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Seven Bridges of Konigsberg

The Seven Bridges of Konigsberg
is a historically notable problem in
mathematics.

The problem was to find a walk
through the city that would cross
each bridge once and only once.

Its negative resolution by Leonhard Euler in 1735 laid the foundations
of graph theory.
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Seven Bridges of Konigsberg
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i The Internet and Social Networks



The Internet and Social Networks

Internet

Mathematics

Internet Mathematics publishes conceptual,
algorithmic, and empirical papers focused on
large, real-world complex networks such as the
web graph, the Internet, online social networks,
and biological networks.
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Small World Networks

The distance between two vertices in a graph is the number
of edges in a shortest path connecting them.

The diameter of the graph is the largest distance between
two vertices.

A small world network is a graph of “small” diameter.
In many practical networks, the diameter does not exceed six
(six degrees of separation)

Theorem. The diameter of almost all graphs is 2.

The number of n-vertex graphs

— ]
The number of n-vertex graphs of diameter 2 n—w
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Vadim Lozin

Professor of Mathematics

Office: B2.10
Phone: +44 (0)24 7657 3837
Email: V.Lozin@warwick.ac.uk

Personal Home Page

Teaching Responsibilities 2014/15:

Term 1: MA4)3 Graph Theory
Term 2: MA252 Combinatorial Optimisation

Research

Interests: Graph theory, combinatorics, discrete mathematics

Grants: Clique-width of graphs, Stability in graphs

Team: Viktor Zamaraev (postdoc), Aistis Atminas (Ph.D. student), Andrew Collins (Ph.D. student), lgor Razgon (external member)

Supervision: Former posdocs, Ph.D. students, M.Sc. students, etc.
Visits: KTH, EPFL, KAUST, UFRJ, etc.
Talks: Plenary and others
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Contact

The Centre for Discrete Mathematics and its Applications (DIMAP) has been established in
March 2007 by the University of Warwick, partially funded by an EPSRC Science and
Innovation Award EP/D063191/1 of £3.8 million. The Centre builds on a collaboration
among

* the Department of Computer Science,

s the Warwick Mathematics Institute, and

* the Operational Research and Management Sciences group in the Warwick

Business School.

The DIMAP is co-located in the adjacent new Computer Science and Mathematics
buildings and it is directed by a Management Board led by Prof. Artur Czumaj, with the

advice on scientific direction from the DIMAP Advisory Board.

Vision for the Centre

DIMAP is a multidisciplinary research centre supporting an internationally competitive
programme of research in discrete modelling, algorithmic analysis, and combinatorial
(discrete) optimisation. It aims to support a thriving Industrial Affiliates Programme, and
develop collaborative research rooted in discrete mathematics, involving researchers at
other UK universities. The Centre also contributes to the development of undergraduate
modules and taught postgraduate modules within degrees offered by the participating
departments. With a number of internationally renowned researchers, an extensive
programme of scientific seminars (including Combinatorics Seminar), international

workshops and visiting researchers, and a multidisciplinary angle, DIMAP is one of the
leading international research centres in discrete mathematics and its applications in

computer science and operational research.

Participating Groups:

Department of Computer Science

Foundations of Computer Science

(FoCS) Research Group

Warwick Mathematics Institute

Operational Research and

Management Sciences Group

Events:

DIMAP Seminar

Combinatorics Seminar

W
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WBS Does the big, bright future for the supermarkets, mean shoppers will be going back in time to the L] [w] o]
IN THE NEWS  Daily Mirror

WBS research translates into practical success

Archived Article « 28 January 2010 « Feature

Research by Vladimir Deineko, WBS Associate Professor of Operational Research, has recently provided two examples of
academic research translating successfully into practice.

He has been leading research into designing optimal routes for commercial waste collection services in Coventry City Council over
recent months. This research by WBS faculty together with members from the Computer Science department has been supported
by the EPSRC and Warwick's Centre for Discrete Mathematics and its Applications (DIMAP). Now completed, initial results show
that applying new algorithms developed as a result of the research project can bring about up to 20 percent savings in
transportation costs such as fuel consumption, servicing costs and wear and tear on vehicles.

In addition, Vladimir has been building on and developing a tool using combinatorial type algorithms, together with Doctoral student
Thomas Ridd, to allocate cohorts of students into equitable teams, taking into account the need for an even spread across the
cohort of different backgrounds, skills, and cultural origins. Their work has been picked up by Warwick Ventures, where experts are
currently looking into the commercialisation of this tool.

