
Introduction to Search Engines

Andras Benczur

Insitute for Computer Science and Control
Hungarian Academy of Sciences

29 - 30 June 2015 Search Engines

Overview of the three talks

• Search Engines
o Architecture, Size of the Web

o Web Bots, Indexing

o Elements of Search Ranking, Learning to Rank

o Web Spam

o PageRank

• Distributed data processing systems
o Hadoop – Word Count, Indexing

o PageRank over Hadoop

o Beyond Hadoop

About the presenter

• Head of a large young team

• Research
o Web (spam) classification

o Hyperlink and social network analysis

o Distributed software, Flink Streaming

• Collaboration- EU
o NADINE – Dima et al.

o European Data Science research – EIT Digital

 Berlin, Stockholm, Aalto, …

o Future Internet Research

 with Internet Memory

• Collaboration- Hungary
o Gravity, the recommender company

o AEGON Hungary

o Search engine for Telekom etc.

o Ericsson mobile logs

András Benczúr

benczur@sztaki.hu

Search Engines

Architecture

Size of the Web

Crawling, Indexing, Ranking

29 - 30 June 2015 Search Engines

Too deep stemming causes
topic drift:
Ad: give
Ad-ó: tax
Ad-ó-s: deptor
Ad-ó-s-ság: dept

szív 321
(heart, suck) nagy 301

(large, great)

fog 278
(tooth, take, catch)

N
u

m
b

er
 o

f
w

o
rd

s
(s

te
m

s)
 w

it
h

g
iv

en
 n

u
m

b
er

 o
f

fo
rm

s
100000

10000

100

10

1

1000

1 10 100

szívandó szívet

szívasd szíveteknek

szívassanak szívetlen

szívat szívhassunk

szívathatja szívi

szívatlak szívjunk

szívatnak szívják

szívben szívnivaló

szívből szívod

szívd szívogathatják

szíve szívta

szívecske szívvel

szívedben szívétől

szíveikhez szívükből

szíveim szívüket

szívekig szívükön

szívem . . .

Number of forms

My start with search engines in 2002

Fully home developed around 2004

W
W

W
,
In

tr
an

et
,

L
oc

al
 f

il
e
s,

 D
at

ab
as

es

Fetch, Crawl

documents

preparsed
html

Metadata
hyperlinks

date, lang, etc

wildcard (?,*)
accent

autocorrect

Index
(doc., position)

Query
Interface:

• stemming

• ranking

• grouping

• snippets

• cached version

in

d
e
x
e
r

Stemmed
 index

• Authenticate

Search engine high level architecture

Fast index update? desktop push?

Am I allowed to see?

Am I allowed to know
about it at all?

Size of the Web

• 1990: 1 (info.cern.ch)

Number of Web PAGES??

• Maybe infinite?

 Andrei Broder: depends if my laptop is connected

 generates an infinite number of pages 

• Google in 2008 claims to have reached 1012 URLs (?)

Example: a calendar may be infinite

Google

Teoma

AllTheWeb

AltaVista

Inktomi

An estimate from the good old times

„Big Data”

• By Moore’s Law, hardware
capabilities double in every 18
months

• But data seems to grow even
faster

• And disks are almost as slow as
in the ’90s

Mikroprocesszor Gyártási év A félvezetõk száma

4004 1971 2.300

8008 1972 2.500

8080 1974 4.500

8086 1978 29.000

Intel 286 1982 134.000

Intel 386 processor 1985 275.000

Intel 486 processor 1989 1.200.000

Intel Pentium processor 1993 3.100.000

Intel Pentium II processor 1997 7.500.000

Intel Pentium III processor 1999 9.500.000

Intel Pentium 4 processor 2000 42.000.000

Intel Itanium processor 2001 25.000.000

Intel Itanium 2 processor 2003 220.000.000

Intel Itanium 2 processor (9MB cache) 2004 592.000.000

E.g. 30-fold improvement between 1997 – 2003 …

„Big Data”

Google

Teoma

AllTheWeb

AltaVista

Inktomi

But 30-fold increase in data 1997 - 2003  bad news
for all super-linear agorithms, incl. sort 

„Big Data”

Computation models keep getting „external”

o Internal memory (RAM): direct data access

o External memory (disk): one step reads ~10K data

o Streaming data (network, sensors): no time to even
store the data

The 2005 Gödel Prize is awarded to

Noga Alon, Yossi Matias and Mario Szegedy
for their paper

"The space complexity of approximating the frequency moments,"

Journal of Computer and System Sciences 58 (1999), 137-147, first

presented at the 28th ACM STOC, 1996.

