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Random Perron-Frobenius
matrices

Construct random matrix ensembles G;; such that:
¢G>0

e (5;; are (approximately) non-correlated and distributed with the
same distribution P(G;;) (of finite variance o).

.Zlejzl = <Gij>:1/N

e = average of GG has one eigenvalue \; = 1 (= “flat” PageRank)
and other eigenvalues \; = 0 (for 57 # 1).

e degenerate perturbation theory for the fluctuations = circular
eigenvalue density with R = v/ /N o and one unit eigenvalue.



Different variants of the model:
e uniform full: P(G) = N/2for0 < G < 2/N

= R=1/Vv3N

e uniform sparse with () non-zero elements per column:
P(G)=Q/2for 0 < G < 2/ with probability QQ/N
and G' = 0 with probability 1 — @) /N
= R=2/1/30Q

e constant sparse with () non-zero elements per column:
G = 1/Q) with probability () /N
and G' = 0 with probability 1 — @) /N
= R=1/VQ

e powerlaw with p(G) = D(1 + aG) " for 0 < G < 1 and
2<b<3:

= R=CO)N""2 | C@)={D-2)0t-12, [
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Numerical verification:

uniform full:
N = 400

uniform sparse:

N = 400,
Q) = 20

power law:
b=2.5
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power law case:
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Poisson statistics of PageRank
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|dentify PageRank values to “energy-levels”:

P(i) = exp(—E;/T)/Z
with Z = ) exp(—FE;/T') and an effective temperature 1" (can be
choosen: 1" = 1).
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Physical Review network

N = 463347 nodes and Ny = 4691015 links.
Coarse-grained matrix structure (500 x 500 cells):

left: time ordered
right: journal and then time ordered

“11” Journals of Physical Review: (Phys. Rev. Series |), Phys. Rev., Phys. Rev. Lett.,
(Rev. Mod. Phys.), Phys. Rev. A, B, C, D, E, (Phys. Rev. STAB and
Phys. Rev. STPER).




= nearly triangular matrix structure of adjacency matrix: most
citations links ¢ — ¢’ are for ¢t > t’ (“past citations”) but there is small
number (12126 = 2.6 x 1073Ny) of links t — ' with t < ¢/
corresponding to future citations.

Spectrum by “double-precision” Arnoldi method with n 4 = 8000:
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Numerical problem: eigenvalues with |\| < 0.3 — 0.4 are not reliable!
Reason: large Jordan subspaces associated to the eigenvalue A = 0.



“very bad” Jordan perturbation theory:
Consider a “perturbed” Jordan block of size D:

0100
/oou.oo
00 01
\c0- 00/

characteristic polynomial: A” — (—1)%¢
e=0 = AX=0

e£0 = N\ =—e/Pexp(2mij/D)

for D~ 10*ande =107 = “Jordan-cloud” of artifical
eigenvalues due to rounding errors in the region |A| < 0.3 — 0.4.
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Triangular approximation

Remove the small number of links due to “future citations”.
Semi-analytical diagonalization is possible:

S=5+e dT/N
where e,, = 1 for all nodes n, d,, = 1 for dangling nodes n and
d, = 0 otherwise. .S is the pure link matrix which is nil-potent:
S\ =0 with [ = 352.

Let 7/ be an eigenvector of S with eigenvalue A and C' = d .

o If C' =0 = 1 eigenvector of S; = A\ = 0 since .S nil-potent.

These eigenvectors belong to large Jordan blocks and are responsible for the
numerical problems.

Note: Similar situation as in network of integer numbers where | = [log,y(N )]
and numerical instability for |A| < 0.01.
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o If C #0 = ) # 0 since the equation Syy» = —C'e/N does not
have a solution = A1 — .S, invertible.

= p=C(\1—S))" e/N_§Z< )

From A = (d7+/C)\ Pr(A) =0
with the reduced polynomial of degree [ =352

—Z)\l_l_jcj =0 , ¢;=d’S]e/N.

= at most [ = 352 eigenvalues A # 0 which can be numerically
determined as the zeros of P,.(\).
However: still numerical problems:

o 1~ 3.6x107%?
e alternate sign problem with a strong loss of significance.
e big sensitivity of eigenvalues on ¢;
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Solution:

Using the multi precision library GMP
with 256 binary digits the zeros of P,.(\)
can be determined with accuracy ~
10718,

Furthermore the Arnoldi method can
also be implemented with higher
precision.

red crosses: zeros of P.(\) from 256 binary
digits calculation

blue squares: eigenvalues from Arnoldi method
with 52, 256, 512, 1280 binary digits. In the last
case: = break off at n4 = 352 with vanishing

coupling element.
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Full Physical Review network

Complications due to small number of “future citations” which break
the triangular structure = two groups of eigenvectors :

1.d"™yY =0 = common eigenvector/eigenvalue of S and S,
essentially : A = +1/y/nwithn =1, 2, 3, ... and large
degeneracies.