Vladimir comments, "As scholars, we are always happy when our papers are published in top research journals and are highly
referenced by our colleagues. Over the past two years | have been working with practitioners, implementing my theoretical results
into practical tools, for example, software prototypes. | have found this highly exciting and enjoyable, and it is rewarding to see how
the tools you have created make a real change in everyday work, and how people who use these tools are so impressed with the
results they can get by...just clicking a button."
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Dr Vladimir Deineko
Associate Professor (Reader) of Operational Research

Operational Research & Management Sciences Group

Email: Viadimir. Deineko@wbs.ac.uk / Tel: 024 765 24501

Biography

Years of teaching expen‘ence ina variety of cultural environments; formerly
associate professor at Dnepropetrovsk State University, Ukraine, and invited
researcher at University of Technology, Graz, Austria. Participation in
consultancy projects related to problem solving in industry, commerce, and the
public sector.

Recent Publications [all...]

Journal Articles

- Eranda Cela Viadimir Deineko Gerhard Woeginger. "Well-solvable cases
of the QAP with block-structured matrices"
Discrete Applied Mathematics published online (2015)

- Eranda Cela Viadimir Deineko Gerhard Woeginger. "Linearizable special
cases of the QAP"
Journal of Combinatorial Optimization to appear (2015)

- Viadimir Deineko, Gerhard Woeginger. "Another Look at the Shoelace
TSP: The Case of Very Oid Shoes."
Lecture Notes In Computer Science Fun with Algorithms (2014): 125-136.

- Dr Viadimir Deineko, Bettina Klinz,Alexander Tiskin,Gerahard Woeginger.
"Four-point conditions for the TSP: The complete complexity classification”
Discrete Optimization 14 (2014): 147-159.

- Viadimir Deineko, Gerhard Woeginger. "Two hardness resuits for core
stability in hedonic coalition formation games"
Discrete Applied Mathematics 161 (2013): 1837-1842.

University of Warwick

FOR BUSINESS | EXECUTIVE EDUCATION‘ NEWS ‘ EVENT:

Research Interests

Algorithmic aspects of the problem solving process with the main
focus on the analysis of efficiently solvable cases of hard
optimisation problems such as (il e e el da=and
quadratic assignment problem; design and implementation of
exact and approximate algorithms for combinatorial optimisation
problems: vehicle routing problem, bin packing problem, network
optimisation problems etc.



Travelling Salesman Problem

Travelling salesman problem (TSP): Given a list of cities and the
distances between each pair of cities, what is the shortest possible route
that visits each city exactly once and returns to the origin city?
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Applications of the TSP

> Applications
Genome
Starlight
Scan Chains
DNA
Whizzkids
Baseball
Coin Collection

Airport Tours L .
USA Trip Much of the work on the TSP is motivated by its use as a platform for the study of general methods

that can be applied to a wide range of discrete optimization problems. This is not to say, however,
that the TSP does not find applications in many fields. Indeed, the numerous direct applications of
the TSP bring life to the research area and help to direct future work.

Sonet Rings
Power Cables

The TSP naturally arises as a subproblem in many transportation and logistics applications, for

example the problem of arranging school bus routes to pick up the children in a school district. This

bus application is of important historical significance to the TSP, since it provided motivation for Merrill

Flood, one of the pioneers of TSP research in the 1940s. A second TSP application from the 1940s

involved the transportation of farming equipment from one location to another to test soil, leading to

mathematical studies in Bengal by P. C. Mahalanobis and in lowa by R. J. Jessen. More recent

applications involve the scheduling of service calls at cable firms, the delivery of meals to homebound

persons, the scheduling of stacker cranes in warehouses, the routing of trucks for parcel post

pickup, and a host of others. v
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An old application of the TSP is to schedule the collection of coins from payphones throughout a
given region. A modified version of Concorde's Chained Lin-Kernighan heuristic was used to solve a
variety of coin collection problems. The modifications were needed to handle 1-way streets and other
features of city-travel that make the assumption that the cost of travel from x to y is the same as from
y to x unrealistic in this scenario.

Next Application
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Four Colour Problem

In 1852 Francis Guthrie was trying to colour the map of counties
of England in such a way that no two neighbouring counties have
the same colour. He noticed that only four different colours were

heeded.
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Problem. Is the chromatic number of any planar graph at most 4?
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Four Colour Problem

In 1852 Francis Guthrie was trying to colour the map of counties
of England in such a way that no two neighbouring counties have
the same colour. He noticed that only four different colours were

heeded.