 Low memory summaries, sketches, synopses

 Goal is to pass all relevant information in memory

 Communication complexity issues arise

W
W

W
,
In

tr
an

et
,

L
oc

al
 f

il
e
s,

 D
at

ab
as

es

Crawl

documents

preparsed
html

Metadata
hyperlinks

date, lang, etc

wildcard (?,*)
accent

autocorrect

Index
(doc., position)

Query
Interface:

• stemming

• ranking

• grouping

• snippets

• cached version

in

d
e
x
e
r

Stemmed
 index

Search engine high level architecture

Nodes = Pages

Edges = hyperlinks

WWW as a graph

Web Robots (crawlers, spiders, bots, …)

• Seemingly, just a Breadth-First Search

o Would be easy to implement with external memory FIFO

• Needs a URL hash table

o Even if just 1 bit per URL

o Average URL length is 40 characters

o We may have 1012 URLs -> 40TB to store the text

• Trouble with BFS is politeness

o We designed our system to download 1000 pages/sec

o 1012 URLs would still take ~20 years

o Sites with a large number of pages fill up the queue

o Jammed Web servers would only serve us left with no
bandwidth to normal users

• Robots Exclusion Protocol: robotstxt.org

Robots.txt examples

User-agent: Google

Disallow:

Crawl-delay: 10

Sitemap: http://www.t-home.hu/static/sitemap.xml

Visit-time: 0100-0400

User-agent: *

Disallow: /

Also look at http://www.google.com/humans.txt 

http://www.t-home.hu/static/sitemap.xml
http://www.t-home.hu/static/sitemap.xml
http://www.t-home.hu/static/sitemap.xml
http://www.google.com/humans.txt

Illustration: A Web Bot Paper
IRLbot: Scaling to 6 Billion Pages and Beyond WWW 2008

DRUM: Disk Repository with Update Management

• Based on disk bucket sort

Pointing

Pay Level

Domain count

Separate

queues for

URLs

delayed by

politeness

W
W

W
,
In

tr
an

et
,

L
oc

al
 f

il
e
s,

 D
at

ab
as

es

Crawl

documents

preparsed
html

Metadata
hyperlinks

date, lang, etc

wildcard (?,*)
accent

autocorrect

Index
(doc., position)

Query
Interface:

• stemming

• ranking

• grouping

• snippets

• cached version

in

d
e
x
e
r

Stemmed
 index

Search engine high level architecture

The Inverted Index

• Each index term is associated with an inverted list

o Contains lists of documents, or lists of word occurrences in
documents, and other information

o Each entry is called a posting

o The part of the posting that refers to a specific document
or location is called a pointer

o Each document in the collection is given a unique number

o Lists are usually document-ordered (sorted by document
number)

• To compute the index

o Sort (document, term) pairs by term

o More information may needed …

Example “Collection”

Example slides ©Addison Wesley, 2008

The Simplest Inverted Index

Index with counts

Index with position (proximity info)

Proximity Matches

• Matching phrases or words within a window
o e.g., "tropical fish", or “find tropical within 5 words of fish”

• Word positions in inverted lists make these
types of query features efficient
o e.g.,

Other issues

• Document structure is useful in search

o field restrictions: e.g., date, from:, etc.

o some fields more important, e.g., title

o Options:

• separate inverted lists for each field type

• add information about fields to postings

• use extent lists

• Posting list may be very long, not just for stop words

o Total index size can be 25-50% of the collection

o Sort by rank not by DocID

o Tricks to merge lists

o Compression

Ranking
(Information Retrieval)

Features (signals)

Learning to Rank

PageRank

29 - 30 June 2015 Search Engines

W
W

W
,
In

tr
an

et
,

L
oc

al
 f

il
e
s,

 D
at

ab
as

es

Crawl

documents

preparsed
html

Metadata
hyperlinks

date, lang, etc

wildcard (?,*)
accent

autocorrect

Index
(doc., position)

Query
Interface:

• stemming

• ranking

• grouping

• snippets

• cached version

in

d
e
x
e
r

• ranking Stemmed
 index

Search engine high level architecture

Importance of ranking

T
im

e
 s

p
e
n
t lo

o
k
in

g
 a

t h
it p

o
s
itio

n

T
im

e
 e

la
p
s
e
d
 to

 re
a
c
h
 h

it p
o
s
itio

n

[Granka,Joachims,

Gay 2004]

User studies reveal

• Only top hits are viewed

• Mostly even only the first TWO!

Traditional ranking in text search

• Very small number of features, e.g.,

o Term frequency

o Inverse document frequency

o Document length

• Traditional evaluation: Mean Average Precision (MAP)
o For each query

• For each position in the list retrieved

o Compute the precision (% relevant)

• It was easy to tune weighting coefficients by hand

o And people did it

Basic ranking „signals”

• Term frequency based, e.g. OKAPI BM25

• Q = (q1, … ,qn) query terms

• Doc D contains qi f(qi,D) times

• We need lenght of D and avegare doc length

• k1, b constants

• „Inverse Document Frequency”

• N documents, n contains qi (at least once)

More complex signals

• Term frequency formulas weighted by HTML
 title, headers, size, face, etc.

• Anchor text

 Search Engine tutorial slides

• URL words (sometimes difficult to parse, e.g.
airfrance.com)

 – The above two has highest weight!

