, 2006] 

 



Distributed data processing 
Google MapReduce for large scale inverted index build 

Distributed sotfware systems and their limitations 

Hadoop 

PageRank by Hadoop 

PageRank by other systems: Flink, GraphLab 

29 - 30 June 2015 Search Engines 



 • Google’s computational/data 
manipulation model 

• Elegant way to work with big data 

Jure Leskovec, Stanford CS246: Mining Massive Datasets, 
http://cs246.stanford.edu 



 



Search Index Build Google scale 

Map – Shuffle/Sort – Reduce  

Input Splitting           Mapping                          Shuffling      Reducing      Output 

data luchon 
network 

science data 
science 
network 

luchon science 

data 
luchon 

network 

science 
data 

science 

network 
luchon 
science 

data,1  
luchon,1 

 network,1 

data,1  
science,1 
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luchon,1  
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 science,1 

luchon,1 
luchon,1 

network,1 
network,1 

data,1 
data,1 

science,1  
 science,1 
 science,1 

luchon,2 

network,2 

data,2 

science,3 

luchon,2 
network,2 

data,2 
science,3 



Hello World for different systems 

• Java, … 

o Print ”Hello World” 

• MapReduce 

o Word count 

• Graphs 

o PageRank or connected components 
(suprise: they are almost the same) 



 



 



 



The Project Triangle 



CAP (Fox&Brewer) Theorem 

 

C 

A 
P 

Theorem: You may choose two of C-A-P 

Consistency 
(Good) 

Availability 
(Fast) 

Partition-resilience 
(Cheap) AP: some replicas may give 

erroneous answer 



Fox&Brewer proof 

• Eventual consistency if connection resumes and data 
can be exchanged 

• MapReduce is PC – batch computations, restarts in 
case of failures 

• Partition (P): LHS will not know about 
new data on RHS 

• Immediate response from LHS 
(availability) may give incorrect 
answer 

• If partition (P), then either availability 
(A) or consistence (C) 



Hadoop overview 

• Machines WILL fail 

• Data needs to be partitioned and REPLICATED 

o File system: Google, Hadoop file systems – HDFS   

o NameNode to store the lookup for chunks 

• Copying over the network is slow 

o Bring computation close to the data 

o Let a Master Node be responsible for  

• Task sheduling, failure detection 

• Managing and transmitting temporary output files 

• MapReduce computations 

o We’ll se what it can and what it cannot really do well 



 



 



Accessing the HDFS filesystem 

Java library 

• Copy from/to local, e.g.: 

 hadoop dfs -put localfile hdfsfile 

• Standard file manipulation commands, e.g.: 

 hadoop dfs -ls      (-rm, -mkdir, …) 



WordCount: Models of Computation 

• All <word, count> counters fit in memory 
o Hash tables 

• External memory 
o Sort 

• Streaming data? 

• Distributed, many machines? 



 



 



 



Word Counting: Main 
package org.myorg; 
         
import java.io.IOException; 
import java.util.*; 
         
import org.apache.hadoop.fs.Path; 
import org.apache.hadoop.conf.*; 
import org.apache.hadoop.io.*; 
import org.apache.hadoop.mapreduce.*; 
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; 
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; 
         
public class WordCount { 
         
 public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> { … }         
 public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> { … } 
         

 public static void main(String[] args) throws Exception { 
    Configuration conf = new Configuration(); 
         
        Job job = new Job(conf, "wordcount"); 
     
    job.setOutputKeyClass(Text.class); 
    job.setOutputValueClass(IntWritable.class); 
         
    job.setMapperClass(Map.class); 
    job.setReducerClass(Reduce.class); 
         
    job.setInputFormatClass(TextInputFormat.class); 
    job.setOutputFormatClass(TextOutputFormat.class); 
         
    FileInputFormat.addInputPath(job, new Path(args[0])); 
    FileOutputFormat.setOutputPath(job, new Path(args[1])); 
         
    job.waitForCompletion(true); 
 } 
         
} 



Word Counting: Map 

public static class Map extends Mapper<LongWritable, Text, Text, 
IntWritable> {  
// public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> 
 
 private final static IntWritable one = new IntWritable(1);  

 private Text word = new Text();  

 
 public void map(LongWritable key, Text value, Context   
 context) throws IOException, InterruptedException {  
 
  String line = value.toString();  
  StringTokenizer tokenizer = new StringTokenizer(line);  
  while (tokenizer.hasMoreTokens()) {  
   word.set(tokenizer.nextToken());  
   context.write(word, one);  
  } 
 } 
}  



Word Counting: Reduce 

public static class Reduce extends Reducer<Text, IntWritable, 
Text, IntWritable> { 