Problem. Is the chromatic number of any planar graph at most 4?

Definition. Vertex colouring is an assignment of colours to
the vertices of the graph in which any two adjacent vertices

&.\

receive different colours.

The minimum number of colours needed to colour
<4\ the vertices of a graph G is the chromatic number of G.
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Four Colour Theorem

Kenneth Appel and Wolfgang Haken at the University of Illinois
announced, on June 21, 1976 that they had proven the theorem.
Appel and Haken found an unavoidable set of 1,936 reducible
configurations which had to be checked one by one by computer.
This reducibility part of the work was independently double
checked with different programs and computers.

In 2005, Benjamin Werner and Georges Gonthier formalized a
proof of the theorem inside the Cog proof assistant (an interactive
theorem prover). This removed the need to trust the various
computer programs used to verify particular cases; it is only
necessary to trust the Coq kernel.



http://en.wikipedia.org/wiki/Kenneth_Appel
http://en.wikipedia.org/wiki/Wolfgang_Haken
http://en.wikipedia.org/wiki/University_of_Illinois_at_Urbana-Champaign
http://en.wikipedia.org/w/index.php?title=Benjamin_Werner&action=edit&redlink=1
http://en.wikipedia.org/wiki/Georges_Gonthier
http://en.wikipedia.org/wiki/Coq
http://en.wikipedia.org/wiki/Proof_assistant
http://en.wikipedia.org/wiki/Proof_assistant

i Scheduling via Colouring

Assume that we have to schedule a set of interfering jobs, i.e. jobs that
cannot be executed at the same time (for example, they use a shared
resource).

We need to determine the minimum makespan , i.e. the minimum time
required to finish the jobs.

Let G be the confiict graph of the jobs:

the vertices of the graph corresponds to the jobs,
the edges correspond to jobs that are in conflict.

The chromatic number of the graph equals the minimum makespan.
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Gamache, M., Hertz, A., Ouellet, J. O. (2007). A Graph Coloring Model for
a Feasibility Problem in Monthly Crew Scheduling With Preferential
Bidding. Computers & Operations Research, 34(8), p. 2384-2395.
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Ramsey Game

This two player game requires a sheet of paper and pencils of
two colors, say red and blue. Six points on the paper are
chosen, with no three in line. Now the players take a pencil
each, and take turns drawing a line connecting two of the
chosen points. The first player to complete a triangle of her
own color loses. Can the game ever result in a draw?
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Ramsey Game

Claim. Any coloring of the edges of the complete graph on 6 vertices
with 2 colors contains a monochromatic triangle.

Every vertex is incident to at least 3 edges of the same color, say red.
If two of the three neighbours of that vertex are linked by a red edge,
then a red triangle arises.

\



Ramsey Game

Claim. Any coloring of the edges of the complete graph on 6 vertices
with 2 colors contains a monochromatic triangle.

Every vertex is incident to at least 3 edges of the same color, say red.
If two of the three neighbours of that vertex are linked by a red edge,

then a red triangle arises.
Otherwise, these three neighbours create a blue tringle.

\



Ramsey Theory

Ramsey's theorem states that one
will find big monochromatic cliques in
any edge colouring of a sufficiently
large complete graph.
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Ramsey Theory

Ramsey theory is a branch of mathematics that studies
the conditions under which order must appear.

Ramsey's theorem states that one
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any edge colouring of a sufficiently
large complete graph.
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iRamsey Theory and Data Mining

“Ramsey theory predicts that more

Pharmaceutical elaborate patterns will emerge as
Data Mining P J

the number of data points increases”.
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Ramsey theory is a branch of mathematics that studies
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any edge colouring of a sufficiently
large complete graph.
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numbers:
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R(4,4)=18
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Ramsey theory is a branch of mathematics that studies
the conditions under which order must appear.

Ramsey's theorem states that one  Ramsey
will find big monochromatic cligues in numbers:
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large complete graph. R(4,4)=18
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Ramsey Theory

Ramsey theory is a branch of mathematics that studies
the conditions under which order must appear.

Ramsey's theorem states that one  Ramsey
will find big monochromatic cligues in numbers:
any edge colouring of a sufficiently R(3,3)=6
large complete graph. R(4,4)=18

. . _ _ 42<R(5,5)<50
Erdos asks us to imagine an alien force, vastly more

powerful than us, landing on Earth and demanding
the value of R(5, 5) or they will destroy our planet.