• URL length, directory depth

• Incoming link count

• Centrality in the Web as a graph

Modern systems – especially Web

• Great number of features:
• Arbitrary useful features – not a single unified model

o Log frequency of query word in anchor text?
o Query word in color on page?
o # of images on page?
o # of (out) links on page?
o PageRank of page?
o URL length?
o URL contains “~”?
o Page edit recency?
o Page length?
o User clickthrough (would take a separate lecture series)

• The New York Times (2008-06-03) quoted Amit Singhal as
saying Google was using over 200 such features

• Yandex (RU, market leader) claims to extensively use
machine learning for geo-localized ranking

Learning to Rank

29 - 30 June 2015 Search Engines

Ranking via a relevance function

• Given a query q and a document d, estimate the relevance of
d to q.

• Web search results are sorted by relevance.

• Binary / multiple levels of relevance (Excellent, Good, Bad,...)

• Given a query and a document, construct a feature vector
with 3 types of features:

o Query only : Type of query, query length,...

o Document only : Pagerank, length, spam,...

o Query & document : match score, clicks,...

Simple example:

Using classification for ad hoc IR

• Training corpus of (q, d, r) triples

• Relevance r is here binary (may also have 3–7 values)

• Document is represented by a feature vector x = (α, ω) where
o α is cosine similarity, ω is minimum query window size

o ω is the the shortest text span that includes all query words

• Query term proximity is a very important new factor
o Machine learning to predict the class r of a document-query pair

Sec. 15.4.1

Simple example:

Using classification for ad hoc IR

• A linear score function is then

Score(d, q) = Score(α, ω) = aα + bω + c

• And the linear classifier is

Decide relevant if Score(d, q) > θ

• … just like when we were doing text classification

Sec. 15.4.1

Simple example:

Using classification for ad hoc IR

0

2 3 4 5

0.05

0.025

co
si

n
e

sc
o

re
 

Term proximity 

R
R

R

R

R R

R

R
R

R
R

N

N

N

N

N

N

N
N

N

N

Sec. 15.4.1

Decision
surface

Decision
surface

Data Sets

Queries
Docs
(1000)

Relevance
level

Features Year

Letor3.0 - .gov 575 568 2 64 2008
Letor3.0 - medical 106 16 3 45 2008
Letor4.0 2476 85 3 46 2009
Yandex 20267 213 5 245 2009
Yahoo Learning to
Rank Challenge

36251 883 5 700 2010

Search Engines

Evaluation beyond Precision, Recall, MAP

• Normalized Discounted Cumulative Gain

• Expected Reciprocal Rank

Pointwise, Pairwise, Listwise

• Simplifying assumptions
o Linear feature space

o SVM learning (both classification and regression)

• But other models can also be used
o E.g. neural net: Ranknet

• Pointwise approach (see fig)
o Traditional classification, regression

o Can only optimize for traditional measures

o Overweights queries with may docs

• Pairwise approach
o Optimizes for ordering pairs

o Better suited for varying # docs per query

• Listwise approach
o Directly optimizes for NDCG, ERR, …

Illustration: Pairwise

• The pairwise space is
transformed to another SVM
learning problem

Web Spam

Reason and comparison w/ email spam

Taxonomy

Filtering techniques

29 - 30 June 2015 Search Engines

Why is Web Search so difficult?

• Too large collection, too many matching results for virtually
any query

• Hard to measure and assess reliability, factuality, or bias, even
for human experts

• Manipulation, „Search Engine Optimization” – Black Hat …
due to large financial gains

Web information retrieval

• Good ranking brings you many users (Google)

• Top position is important for content provider (sponsored hits)

Search Engines

[Granka,Joachims,Gay 2004]

„spam industry had a
revenue potential of $4.5

billion in year 2004 if they
had been able to completely
fool all search engines on all

commercially viable
queries”

[Amitay 2004]

A Web Spam example

Web Spam vs. E-mail Spam

• Web Spam not (necessarily) targeted
against end user
E.g. improve the Google ranking for a „customer”

• More effectively fought against since
o No filter available for spammer to test

o Slow feedback (crawler finds, visits, gets into index)

• But very costly if not fought against:
10+% sites, near 20% HTML pages

Waste of resources

Loss of your search engine clients …

Distribution of categories

Reputable 70.0%

Spam 16.5%

Weborg 0.8%

Ad 3.7%

Non-existent 7.9%

Empty 0.4%

Alias 0.3%
Unknown 0.4%

2004 .de crawl

Courtesy: T. Suel

Spammers’ target is Google …

• High revenue for top SE ranking
o Manipulation, “Search Engine Optimization”

o Content spam

Keywords, popular expressions, mis-spellings

o Link spam

„Farms”: densely connected sites, redirects

• Maybe indirect revenue
o Affiliate programs, Google AdSense

o Ad display, traffic funneling

All elements of Web IR ranking spammed

• Term frequency (tf in the tf.idf, Okapi BM25 etc. ranking
schemes)

• Tf weighted by HTML elements
o title, headers, font size, face

• Heaviest weight in ranking:

• URL, domain name part

• Anchor text: <a href”…”>best Bagneres-de-Luchon page

• URL length, depth from server root

• Indegree, PageRank, link based centrality

Web Spam Taxonomy 1.

