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Perron-Frobenius operators
Consider a physical system with N states i = 1, . . . , N and
probabilities pi(t) ≥ 0 evolving by a discrete Markov process:

pi(t + 1) =
∑
j

Gij pj(t)

The transition probabilities Gij provide a Perron-Frobenius matrix G
such that: ∑

i

Gij = 1 , Gij ≥ 0 .

Conservation of probability:

‖Gv‖1 = ‖v‖1 if vi ∈ R and vi ≥ 0 ⇒ ‖p(t+ 1)‖1 = ‖p(t)‖1 = 1.

‖Gv‖1 ≤ ‖v‖1 for any other (complex) vector

where ‖v‖1 =
∑

i |vi| is the usual 1-norm.
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In general GT 6= G and eigenvalues λ may be complex.

If v is a (right) eigenvector of G: Gv = λ v ⇒ |λ| ≤ 1.

The vector eT = (1, . . . , 1) is left eigenvector with λ = 1:

eT G = 1 eT

⇒ existence of (at least) one right eigenvector P for λ = 1 also
called PageRank in the context of Google matrices:

GP = 1 P

Biorthogonality between left and right eigenvectors:

Gv = λ v and wT G = λ̃ wT ⇒ wT v = 0 if λ 6= λ̃ .
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Expansion in terms of eigenvectors:

p(0) =
∑
j

Cj v
(j) ⇒ p(t) =

∑
j

Cj λ
t
j v

(j)

with λ1 = 1 and v(1) = P . If C1 6= 0 and |λj| < 1 for j ≥ 2

⇒ lim
t→∞

p(t) = P .

⇒ Powermethod to compute P

Rate of convergence:

∼ |λ2|t = et ln(1−(1−|λ2|)) ≈ e−t(1−|λ2|)

⇒ Problem if 1− |λ2| � 1 of even if |λ2| = 1.
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Complications if G is not diagonalizable
The eigenvectors do not constitute a full basis and further
generalized eigenvectors are required:

(λj1−G) v(j,0) = 0

(λj1−G) v(j,1) = v(j,0)

(λj1−G) v(j,2) = v(j,1)

...

⇒ Contributions ∼ tl λtj with l = 0, 1, . . . in p(t) expansion.

However, for λ1 = 1 only l = 0 is possible since otherwise:

‖p(t)‖1 ≈ const. tl → ∞ .

6



“Analogy” with hamiltonian
quantum systems

i~ ∂
∂t
ψ(t) = H ψ(t)

where ψ(t) quantum state and H = H† is a hermitian (or real
symmetric) operator.

Expansion in terms of eigenvectors: H ϕ(j) = Ej ϕ
(j)

ψ(t) =
∑
j

Cj e
−i Ej t/~ϕ(j)

• H is always diagonalizable with Ej ∈ R and (ϕ(k))T ϕ(j) = δkj.

• Eigenvectors ϕ(j) are valid physical states while for PF operators
only real vectors with positive entries are physical states and most
eigenvectors are complex.
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Example hamilontian operators:

• Disorder Anderson model in 1 dimension:

Hjk = −(δj,k+1 + δj,k−1) + εj δj,k

with random on-site energies εj ∈ [−W/2,W/2] ⇒
localized eigenvectors ϕl ∼ e−|l−l0|/ξ with localization length
ξ ∼ W−2. General mesure of localization length by inverse
participation ratio :

1

ξIPR
=

∑
l ϕ

4
l

(
∑

l ϕ
2
l )

2
∼ 1

ξ

• Gaussian Orthogonal Ensemble (GOE): Hjk = Hkj ∈ R and Hjk

independent random gaussian variables with:

〈Hjk〉 = 0 , 〈H2
jk〉 = (1 + δjk)σ

2.
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Universal level statistics
Distribution of rescaled nearest level spacing s = (Ej+1 − Ej)/∆
with average level spacing ∆:

• Poisson statistics: PPois(s) = exp(−s)
Anderson model with ξ � L (L = system size), integrable
systems, . . .

• Wigner surmise: PWig = (πs/2) exp(−πs2/4)

GOE, Anderson model with ξ & L, generic (classically) chaotic
systems, . . .
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PF Operators for directed networks
Consider a directed network with N nodes 1, . . . , N and N` links.

• Define the adjacency matrix by Ajk = 1 if there is a link k → j
and Ajk = 0 otherwise. In certain cases, when explicitely
considering multiple links, one may have Ajk = m where m =
multiplicity of a a link (e. g. Network for integer numbers).