In that case, he claims, we should marshal all our Frank P. Ramsey
computers and all our mathematicians and attempt

to find the value. But suppose, instead, that they Bom oo
ask for R(6, 6). In that case, he believes, we should Cambridge

19 January 1930

Died (aged 26)

attempt to destroy the aliens.
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Paul Erdos

Paul Erdos was a Hungarian mathematician.
He was one of the most prolific mathematicians
of the 20th century. Erdos pursued problems in
combinatorics, graph theory, number theory,
classical analysis, approximation theory, set
theory, and probability theory.

Born

Died

26 March
1913

20 Sept.
1996
(aged 83)
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The Erdés Number Project

This is the website for the Erdos Number Project, which studies
research collaboration among mathematiciaris.

The site is maintained lt&y Jerry Grossman at Oakland Ur_1iversitg, Patrick
lon, a retired editor at Mathematical Reviews, and Rodrigo De Castro at the
Universidad Nacional de Colombia, Bogota provided assistance in the
past. Please address all comments, additions, and corrections to Jerry at
grossman@oakland.edu.

Erdés numbers have been a part of the folklore of
mathematicians throughout the world for many years. For an
introduction to our project, a description of what Erdés numbers are,
what they can be used for, who cares, and so on, choose the
“What's It All About?” link below. To find out who Paul Erdos is,
look at this biography at the MacTutor History of Mathematics
Archive, or choose the “Information about Paul Erdés” link below.
Some useful information can also be found in this Wikipedia
article, which may or may not be totally accurate.

WHAT'S INSIDE:

- What's It All About?: General overview, including our (admittedly arbitrary) rules for
what counts as a research collaboration.

- The Data: Lists of all of Paul Erdés’s coauthors and their respective coauthors, organized
in various ways. There are also links to websites of or about Erdés’s coauthors.

- Facts about Erdés Numbers and Collaborations: Statistical descriptions of Erdés
number data, a file of the subgraph induced by Erdés coauthors, Erdés number record
holders, facts about collaboration in mathematical research and the collaboration graph,
including some information about publishing habits of mathematicians (for example, the
median number of papers is 2, and the mean is about 7). This subpage has loads of
information about the collaboration graph and Erdés numbers, including the distribution
of Erdés numbers (they range up to 13, but the average is less than 5, and almost
everyone with a finite Erdés number has a number less than 8) and “Erdés numbers of
the second kind".

. Famous Paths to Paul Erdos: Fields Medalists and Nobel Prize winners have
small Erdés numbers.

- Compute Your Own Erdos Number: It may be smaller than you think.
- Research on Collaboration: Papers on collaboration in scientific research, collaboration

graphs and other small world graphs, and Erdés numbers. A lot of research is currently
being done by various scientists on collaboration graphs and related topics.
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Collaboration graph

« vertices are people
« edges connect people who collaborate
(e.g. have a joint publication)

Collaboration distance is the length of a shortest path
between two people in the collaboration graph

The Erdos number is the distance to Paul Erdos.
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Kevin Bacon Number

® Example of an interesting use of graph theory!
o |f we have a graph of actors

® Links indicate when 2 actors have worked on
the same film

® The number of links between any actor and
Kevin Bacon is that actor’s Kevin Bacon
number

® http://oracleofbacon.org/

® Use imdb for reference

® Let’s try a couple....
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Applications: navigation,
routing protocols



Shortest Path

Problem. Find a shortest path between
two vertices in a graph

Applications: navigation, Edsger Wybe Dijkstra
routing protocols

11 May 1930

Born Rotterdam, Netherlands

Dijkstra’s Algorithm

6 August 2002 (aged 72)

Died Nuenen, Netherland


http://en.wikipedia.org/wiki/Rotterdam
http://en.wikipedia.org/wiki/Nuenen
http://en.wikipedia.org/wiki/File:Edsger_Wybe_Dijkstra.jpg

i Did you know that

The difference in the speed of clocks at different heights
above the earth is now of considerable practical
importance, with the advent of very accurate navigation
systems based on signals from satellites. If one ignored
the predictions of general relativity theory, the position
that one calculated would be wrong by several miles!

Stephen Hawking A brief history of time
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Marriage Problem:
* There are n boys and n girls.

* For each pair, it is either compatible or not.