Content spam

[Gyöngyi, Garcia-Molina, 2005]

29 - 30 June 2015 Search Engines

Spammed ranking elements

• Domain name
adjustableloanmortgagemastersonline.compay.dahannusaprima.co.uk

 buy-canon-rebel-20d-lens-case.camerasx.com

• Anchor text (title, H1, etc)
 free, great deals, cheap, inexpensive, cheap,

free

• Meta keywords (anyone still relying on that??)

 <meta name="keywords" content="UK Swingers, UK, swingers, swinging,

genuine, adult contacts, connect4fun, sex, … >

Query monetizability
Google AdWords
Competition

10k
10th wedding anniversary
128mb, 1950s, …
abc, abercrombie, …
b2b, baby, bad credit, …
digital camera
earn big money, easy, …
f1, family, flower, fantasy
gameboy, gates, girl, …
hair, harry potter, …
ibiza, import car, …
james bond, janet jackson
karate, konica, kostenlose
ladies, lesbian, lingerie, …
…

Generative content models

honest topic 4 honest topic 10

club (0.035) music (0.022)

team (0.012) band (0.012)

league (0.009) film (0.011)

win (0.009) festival (0.009)

Spam topic 7

loan (0.080)

unsecured (0.026)

credit (0.024)

home (0.022)

Excerpt: 20 spam and 50 honest topic models
[Bíró, Szabó, Benczúr 2008]

<div style="position:absolute; top:20px; width:600px; height:90px; overflow:hidden;">atangledweb.co.uk currently
offline
atangledweb.co.uk back soon

<font size=-
1>atangledweb.co.uk

Soundbridge HomeMusic WiFi Media Play-
>... SanDisk Sansa e250 - 2GB MP3 Player -->... AIGO F820+ 1GB Beach inspired
MP3 Pla->... Targus I-Pod Mini Sound Enhancer<a class=l
href="http://www.atangledweb.co.uk/index04.html">->... Sony NWA806FP.CE7 4GB video WALKMAN <a class=l
href="http://www.atangledweb.co.uk/index05.html">->... Ministry of Sound 512MB MP3 player<a class=l
href="http://www.mp3roze.co.uk/cat7000.html">->... Nokia 6125 - Fold Design - 1.3 Megapi-
>... Samsung E350 - Camera Phone With Flas<a class=l

Parking Domain (may still have old inlinks)

Keyword stuffing, generated copies

Google ads

Web Spam Taxonomy 2.

Link spam

29 - 30 June 2015 Search Engines

Hyperlinks: Good, Bad, Ugly

 “hyperlink structure contains an enormous
amount of latent human annotation that can be
extremely valuable for automatically inferring
notions of authority.” (Chakrabarti et. al. ’99)

o Honest link, human annotation

o No value of recommendation, e.g. „affiliate
programs”, navigation, ads …

o Deliberate manipulation, link spam

Link farms

W W W

Entry point from honest web:
• Honey pots: copies of quality content
• Dead links to parking domain
• Blog or guestbook comment spam

Link farms

Multi-
domain,

Multi-IP

411fashion.com

 411 sites A-Z list

Honey pot: quality content copy

411amusement.com

 411 sites A-Z list

411zoos.com

 411 sites A-Z list

target

ρ=0.97 ρ=0.61

Honest:

fhh.hamburg.de
Spam: radiopr.bildflirt.de
(part of www.popdata.de farm)

PageRank supporter distribution

low high

PageRank

low high

PageRank

[Benczúr,Csalogány,Sarlós,Uher 2005]

Know your neighbor [Debora, Chato et al 2006]

• Honest pages rarely point to spam

• Spam cites many, many spam

1. Predicted spamicity

p(v) for all pages

2. Target page u,

new feature f(u)

by neighbor p(v)

aggregation

3. Reclassification by

adding the new

feature

?
u

v1

v2

v7

Web Spam Taxonomy 3.

Cloaking and hiding

29 - 30 June 2015 Search Engines

Formatting
• One-pixel image

• White over

 white

• Color, position from stylesheet

• …

Idea: crawlers do simplified HTML processing

Importance for crawlers to run rendering and script execution!

Obfuscated JavaScript

<SCRIPT language=javascript>
var1=100;var3=200;var2=var1 + var3;
var4=var1;var5=var4 + var3;
if(var2==var5)
document.location="http://umlander.info/
mega/free software downloads.html";

</SCRIPT>

• Redirection through window.location

• eval: spam content (text, link) from random looking
static data

• document.write

HTTP level cloaking

• User agent, client host filtering

• Different for users and for GoogleBot

• „Collaboration service” of spammers for crawler IPs, agents
and behavior

Web Spam Taxonomy 4.

Spam in social media

29 - 30 June 2015 Search Engines

More recent target: blogs, guest books

Fake blogs

Spam Hunting

• Machine learning

• Manual labeling

• Crawl time?