• Define a matrix S0 from A by sum-normalizing each non-zero
column to one and keeping zero columns.

• Define a matrix S from S0 by replacing each zero column with
1/N entries.

• Same procedure for inverted network: A∗ ≡ AT and S∗ is
obtained in the same way from A∗. Note: in general: S∗ 6= ST .
Leading (right) eigenvector of S∗ is called CheiRank .
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Example:

A =


0 1 1 0 0
1 0 1 1 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0



S0 =


0 1

2
1
3 0 0

1 0 1
3

1
3 0

0 1
2 0 1

3 0

0 0 1
3 0 0

0 0 0 1
3 0

 , S =


0 1

2
1
3 0 1

5

1 0 1
3

1
3

1
5

0 1
2 0 1

3
1
5

0 0 1
3 0 1

5

0 0 0 1
3

1
5


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The nodes with no out-going links, associated to zero columns in A,
are called dangling nodes. On can formally write:

S = S0 +
1

N
edT

with d = dangling vector with dj = 1 for dangling nodes and dj = 0
for other nodes and e = uniform unit vector with ej = 1 for all nodes.

Damping factor
Define for 0 < α < 1, typically α = 0.85, the matrix:

G(α) = αS + (1− α)
1

N
eeT

• G is also PF operator with columns sum normalized.

• G has the eigenvalue λ1 = 1 with multiplicity m1 = 1 and other
eigenvalues are αλj (for j ≥ 2) with λj = eigenvalues of S. The
right eigenvectors for λj 6= 1 are not modified (since they are
orthogonal to the left eigenvector eT for λ1 = 1).

• Similar expression for G∗(α) using S∗.
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PageRank
Example for university networks of Cambridge 2006 and Oxford 2006 (N ≈ 2× 105

and N` ≈ 2× 106).

P (i) =
∑
j

Gij P (j)

P (i) represents the “importance” of “node/page i” obtained as sum of all other pages

j pointing to i with weight P (j). Sorting of P (i) ⇒ index K(i) for order of

appearance of search results in search engines such as Google.
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Scale Free properties
Distribution of number of in- and outgoing links for Wikipedia:

win,out(k) ∼ 1

k µin,out
, µin = 2.09± 0.04 , µout = 2.76± 0.06 .

(Zhirov et al. EPJ B 77, 523)

Small world properties: “Six degrees of separation”

(cf. Milgram’s ”small world experiment” 1967)
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Numerical diagonalization
• Powermethod to obtain P : rate of convergence for G(α) is better

than ∼ α t.

• Full “exact” diagonalization: possible for N . 104:

memory usage ∼ N 2 and computation time ∼ N 3.

• Arnoldi method to determine largest nA ∼ 102− 104 eigenvalues:

memory usage ∼ N nA + C1N` + C2 n
2
A and

computation time ∼ N n2A + C3N` nA + C4 n
3
A.

• Strange numerical problems to determine accurately “small”
eigenvalues, in particular for (nearly) triangular network structure
due to large Jordan-blocks (⇒ 3rd lecture).
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Arnoldi method
to (partly) diagonalize large sparse non-symmetric N ×N matrices
G such that the product “G×vector” can be computed efficiently (G
may contain some constant columns ∼ e):

• choose an initial normalized vector ξ0 (random or “otherwise”)

• determine the Krylov space of dimension nA (typically:
1� nA � N ) spanned by the vectors: ξ0, G ξ0, . . . , GnA−1ξ0

• determine by Gram-Schmidt orthogonalization an orthonormal
basis {ξ0, . . . , ξn−1} and the representation of G in this basis:

Gξk =

k+1∑
j=0

Hjk ξj

Note: if G = GT ⇒ H = tridiagonal symmetric and the Arnoldi
method is identical to the Lanczos method .
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• diagonalize the Arnoldi matrix H which has Hessenberg form:

H =


∗ ∗ · · · ∗ ∗
∗ ∗ · · · ∗ ∗
0 ∗ · · · ∗ ∗
... ... . . . ... ...
0 0 · · · ∗ ∗
0 0 · · · 0 ∗


which provides the Ritz eigenvalues that are very good
aproximations to the “largest” eigenvalues of G.