Goal: find the maximum number of compatible pairs.
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Definition. A matching in a graph is a subset
of its edges no two of which share a vertex.




Marriage Problem:
* There are n boys and n girls.

* For each pair, it is either compatible or not.

Goal: find the maximum number of compatible pairs.

i
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Definition. A matching in a graph is a subset
of its edges no two of which share a vertex.




i The maximum matching problem

Problem: Find a matching of maximum size

Bipartite graph

Definition. A matching in a graph is a subset
of its edges no two of which share a vertex.



i The maximum matching problem

Problem: Find a matching of maximum size

Bipartite graph

Maximum Flow

Definition. A matching in a graph is a subset
of its edges no two of which share a vertex.




‘L The maximum matching problem

Problem: Find a matching of maximum size

Definition. A matching in a graph is a subset
of its edges no two of which share a vertex.




i The maximum matching problem

MATCHING

Problem: Find a matching of maximum size THEOR)

The matching
algorithm by
Edmonds is one
of the most

involved of
Definition. A matching in a graph is a subset combinatorial

of its edges no two of which share a vertex. algorithms.




Applications of Bipartite Matching to Problems in Object

Recognition
Ali Shokoufandeh Sven Dickinson
Department of Mathematics and ~— Department of Computer Science and
Computer Science Center for Cognitive Science
Drexel University Rutgers University
Philadelphia, PA New Brunswick, NJ
Abstract

The matching of hierarchical (e.g., multiscale or multilevel) image features is a common problem in
object recognition. Such structures are often represented as trees or directed acyclic graphs, where nodes
represent image feature abstractions and arcs represent spatial relations, mappings across resolution
levels, component parts, etc. Such matching problems can be formulated as largest isomorphic subgraph
or largest isomorphic subtree problems, for which a wealth of literature exists in the graph algorithms
community. However, the nature of the vision instantiation of this problem often precludes the direct
application of these methods. Due to occlusion and noise, no significant isomorphisms may exists between
two graphs or trees. In this paper, we review our application of a more general class of matching methods,
called bipartite matching, to two problems in object recognition.




Stable Matching problem
Stable Marriage problem

Given n men and n women, where each person has ranked
all members of the opposite sex in order of preference,
marry the men and women together such that there are no
two people of opposite sex who would both rather have
each other than their current partners. When there are no
such pairs of people, the set of marriages is deemed stable.



Stable Matching problem
Stable Marriage problem

Given n men and n women, where each person has ranked
all members of the opposite sex in order of preference,
marry the men and women together such that there are no
two people of opposite sex who would both rather have
each other than their current partners. When there are no
such pairs of people, the set of marriages is deemed stable.

In 1962, David Gale and Lloyd Shapley
proved that, for any equal number of
men and women, it is always possible
to solve the SMP and make all
marriages stable. They presented an
algorithm to do so.



http://en.wikipedia.org/wiki/David_Gale
http://en.wikipedia.org/wiki/Lloyd_Shapley

Stable Matching problem
Stable Marriage problem

Given n men and n women, where each person has ranked
all members of the opposite sex in order of preference,
marry the men and women together such that there are no
two people of opposite sex who would both rather have
each other than their current partners. When there are no
such pairs of people, the set of marriages is deemed stable.

In 1962, David Gale and Lloyd Shapley  Algorithms for finc_ling solutions
proved that, for any equal number of to the stal_ale marriage prc_)blem
men and women, it is always possible ~ have applications in a variety of

to solve the SMP and make all real-world situations, perhaps
marriages stable. They presented an the best known of these being
algorithm to do so. in the assignment of graduating

medical students to their first
hospital appointments.


http://en.wikipedia.org/wiki/David_Gale
http://en.wikipedia.org/wiki/Lloyd_Shapley

Stable Matching problem
Stable Marriage problem

-
G@|M http://www.nrmp.org/match-process/match-algorithm/ P~ | 1 Lozin M Match Algorithm | X | l i e i98
% Google | National Resident Matching Program v | search - | 5§ share ‘ More » Signin &, ~