 

    public void reduce(Text key, Iterable<IntWritable> values, 
Context context)  

      throws IOException, InterruptedException { 

        int sum = 0; 

        for (IntWritable val : values) { 

            sum += val.get(); 

        } 

        context.write(key, new IntWritable(sum)); 

    } 

 } 



Master Node / Job tracker role 

• Task status and scheduling 

• Manage intermediate Mapper output to pass to Reducers 

• Ping workers to detect failures 
o Restart tasks from input or intermediate data, all stored on disk 

• Master node is a single point of failure 



Hadoop Job Tracker 

 



Algorithms over MapReduce 

Join 

PageRank 



Warmup: MapReduce Join 

• Map:  
o R(a,b) -> key is b, value is the tuple a, ”R” 

o S(b,c) ->  key is b, value is the tuple c, ”S” 

• Reduce: 
o Collect all a, ”R” and c, ”S” tuples by key a to form (a,b,c) 



MapReduce PageRank 

Map: send PageRank share 

... 

Reduce: add 

Iterate 



MapReduce PageRank pseudocode 

• MAP: for all nodes n 

o Input: current PageRank and out-edge list of n 

o p  edgelist(n): emit (p, PageRank(n) / outdegree(n)) 

• Reduce  

o Obtains data ordered by p 

o Updates PageRank(p) by summing up all incoming PageRank 

o Writes to disk, starts new iteration as a new MapReduce job 

• Stop updating a node if change is small; terminate if no updates 

• How to start a new iteration?? 

o We need both edgelist(n) and PageRank(n) 

o But they reside in completely different data sets, partitioned 
independently → we need a join 

o Solution: we need   emit (n, edgelist(n)) as well 



MapReduce PageRank: Main 

public static void main(String[] args) { 
String[] value = {  
// key | PageRank | points-to 
 "1|0.25|2;4", 
 "2|0.25|1;3;4", 
 "3|0.25|2", 
 "4|0.25|1;3", 
}; 
 
mapper(value); 
reducer(collect.entrySet()); 

} 
 

   | 1 2 3 4 

--+---------- 

1 | 0 1 0 1 

2 | 1 0 1 1 

3 | 0 1 0 0 

4 | 1 0 1 0  



MapReduce PageRank: Reduce 

private static void  

 reducer(Set<Entry<String, ArrayList<String>>> entrySet) { 
 for (Map.Entry<String, ArrayList<String>> e : entrySet) { 
  Iterator<String> values = e.getValue().iterator(); 
  float PageRank = 0; 
  String link_list = ""; 

   while (values.hasNext()) { 
   String[] dist_links =     
   values.next().toString().split("[|]"); 
   if (dist_links.length > 1) 
    link_list = dist_links[1]; 
   int inPageRank = Integer.parseInt(dist_links[0]);  
   PageRank += incomingPageRank; 
  } 
 System.out.println(e.getKey() + " - D " + (PageRank + " | " + link_list)); 
 } 
} 

} 
 

 



MapReduce PageRank: Map 
private static void mapper(String[] value) { 
 
 

for (int i = 0; i < value.length; i++) { 
 String line = value[i].toString(); 
 String[] keyVal = line.split("[|]"); 
 
 String Key = keyVal[0]; 
 String sDist = keyVal[1]; 
 String[] links = null; 
 if (keyVal.length > 2) { 
  links = keyVal[2].split(";"); 
  int Dist = Integer.parseFloat(PageRank); 
 
  for (int x = 0; x < links.length; x++) { 
  if (links[x] != "") { 
   ArrayList<String> list; 
   if (collect.containsKey(links[x])) { 
   list = collect.get(links[x]); 
   } else { 
   list = new ArrayList<String>(); 
   } 
  list.add(PageRank/ links.length + "|"); 
  collect.put(links[x], list); 
 } 
} 
 

 
 
ArrayList<String> list; 
if (collect.containsKey(Key)) { 
 list = collect.get(Key); 
 } else { 
 list = new ArrayList<String>(); 
 } 
 list.add(sDist + "|" + keyVal[2]); 
 collect.put(Key, list); 
 } 
} 

 
 



MapReduce PageRank 

Map: send PageRank share AND the entire graph! 

... 