• Benchmarks

No free lunch: no fully automatic filtering

• Manual labels (black AND white lists) primarily
determine quality

• Can blacklist only a tiny fraction

o Recall 10% of sites are spam

o Needs machine learning

• Models quickly decay

 Measurement: training on intersection with WEBSPAM-UK2006
labels, test WEBSPAM-UK2007

Discovery Challenge 2010 labeling

Crawl-time vs. post-processing

• Simple filters in crawler
o cannot handle unseen sites

o needs large bootstrap crawl

• Crawl time feature generation and
classification
o Needs interface in crawler to access content

o Needs model from external crawl (may be smaller)

o Sounds expensive but needs to be done only once per site

Web Spam and Quality Challenges

• UK-WEBSPAM2006 [Debora, Chato]
o 9000 Web sites, 500,000 links

o 767 spam, 7472 nonspam

• UK-WEBSPAM2007 [Debora, Chato]
o 114,000 Web sites, 3 bio links

o 222 spam, 3776 nonspam

o 3 TByte full uncompressed data

• ECML/PKDD Discovery Challenge 2010 [Andras, Chato]
o 190,000 Web sites, 430 spam, 5000 nonspam

o Also trust, neutrality, bias

• The Reconcile project C3 data set (WebQuality 2015 data)
o 22 325 Web page evaluations, scale: 0 – 4; 5 for missing

o credibility, presentation, knowledge, intentions, completeness

o 5704 pages by 2499 assessors

Machine Learning

• Originally, many features of linkage and content processing

• Worked because spam farms were cut into training and testing

• Recently, we realized only terms are needed

o TF, TF-IDF, BM25

o Distance: Jensen-Shannon or Euclidean (L2)

o Support Vector Machines

 (a new similarity kernel worked very well)

• Advantage: the prediction model is just a set of vectors
and inner products need to be computed

o See our results over the C3 data set (2015)

 All non-
term

TF TFIDF BM25 BM25 +
nonterm

All

J-S L2 J-S L2 J-S L2 +

AUC .66 .70 .65 .70 .66 .67 .71 .72 .73 .73

PageRank

29 - 30 June 2015 Search Engines

Hyperlink analysis: Goals

• Ranking, PageRank

 … well that is obvious?

• Features for network classification

• Propagation, Markov Random Fields

• Centrality

 … PageRank why central?

• Similarity of graph nodes

A quality page is pointed to
by several quality pages

PageRank as Quality

“hyperlink structure contains an enormous
amount of latent human annotation that can be
extremely valuable for automatically inferring
notions of authority.” (Chakrabarti et. al. ’99)

NB: not all links are useful, quality, …
 The Good, the Bad and the Ugly

PR(k+1) = PR(k) ((1 - ) M +  · U)

PR(k+1) = PR(k) M

 = PR(1) ((1 - ) M +  · U)k

PageRank as Quality

A quality page is pointed to
by several quality pages

Brin, Page 98

U could represent jump to any fixed

(personalized) distribution

u

The Random Surfer Model

Nodes = Web pages

Edges = hyperlinks

Starts at a random page—arrives at quality page

u

The Random Surfer Model

Chooses random neighbor with probability 1- 

u

The Random Surfer Model

Or with probability  “teleports” to random
(personalized) page—gets bored and types a new
URL or chooses a random bookmark

The Random Surfer Model

 And continues with the random walk …

The Random Surfer Model

 And continues with the random walk …

The Random Surfer Model

Until convergence … ?

[Brin, Page 98]

Assume PageRank is  > 0

 fraction  of time spent here

Walk will stuck here for

time proportional to  2k

Exponential gain of the manipulator

k „manipulative” nodes



Teleportation – less obvious reasons

PageRank as a Big Data problem

• Estimated 10+ billions of Web pages worldwide

• PageRank (as floats)

o fits into 40GB storage

• Personalization just to single pages:

o 10 billions of PageRank scores for each page

o Storage exceeds several Exabytes!

• NB single-page personalization is enough:

)()()(1111 kkkk vPPRvPPRvvPPR   

For certain things are just too big?

• For light to reach the other side of the Galaxy … takes rather
longer: five hundred thousand years.

• The record for hitch hiking this distance is just under five
years, but you don't get to see much on the way.

D Adams, The Hitchhiker's Guide to the Galaxy. 1979

Equivalence with short walks

Jeh, Widom ’03, Fogaras ’03
o Random walk starts from distribution (or page) u

o Follows random outlink with probability 1-ε, stops with ε

o PPR(u,v)=Pr{ the walk from u stops at page v }

 u i = 0 (1 - )i Mi + PR(1) (1 - ) k Mk
k-1

paths of length i
Terminate with probability 

Continue with probability (1 - )

 PR(1) ((1 - ) M +  · U)k =

Stop!