ABOUT NEWS TUTORIALS CONTACT m 2

:MATCH - =

NATIONAL RESIDENT MATCHING PROGRAM® RESIDENCY FELLOWSHIP MATCHPROCESS POLICIES MATCH DATA

MATCHING
WORKS
THE MATCHING PROCESS MATCH RESOURCES
The process begins with an attempt to match an applicant to the program most preferred on that applicant’s RESIDENE T TIMELTNE
rank order list '(ROL.). If the applicant c§nnot be matched to that ﬁr_'?:t choice ?rogram, e.m attempt |? made to FELLOWSHIP TIMELINE
place the applicant into the second choice program, and so on, until the applicant obtains a tentative match
or all the applicant’s choices on the ROL have been exhausted. ABOUT RANK ORDER LISTS
A tentative match means a program on the applicant's ROL also ranked that applicant and either: THE NOBEL PRIZE IN ECONOMIC
SCIENCES

« the program has an unfilled position, in which case there is room in the program to make a tentative
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Speed daters would be surprised to learn concept based on work by two
academics awarded Nobel prize for economics
Larry Elliott and Josephine Advertisement
Moulds

Monday 15 October 2012 18.54 BST

000006

Shares
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How to find a mate is one of the oldest problems in the world and one of many
modern answers is to go on a speed dating evening. But most speed daters would
be surprised to learn that the concept was based on academic work by an
economist and a mathematician who have been honoured for their pioneering
work with the Nobel prize for economics.

Fifty years ago, Lloyd Shapley became the godfather of modern matchmaking
when he wrote a paper in which he sought to answer the question of how
individuals in a group of people could be paired up when all had different views
on who might be their best partner.

His work was later developed by Alvin Roth, who found other practical uses for
the approach, including matching kidney donors with patients, and to make sure
that students were allocated one of the schools of their choice.
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Peter Hammer

Hammer founded the Rutgers University Center for Operations Research, and
created and edited the journals Discrete Mathematics, Discrete Applied
Mathematics, Discrete Optimization, Annals of Discrete Mathematics, Annals
of Operations Research, and SIAM Monographs on Discrete Mathematics and

Applications



Logical Analysis of Data

He contributed to the fields
of operations research and
applied discrete mathematics
through the study of pseudo-
Boolean functions and their
connections to graph theory
and data mining.

Three Approaches
to Data Analysis

Peter Hammer

Hammer founded the Rutgers University Center for Operations Research, and
created and edited the journals Discrete Mathematics, Discrete Applied
Mathematics, Discrete Optimization, Annals of Discrete Mathematics, Annals
of Operations Research, and SIAM Monographs on Discrete Mathematics and

Applications


http://en.wikipedia.org/wiki/Operations_research
http://en.wikipedia.org/wiki/Discrete_mathematics
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Data_mining

i Pseudo-Boolean optimization



‘L Pseudo-Boolean optimization

Definition. A pseudo-Boolean function f(X,X,,...,X,) is a
real-valued function with Boolean variables.
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of (X, X,,..., X )can take any real value



Pseudo-Boolean optimization

Definition. A pseudo-Boolean function f(X,X,,...,X,) is a

real-valued function with Boolean variables.

n

e each variable x; can take only two possible values 0 or 1

of (X, X,,..., X )can take any real value

f =Xz—5X+11Xy +7xy+3yZ +3



i Pseudo-Boolean optimization

Definition. A pseudo-Boolean function f(X,X,,...,X,) is a
real-valued function with Boolean variables.

e each variable x; can take only two possible values 0 or 1

of (X, X,,..., X )can take any real value

f =Xz—5X+11Xy +7xy+3yZ +3

X=1-X
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f =Xz—5X+1IXy+7Xy+3yZ +3
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f =Xz—5X+11Xy +7Xy+3yZ +3 X=1-X



i Pseudo-Boolean maximization

f =Xz—5X+11Xy +7Xy+3yZ +3 X=1-X

= XZ+5X+11IXy + /Xy+3yzZ —2



i Pseudo-Boolean maximization

f =Xz—5X+11Xy +7Xy+3yZ +3 X=1-X
= XZ+5X+11IXy + /Xy+3yzZ —2

XZ+5X+11IXy + /xy+3yzZ posiform



Conflict Graph
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5( X XY) 7
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1XZ Yy 3

XZ+5X+11IXy + /xy+3yzZ



Definition. In a graph, an independent set is a subset
of vertices no two of which are adjacent.

Conflict Graph

e

5( X XY) 7

(xz yZ) .

XZ+5X+11IXy + /xy+3yzZ



Definition. In a graph, an independent set is a subset
of vertices no two of which are adjacent.