Reduce: add AND move the entire graph around 

Iterate 



Bulk Synchronous Parallel (BSP) graph processing 

• Leslie Valiant’s idea from 80’s 

• Google Pregel (Proprietary) 

• Several open source clones 

o Giraph, … 

• Dato.com’s GraphLab 

o More than just BSP 

 

 

 

• Note BSP is just a Map, followed by a Join 

o Why don’t we just implement a nice Join 

o TU Berlin idea, implemented in Apache Flink 



Parallelization Contract, BSP and the Join operation 

• Map PACT (PArallelization ContracT) 
o Every record forms its own group 

o Process all groups independent parallel 

• Reduce PACT 
o One attribute is key 

o Records with same key form a group 

Second order  
      funcion 

First order function 
(user code) 

Data Data 

Map PACT 

Reduce PACT 



Parallelization Contract, BSP and the Join operation 

Join PACT 

Two inputs 

Records with 

same key 

form a group 

(equi-join) 

BSP 

Two inputs: 

nodes and edges 

key is node ID 

 

Collect all 

neighbors of a 

node 

Second order  
      funcion 

First order function 
(user code) 

Data Data 



The Apache Flink system 

• Several PACTs implemented 

• Execution is optimized (think of versions of 
join) as in a database management system 

• Capable of using not only disk for data 
passing but also memory, network by the 
decision of the optimizer 

• Capable of native efficient iteration 



pagerank(i, scope){ 
  // Get Neighborhood data 
  (R[i], Wij, R[j]) scope; 
 

   // Update the vertex data 
 
 
 
  // Reschedule Neighbors if needed 
  if R[i] changes then  
    reschedule_neighbors_of(i);  
} 
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The Dato.com GraphLab system 

An update function is a user defined program which when 
applied to a vertex transforms the data in the scope of the 
vertex 

Dynamic  
computation 



PageRank in GraphLab 

GraphLab_pagerank(scope) { 

 

 sum = 0 

 forall ( nbr in scope.in_neighbors() ) 

  sum = sum + neighbor.value() / nbr.num_out_edges() 

  

 old_rank = scope.vertex_data() 

 scope.center_value() = ALPHA + (1-ALPHA) * sum  

  

 double residual = abs(scope.center_value() – old_rank) 

 if (residual > EPSILON)  

  reschedule_out_neighbors() 

} 



What I’d like to present next time we 
meet 

Flink unified batch and streaming 



Data Scientist magic triangle 

Application 

Data 

Science 

Control Flow 

Iterative Algorithms 

Error Estimation 

Active Sampling 

Sketches 

Curse of Dimensionality 

Decoupling 

 Convergence 

Monte Carlo 

Mathematical Programming 

Linear Algebra 

Stochastic Gradient Descent 

Regression 

Statistics 

Hashing 

Parallelization 

Query Optimization 

Fault Tolerance 

Relational Algebra / SQL  

Scalability 

Data Analysis Language 

Compiler 

Memory Management 

Memory Hierarchy 

Data Flow 

Hardware Adaptation 

Indexing 

Resource Management 

NF2 /XQuery  

Data Warehouse/OLAP 

Domain Expertise (e.g., Industry 4.0, Medicine, Physics, Engineering, Energy, Logistics) 

Real-Time 



STREAMLINE Magic Triangle 



STREAMLINE Magic Triangle 

Challenge Present Status Goal Action Leader 

Delayed 
information 
processing 

No up-to-date timely 
predictions 

Reactivity 
Same unified system 
for data at rest and 

data in motion 

TU B / 
DFKI 

Actionable 
intelligence: Lack 

of appropriate 
analytics 

Poor or non-timely 
prediction results in 
user churn, business 

losses 

Prediction 
quality 

Library for batch 
and stream 

combined machine 
learning 

SZTAKI 
(Andras) 

Skills shortage: 
Human latency 

Multiple expertise 
needed for data 

scientists, expensive to 
operate 

Ease of 
implementation 

High level 
declarative language 

SICS 



Chuck Norris versions 

 
© Aljoscha Krettek, Co-Founder, 
Software Engineer at Data Artisans 

 

Flink developers (Soon-to-be) Flink users 

 

We don’t always have to scale 
our machine learning tasks 

 

But when we do, we don’t 
sacrifice accuracy 



The Lambda Architecture 

• Usual solution: two different systems 

• Adds complexity to the architecture 

• Many question the need for the batch component 

https://www.mapr.com/sites/default/files/otherpageimages/lambda-architecture-2-800.jpg 



Beyond the Lambda Architecture 

 



Current Flink architecture 



STREAMLINE architecture 



Conclusions 

• Hadoop is a widely used open source Java MapReduce 
implementation 

• Needs installation, some ugly boilerplate + object serialization 

• Graph algorithms can be implemented by iterated joins 

• Inefficient in that all graph data needs to written to disk and 
moved around in iterations (workarounds exist …) 

 

• New architecture for unified batch + stream needed 

o Apache Flink has the potential 

• New machine learning is needed 

o Turning research codes to open source software will start 
soon 
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