Appreciate the simplicity

• Few lines completely elementary proof

• Convergence follows w/o any theory

• Convergence speed follows (eigengap)

• Meaning: centrality through short walks

• Solves algorithmics (to come)

Monte Carlo Personalized PageRank

• Markov Chain Monte Carlo algorithm

• Pre-computation
o From u simulate N independent random walks

o Database of fingerprints: ending vertices of the walks from all vertices

• Query
o PPR(u,v) := # (walks u→v) / N

o N ≈ 1000 approximates top 100 well

• Fingerprinting techniques

Fogaras-Racz: Towards Scaling Fully Personalized PageRank

Semi-Supervised Learning

• Idea: Objects in a network are similar to neighbors
o Web: links between similar content; neighbors of spam are likely spam

o Telco: contacts of churned more likely to churn

o Friendship, trust

• Implementations:
o Stacked graphical learning [Cohen, Kou 2007]

o Propagation [Zhou et al, NIPS 2003]

 (u)predMvpredvpred t

uv

t)()1()1()()(

u

 (u)predMvpredvpred t

uv

t)()1()1()()(

Random link with probability 1- 

v

v

 (u)predMvpredvpred t

uv

t)()1()1()()(

Personalized teleport with prob 

Other uses – mostly for spam hunting

• Google BadRank

• TrustRank: personalized on quality seed [Gyongyi,Garcia-
Molina 2005]

• SpamRank: statistics of short incoming walks
[B,Csalogany,Sarlos,Uher 2005]

• Truncated PageRank versions, neighborhood features, ratios,
host level statistics [Castillo et al, 2006]

Distributed data processing
Google MapReduce for large scale inverted index build

Distributed sotfware systems and their limitations

Hadoop

PageRank by Hadoop

PageRank by other systems: Flink, GraphLab

29 - 30 June 2015 Search Engines

 • Google’s computational/data
manipulation model

• Elegant way to work with big data

Jure Leskovec, Stanford CS246: Mining Massive Datasets,
http://cs246.stanford.edu

Search Index Build Google scale

Map – Shuffle/Sort – Reduce

Input Splitting Mapping Shuffling Reducing Output

data luchon
network

science data
science
network

luchon science

data
luchon

network

science
data

science

network
luchon
science

data,1
luchon,1

 network,1

data,1
science,1
 science,1

luchon,1
network,1
 science,1

luchon,1
luchon,1

network,1
network,1

data,1
data,1

science,1
 science,1
 science,1

luchon,2

network,2

data,2

science,3

luchon,2
network,2

data,2
science,3

Hello World for different systems

• Java, …

o Print ”Hello World”

• MapReduce

o Word count

• Graphs

o PageRank or connected components
(suprise: they are almost the same)

The Project Triangle

CAP (Fox&Brewer) Theorem

C

A
P

Theorem: You may choose two of C-A-P

Consistency
(Good)

Availability
(Fast)

Partition-resilience
(Cheap) AP: some replicas may give

erroneous answer

Fox&Brewer proof

• Eventual consistency if connection resumes and data
can be exchanged

• MapReduce is PC – batch computations, restarts in
case of failures

• Partition (P): LHS will not know about
new data on RHS

• Immediate response from LHS
(availability) may give incorrect
answer

• If partition (P), then either availability
(A) or consistence (C)

Hadoop overview

• Machines WILL fail

• Data needs to be partitioned and REPLICATED

o File system: Google, Hadoop file systems – HDFS

o NameNode to store the lookup for chunks

• Copying over the network is slow

o Bring computation close to the data

o Let a Master Node be responsible for

• Task sheduling, failure detection

• Managing and transmitting temporary output files

• MapReduce computations

o We’ll se what it can and what it cannot really do well

Accessing the HDFS filesystem

Java library

• Copy from/to local, e.g.:

 hadoop dfs -put localfile hdfsfile

• Standard file manipulation commands, e.g.:

 hadoop dfs -ls (-rm, -mkdir, …)

WordCount: Models of Computation

• All <word, count> counters fit in memory
o Hash tables

• External memory
o Sort

• Streaming data?

• Distributed, many machines?

Word Counting: Main
package org.myorg;

import java.io.IOException;
import java.util.*;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class WordCount {

 public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> { … }
 public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> { … }

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();

 Job job = new Job(conf, "wordcount");

 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

 job.setMapperClass(Map.class);
 job.setReducerClass(Reduce.class);

 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.waitForCompletion(true);
 }

}

Word Counting: Map

public static class Map extends Mapper<LongWritable, Text, Text,
IntWritable> {
// public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

 public void map(LongWritable key, Text value, Context
 context) throws IOException, InterruptedException {

 String line = value.toString();
 StringTokenizer tokenizer = new StringTokenizer(line);
 while (tokenizer.hasMoreTokens()) {
 word.set(tokenizer.nextToken());
 context.write(word, one);
 }
 }
}

Word Counting: Reduce

public static class Reduce extends Reducer<Text, IntWritable,
Text, IntWritable> {

 public void reduce(Text key, Iterable<IntWritable> values,
Context context)

 throws IOException, InterruptedException {

 int sum = 0;

 for (IntWritable val : values) {

 sum += val.get();

 }

 context.write(key, new IntWritable(sum));

 }

 }

Master Node / Job tracker role

• Task status and scheduling

• Manage intermediate Mapper output to pass to Reducers

• Ping workers to detect failures
o Restart tasks from input or intermediate data, all stored on disk

• Master node is a single point of failure

Hadoop Job Tracker

Algorithms over MapReduce

Join

PageRank

Warmup: MapReduce Join

• Map:
o R(a,b) -> key is b, value is the tuple a, ”R”

o S(b,c) -> key is b, value is the tuple c, ”S”

• Reduce:
o Collect all a, ”R” and c, ”S” tuples by key a to form (a,b,c)

MapReduce PageRank

Map: send PageRank share

...