Conflict Graph

e

5( X XY) 7
(X2 YZ)
XZ+5X+11IXy + /xy+3yzZ

The weight of a maximum independent set in the conflict graph
coincides with the maximum of the posiform



Definition. In a graph, an independent set is a subset
of vertices no two of which are adjacent.

Conflict Graph

e

5( X XY) 7
XZ yZ
! Y2) 5 X=1y=0
z=0
XZ+5X+11IXy + /xy+3yzZ

The weight of a maximum independent set in the conflict graph
coincides with the maximum of the posiform
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‘L Textile project “"Permutations”

Re: Maths/textile project - Internet Explore
| ﬂﬂ https://outlook.office365.com/owa/Fviewmodel=ReadMessageltem &item|D= AAMEADREZIMM2ZOSLT N MIMEMNDY 3RS TIMNZYy L TVEM)c TNWROTMNIMNQEB G bsd%2BjudaRLzNY4humpMBwDpLng

Re: Maths/textile project

Theo Wright <weavingman@yahoo.com>
Sat 04/10/2014 0T:56

To: [Llozin, Vadim:

* You forwarded this message on 18/11/2014 18:56

Theo Wright permutatio... “
4 MB

1 attachrment (4 ME)

Action lbems

Vadim -
Thank you for agreeing to talk to me about my textile project Permutations.

I wonder if | could arrange a brief meeting with you at the University to discuss the project.
Let me know what would be convenient for you - | am based in Coventry and available on various dates in October/November (see below) and entirely free from the start of December.

17, 20, 21, 22, 27, 25, 29, 31 October
3,5 6.7 10, 11 Movember

I attach a short document that formed part of my bid to Arts Council England that helped me get the funding for the project.
I'm also keeping a blog on my website which will give an idea of the progress of the project http/fwanw.theowright. co. uk/permutations-blog

Regards
Theo Wright

www theowright. co.uk
07837 702317



‘L Textile project "Permutations”

~T | Theo Wright Permutations

Handwoven

Theo Wright is a weaver and textile designer based in
Coventry, UK.

Originally trained as a computer scientist, he worked for
many years in software development and technology
research.

He subsequently retrained as a weaver, graduating from
University College Falmouth in 2011, and now designs
geometric textiles that explore pattern, contrast and
colour.

Since 2011 he has designed and woven scarves, selling
online and at major craft fairs.

In 2014, Theo was a participant in the Crafts Council’s

Hothouse maker development programme and started
to make larger non-functional textile works.

www.theowright.co.uk

Supported using public funding by

ARTS COUNCIL :
ENGLAND Theo Wright

coy,

o

& %

s S
A

%o
&

LOTTERY FUNDED
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2, 1,4, 3 is a permutation of the set {1,2,3,4}
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2, 1,4, 3 is a permutation of the set {1,2,3,4}

‘L Textile project “"Permutations

Design

On a 4-shaft loom, each warp end is threaded
onto one of the four shafts. The most common
approach is straight threading.

The Permutations project was inspired by thinking about how many
different ways a small section of warp could be threaded. For a group
of four warp ends, each on a different shaft there are 4! (four factorial)
ways: 4! = 4.3.2.1 = 24,

Using these warp threadings, and lifting two shafts on each pick of
the weft yarn, I have created a set of 4 x 4 square patterns where
each row and column is different and there are two dark squares in
each row and column. There are 72 different patterns, e.g.

g5l “Agla™-"{e"ole=2s

All of the Permutations textiles are made up of these 4 x 4 patterns.

I have selected and
ordered the threadings
and lifts differently for
each work to create a
unique large-scale
design from these
simple elements.

Although the original inspiration came from a group of just four warp
ends and a simple weave structure, in order to scale up these designs I
have used a 16-shaft mechanical dobby loom and woven the designs as

a double cloth with one dark and one light layer, threaded in four blocks.

I use a computer in the design process, but I do the weaving itself
entirely by hand.

7

Permutations and Combinations

I have used ideas of permutations and combinations in the textiles for
both the pattern and the use of colour.

The maths behind the project is as follows. Suppose I choose k items
from a set of n items (as a simple example, I might select two letters
from the set of three letters: A, B, C. Here k=2, n=3)

To work out how many options there are I need to answer two
questions:

Is ordering significant (e.g. is AB considered to be different from

BA)? If ordering is significant the options are called permutations;
if it isn’t they are called combinations.

Are repeat selections allowed (e.g. can I choose the letter A twice to
give me AA) or do the selections have to be different?

All four types are useful in different circumstances. Here are the general
formulae and my example of two letters selected from three.