1

10-5

10-10

10-15

 0  500  1000  1500

|
λ j
-

λ j
(
R
i
t
z
)
|

j

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

λ

Example: PF Operator for Ulam-Map (⇒ 2nd lecture)
N = 16609, N` = 76058, nA = 1500
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Invariant subspaces
In realistic WWW networks invariant subspaces of nodes create large
degeneracies of λ1 (or λ2 if α < 1) which is very problematic for the
Arnoldi method.

Therefore determine the invariant subspaces as follows:

Let Nc = bN a certain fraction of the network size N (e.g. b = 0.1).

• For a given initial node i0 determine a sequence of node sets sn
by s0 = {i0} and sn+1 is the set containing all nodes of sn and
those which can be reached by a link from a node in sn.

• If sn = sn+1 with at most Nc elements for some n⇒ sn is an
invariant subspace.
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• If for some n the set sn contains a dangling node (connected by
construction to any other node) or if sn contains more than Nc

elements⇒ i0 is identified as a node belonging to the core
space (space of nodes not belonging to an invariant subspace).

• Repeat the procedure for every network node as potential initial
node except for those nodes which are already identified as
subspace nodes. If for some n the set sn contains a previously
found core space node⇒ i0 also belongs to the core space.

• Merge all subspaces with common members. In this way one
obtains a decomposition of the network in many separate
subspaces with Ns nodes and a “big” core space.

This procedure can be efficiently implemented as a computer
program. It turns out that for most networks the exact choice of b is
not important (e.g. b = 0.1 or b = 0.9) as long as b = O(1). Note
that a core space node may have a link to an invariant subspace but a
subspace node may not have a link to another subspace or the core
space.
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Example:

s0 = {2}
s1 = {2, 4, 5}
s2 = {2, 3, 4, 5} = s3 = invariant subspace
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The decomposition in subspaces and a core space implies a block
structure of the matrix S:

S =

(
Sss Ssc
0 Scc

)
where Sss is block diagonal according to the subspaces. The
subspace blocks of Sss are all matrices of PF type with at least one
eigenvalue λ1 = 1 explaining the high degeneracies.

To determine the spectrum of S apply:

• Exact (or Arnoldi) diagonalization on each subspace.

• The Arnoldi method to Scc to determine the largest core space
eigenvalues λj (note: |λj| < 1). The largest eigenvalues of Scc
are no longer degenerate but other degeneracies are possible
(e.g. λj = 0.9 for Wikipedia).
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University Networks

Cambridge 2006 (left),
N = 212710, Ns = 48239

Oxford 2006 (right),
N = 200823, Ns = 30579

Spectrum of S (upper panels), S∗

(middle panels) and dependence of
rescaled level number on |λj| (lower
panels).

Blue: subspace eigenvalues

Red: core space eigenvalues (with

Arnoldi dimension nA = 20000)
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PageRank for α→ 1 :

P =
∑
λj=1

cj ψj︸ ︷︷ ︸
subspace contributions

+
∑
λj 6=1

1− α
(1− α) + α(1− λj)

cj ψj .
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Rescaled PageRank at α = 1− 10−8 :
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Top: Cambridge, Oxford 2002-2006; middle: other universities; bottom: Wikipedia∗;

black line ∝ K−2/3; Ns = sum of all subspace dimensions.
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Distribution of dimensions of invariant subspaces
F (x) = fraction of invariant subspaces with dimension larger than
x〈d〉 where 〈d〉 = average subspace dimension.
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Top: Cambridge, Oxford 2002-2006; middle: other universities; bottom: Wikipedia∗;

black line: F (x) = 1/(1 + 2x)3/2.
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Numerical PageRank method for α→ 1

Combination of power method and Arnoldi diagonalization :

Here: α = 1− 10−8
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Core space gap and quasi-subspaces

Left: Core space gap 1− λ(core)1 vs N for certain british universities.

Red dots for gap > 10−9; blue crosses (moved up by 109) for gap < 10−16.

Right: first core space eigenvecteur for universities with gap < 10−16 or gap

= 2.91× 10−9 for Cambridge 2004.

Core space gaps < 10−16 correspond to quasi-subspaces where it
takes quite many “iterations” to reach a dangling node.
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Twitter network
Twitter 2009 : N = 41652230 nodes, N` = 1468365182 network links.

Matrix structure in K-rank order:

Number NG of non-empty matrix elements in K ×K-square:
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Spectrum

nA = 640 ⇒ 250 GB of RAM memory.
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PageRank, CheiRank, eigenvectors

Subspace distribution

Black line: F (x) = 1/(1 + 2x)3/2.
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