Reduce: add

Iterate

MapReduce PageRank pseudocode

• MAP: for all nodes n

o Input: current PageRank and out-edge list of n

o p  edgelist(n): emit (p, PageRank(n) / outdegree(n))

• Reduce

o Obtains data ordered by p

o Updates PageRank(p) by summing up all incoming PageRank

o Writes to disk, starts new iteration as a new MapReduce job

• Stop updating a node if change is small; terminate if no updates

• How to start a new iteration??

o We need both edgelist(n) and PageRank(n)

o But they reside in completely different data sets, partitioned
independently → we need a join

o Solution: we need emit (n, edgelist(n)) as well

MapReduce PageRank: Main

public static void main(String[] args) {
String[] value = {
// key | PageRank | points-to
 "1|0.25|2;4",
 "2|0.25|1;3;4",
 "3|0.25|2",
 "4|0.25|1;3",
};

mapper(value);
reducer(collect.entrySet());

}

 | 1 2 3 4

--+----------

1 | 0 1 0 1

2 | 1 0 1 1

3 | 0 1 0 0

4 | 1 0 1 0

MapReduce PageRank: Reduce

private static void

 reducer(Set<Entry<String, ArrayList<String>>> entrySet) {
 for (Map.Entry<String, ArrayList<String>> e : entrySet) {
 Iterator<String> values = e.getValue().iterator();
 float PageRank = 0;
 String link_list = "";

 while (values.hasNext()) {
 String[] dist_links =
 values.next().toString().split("[|]");
 if (dist_links.length > 1)
 link_list = dist_links[1];
 int inPageRank = Integer.parseInt(dist_links[0]);
 PageRank += incomingPageRank;
 }
 System.out.println(e.getKey() + " - D " + (PageRank + " | " + link_list));
 }
}

}

MapReduce PageRank: Map
private static void mapper(String[] value) {

for (int i = 0; i < value.length; i++) {
 String line = value[i].toString();
 String[] keyVal = line.split("[|]");

 String Key = keyVal[0];
 String sDist = keyVal[1];
 String[] links = null;
 if (keyVal.length > 2) {
 links = keyVal[2].split(";");
 int Dist = Integer.parseFloat(PageRank);

 for (int x = 0; x < links.length; x++) {
 if (links[x] != "") {
 ArrayList<String> list;
 if (collect.containsKey(links[x])) {
 list = collect.get(links[x]);
 } else {
 list = new ArrayList<String>();
 }
 list.add(PageRank/ links.length + "|");
 collect.put(links[x], list);
 }
}

ArrayList<String> list;
if (collect.containsKey(Key)) {
 list = collect.get(Key);
 } else {
 list = new ArrayList<String>();
 }
 list.add(sDist + "|" + keyVal[2]);
 collect.put(Key, list);
 }
}

MapReduce PageRank

Map: send PageRank share AND the entire graph!

...

Reduce: add AND move the entire graph around

Iterate

Bulk Synchronous Parallel (BSP) graph processing

• Leslie Valiant’s idea from 80’s

• Google Pregel (Proprietary)

• Several open source clones

o Giraph, …

• Dato.com’s GraphLab

o More than just BSP

• Note BSP is just a Map, followed by a Join

o Why don’t we just implement a nice Join

o TU Berlin idea, implemented in Apache Flink

Parallelization Contract, BSP and the Join operation

• Map PACT (PArallelization ContracT)
o Every record forms its own group

o Process all groups independent parallel

• Reduce PACT
o One attribute is key

o Records with same key form a group

Second order
 funcion

First order function
(user code)

Data Data

Map PACT

Reduce PACT

Parallelization Contract, BSP and the Join operation

Join PACT

Two inputs

Records with

same key

form a group

(equi-join)

BSP

Two inputs:

nodes and edges

key is node ID

Collect all

neighbors of a

node

Second order
 funcion

First order function
(user code)

Data Data

The Apache Flink system

• Several PACTs implemented

• Execution is optimized (think of versions of
join) as in a database management system

• Capable of using not only disk for data
passing but also memory, network by the
decision of the optimizer

• Capable of native efficient iteration

pagerank(i, scope){
 // Get Neighborhood data
 (R[i], Wij, R[j]) scope;

 // Update the vertex data

 // Reschedule Neighbors if needed
 if R[i] changes then
 reschedule_neighbors_of(i);
}