2.dT#0 = R(\) = 0 with a rational function:
RN =1=> A" | ¢=d"Sje/N

7=0

with convergence for |\| > p; ~ 0.9024. The zeros of R(\) with
|A| < p1 can be determined by a rational interpolation using many
support points with |z;| = 1 where the series to evaluate R(z;)
converges well = rational interpolation method (requires
also high precision computations, details in Appendix).
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Accurate eigenvalue spectrum for the full Physical Review network by the rational
interpolation method (left) and the HP Arnoldi method (right):




Degeneracies
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High precision in Arnoldi method is “bad” to count the degeneracy of certain
degenerate eigenvalues (of first group).

In theory the Arnoldi method cannot find several eigenvectors for degenerate

eigenvalues, a shortcoming which is (partly) “repaired” by rounding errors.
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Fractal Weyl law
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Ny = number of complex eigenvalues with A, < |A| < 1.
N; = reduced network size of Physical Review at time .

Ny = aN;
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ImpactRank for influence
propagation
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Integer network

Consider the integers n € {1,..., N} and construct an adjacency
matrix by A,,, = k where k is the largest integer such that m” is a
divisorof nif 1 <m < nand A,,, =0if m =1orm = n (note
A,., = k = 0if mis not a divisor of n). Construct .S and 7 in the

usual way from A.
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PageRank
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Dependence of n on K-index
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“New order” of i%tegers: K=1, 2, ...,

5x10%

5x10
4x10° }

3x10° |

10°

2.2x10%

2.4x10% 2.6x10*

red: N = 107

blue: N = 10°

30 = n =235 74 11,

13,17,6, 19,9, 23, 29, §, 31, 10, 37, 41, 43, 14, 47, 15, 53, 59, 61, 25,
67,12, 71,73, 22, 21.
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Semi-analytical determination of spectrum,
PageRank and eigenvectors
Matrix structure:

S:SQ—I—UCZT

where v = e/N, d; = 1 for dangling nodes (primes and 1) and
d; = 0 otherwise. S is the pure link matrix which is nil-potent:

S =0

with [ = [logy(N)] < N
= same theory as for the Phys.-Rev. Network.
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Spectrum |
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blue dots: semi-analytical eigenvalues as zeros from P,.(\) (or eigenvalues of S).
red crosses: Arnoldi method with random initial vector and n4 = 1000.

light blue boxes: Arnoldi method with constant initial vector v = e¢/N and n4 = 1000.
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Spectrum li
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Large N limit of 1 with the scaling parameter: 1/ In(N).
Note:

where 7(N) is the number of primes below V.
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Appendix: Rational interpolation
method

High precision Arnoldi method for full Physical Review network
(including the “future citations”) for 52, 256, 512, 768 binary digits and
n4 = 2000:




Semi-analytical argument for the full PR network:

S=5+e dT/N
There are two groups of eigenvectors 1) with: Sv = A\

1. Those withd’7) =0 = 1) is also an eigenvector of S.
Generically an arbitrary eigenvector of S is not an eigenvector of
S unless the eigenvalue is degenerate with degeneracy m > 1.
Using linear combinations of different eigenvectors for the same
eigenvalue one can construct m — 1 eigenvectors 1) respecting
d’v) = 0 which are therefore eigenvectors of S.

Pratically: determine degenerate subspace eigenvalues of 5

(and also of S!') which are of the form: A = 41/+/n with
n=1,2 3,... dueto 2 x 2-blocks:

0 1/7?,1 1
= A== .
(1/%2 0 ) 4/711712

27




2. Those with d¥+) #0 = R()\) = 0 with the rational function:

Here C, and p; are unknown, except for
p1 = 2Re[(9 +iv/119)/3]/(135)"/3 ~ 0.9024 and
P23 = £1/v/2 ~ £0.7071.

|dea: Expand the geometric matrix series =

R(A) =1-— ch)\_l_j , ¢;j=d"S]e/N

7=0

which converges for || > p; ~ 0.9024 since ¢; ~ p{ for j — oo.

Problem: How to determine the zeros of R(\) with |A| < py ?
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Analytic continuation by rational interpolation:

Use the series to evaluate R(z) at ng support points

z; = exp(2mij /ng) with a given precision of p binary digits and
determine the rational function R;(z) which interpolates R(z) at
these support points. Two cases:

ng=2np+1 = R[(Z) = 57:;((2;
ng=2ng+2 = R[(Z) = Qiiii?l)

The np, zeros of P, .(2) are approximations of the eigenvalues of
S (of the 2nd group).

For a given precision, e. g. p = 1024 binary digits one can obtain
a certain number of reliable eigenvalues, e. g. np = 300. The
method can be pushed up to p = 16384 and nr = 2500 which is
better than the high precision Arnoldi method with n 4 = 2000.
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Examples:

Some “artificial zeros” for ng = 340
and p = 1024 (left top and middle
panels) where both variants of the
method differ.

For np = 300 and p = 1024 most
zeros coincide with HP Arnoldi method
(right top and middle panels) and both
variants of the method coincide.

Lower panels: comparison for np =
2000, p = 12288 (left) or for np =
2000, p = 16384 with HP Arnoldi

method.
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