;][)1(][
][





iNj

ji jRWiR 

The Dato.com GraphLab system

An update function is a user defined program which when
applied to a vertex transforms the data in the scope of the
vertex

Dynamic
computation

PageRank in GraphLab

GraphLab_pagerank(scope) {

 sum = 0

 forall (nbr in scope.in_neighbors())

 sum = sum + neighbor.value() / nbr.num_out_edges()

 old_rank = scope.vertex_data()

 scope.center_value() = ALPHA + (1-ALPHA) * sum

 double residual = abs(scope.center_value() – old_rank)

 if (residual > EPSILON)

 reschedule_out_neighbors()

}

What I’d like to present next time we
meet

Flink unified batch and streaming

Data Scientist magic triangle

Application

Data

Science

Control Flow

Iterative Algorithms

Error Estimation

Active Sampling

Sketches

Curse of Dimensionality

Decoupling

 Convergence

Monte Carlo

Mathematical Programming

Linear Algebra

Stochastic Gradient Descent

Regression

Statistics

Hashing

Parallelization

Query Optimization

Fault Tolerance

Relational Algebra / SQL

Scalability

Data Analysis Language

Compiler

Memory Management

Memory Hierarchy

Data Flow

Hardware Adaptation

Indexing

Resource Management

NF2 /XQuery

Data Warehouse/OLAP

Domain Expertise (e.g., Industry 4.0, Medicine, Physics, Engineering, Energy, Logistics)

Real-Time

STREAMLINE Magic Triangle

STREAMLINE Magic Triangle

Challenge Present Status Goal Action Leader

Delayed
information
processing

No up-to-date timely
predictions

Reactivity
Same unified system
for data at rest and

data in motion

TU B /
DFKI

Actionable
intelligence: Lack

of appropriate
analytics

Poor or non-timely
prediction results in
user churn, business

losses

Prediction
quality

Library for batch
and stream

combined machine
learning

SZTAKI
(Andras)

Skills shortage:
Human latency

Multiple expertise
needed for data

scientists, expensive to
operate

Ease of
implementation

High level
declarative language

SICS

Chuck Norris versions

© Aljoscha Krettek, Co-Founder,
Software Engineer at Data Artisans

Flink developers (Soon-to-be) Flink users

We don’t always have to scale
our machine learning tasks

But when we do, we don’t
sacrifice accuracy

The Lambda Architecture

• Usual solution: two different systems

• Adds complexity to the architecture

• Many question the need for the batch component

https://www.mapr.com/sites/default/files/otherpageimages/lambda-architecture-2-800.jpg

Beyond the Lambda Architecture

Current Flink architecture

STREAMLINE architecture

Conclusions

• Hadoop is a widely used open source Java MapReduce
implementation

• Needs installation, some ugly boilerplate + object serialization

• Graph algorithms can be implemented by iterated joins

• Inefficient in that all graph data needs to written to disk and
moved around in iterations (workarounds exist …)

• New architecture for unified batch + stream needed

o Apache Flink has the potential

• New machine learning is needed

o Turning research codes to open source software will start
soon

References
A very good textbook covering many areas of my presentation. Look at the online second edition at
http://www.mmds.org/
• Rajaraman, Anand, and Jeffrey David Ullman. Mining of massive datasets. Cambridge University Press, 2011.
PageRank
• Brin, Sergey, and Lawrence Page. "Reprint of: The anatomy of a large-scale hypertextual web search engine."

Computer networks 56.18 (2012): 3825-3833.
• Fogaras, Dániel, and Balázs Rácz. "Towards scaling fully personalized pagerank." Algorithms and Models for the

Web-Graph. Springer Berlin Heidelberg, 2004. 105-117.
Web Spam
• Castillo, Carlos, and Brian D. Davison. "Adversarial web search." Foundations and trends in Information Retrieval

4.5 (2011): 377-486.
• Erdélyi, M., Benczúr, A. A., Daróczy, B., Garzó, A., Kiss, T., & Siklósi, D. (2014). The classification power of web

features. Internet Mathematics, 10(3-4), 421-457.
Learning to Rank
• LTR survey
Web crawlert
• Lee, Leonard, Wang, Loguinov. IRLBot: Scaling to 6 Billion Pages and Beyond. WWW 2008.
• Boldi, P., Marino, A., Santini, M., & Vigna, S. (2014, April). Bubing: Massive crawling for the masses. In Proceedings

of the companion publication of the 23rd international conference on World wide web companion (pp. 227-228).
International World Wide Web Conferences Steering Committee.

MapReduce
• MapReduce: simplified data processing on large clusters. J Dean, S Ghemawat - Communications of the ACM, 2008

[OSDI 2004]
Apache Flink
• Alexandrov, A., Bergmann, R., Ewen, S., Freytag, J. C., Hueske, F., Heise, A., ... & Warneke, D. (2014). The

Stratosphere platform for big data analytics. The VLDB Journal—The International Journal on Very Large Data
Bases, 23(6), 939-964.

http://www.mmds.org/
http://www.mmds.org/