Permutations (repeats allowed) nk

e.g. 32 = 9 (AA, AB, BA, AC, CA, BB, BC, CB, CC)

n!
(n - k)!

= 6 (AB, BA, AC, CA, BC, CB)

Permutations (repeats not allowed)

e.g. 31/(3-2)! = 6/1

Combinations (repeats allowed) (n #i k= 1)!
k! (n - 1)!

e.g. (3+2-1)1/21(3-1)! = 41/2121 = 24/4 = 6 (AA AB AC BB BC CC)

nl
k! (n - k)!

g. 31/21(3-2)! = 6/2111 = 3 (AB, AC, BC)

Combinations (repeats not allowed)
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i From permutations to graphs

1 23 4 56 7 8 9

%% Longest increasing subsequence
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i From permutations to graphs

1 23 4 56 7 8 9

Longest increasing subsequence

2 48 159 3 7 6

Maximum independent set

Permutation graph



i From permutations to graphs

1 23 4 56 7 8 9

Longest decreasing subsequence

2 48 159 3 7 6

Maximum clique, maximum subset
of pairwise adjacent vertices

Permutation graph
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G=(X,E) where xx; are adjacent if x; and x; can be interchanged



Maximum Independent set
‘L and Coding Theory

Information Alphabet X={x;,X5,...X.}

source

receiver

G=(X,E) where xx; are adjacent if x; and x; can be interchanged

A largest noise-resistant code corresponds
to @ maximum independent set in G
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Maximum cliques in Computer
‘L Vision and Pattern Recognition

International Journal of Pattern Recognition and Artificial Intelligence

< Previous Article Volume 18, Issue 03, May 2004 Next Article >

Add to Favorites | Download to Citation Manager | Citation Alert

References | PDF (438 KB) | PDF Plus (628 KB) | Cited By

D. CONTE et al, Int. J. Patt. Recogn. Artif. Intell. 18, 265 (2004). DOI: 10.1142/50218001404003228

THIRTY YEARS OF GRAPH MATCHING IN PATTERN RECOGNITION

D. CONTE
Dipartimento di Ingegneria dell'Informazione e di Ingegneria Elettrica, Universita di Salerno - Via P.te Don Melillo,1 1-84084, Fisciano
(SA), Italy

P. FOGGIA

Dipartimento di Informatica e Sistemistica, Universita di Napoli "Federico II" - Via Claudio, 21 I-80125 Napoli, Italy
C. SANSONE

Dipartimento di Informatica e Sistemistica, Universita di Napoli "Federico II" - Via Claudio, 21 I-80125 Napoli, Italy
M. VENTO

Dipartimento di Ingegneria dell'Informazione e di Ingegneria Elettrica, Universita di Salerno - Via P.te Don Melillo,1 I-84084, Fisciano
(SA), Italy

A recent paper posed the question: "Graph Matching: What are we really talking about?". Far from providing a definite answer to that
question, in this paper we will try to characterize the role that graphs play within the Pattern Recognition field. To this aim two
<
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Matching of relational structures Maximum common subgraph
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Association graph
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Matching of relational structures Maximum common subgraph

G,=(Vy,Ey) G,=(VyEy) V=V, xV,

\ / (i,j)eV and (k,1)eV are adjacent

inGifandonlyifi=#k, j=1, and
G=(V,E) ik e E;and jl € E,

Association graph

A maximum common subgraph of G; and G,
corresponds to a maximum clique in G
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Regularity Lemma

The Szemeredi Regularity Lemma_ is one of the most fundamental and
ingenious results in graph theory and discrete mathematics. It was originally
advanced by Endre Szemeredi as an auxiliary result to prove a long standing
conjecture of Erdos and Turan from 1936 (on the Ramsey properties of
arithmetic progressions). Now the regularity lemma by itself is considered as
one of the most important tools in graph theory.

A very rough statement of the regularity lemma could be made as follows:

Every graph can be approximated by random graphs. This is in the
sense that every graph can be partitioned into a bounded number of
equal parts such that:

1. Most edges run between different parts

2. And that these edges behave as if generated at random.


http://en.wikipedia.org/wiki/Szemer%C3%A9di_regularity_lemma
http://en.wikipedia.org/wiki/Paul_Erd%C5%91s
http://en.wikipedia.org/wiki/Paul_Tur%C3%A1n
http://en.wikipedia.org/wiki/Ramsey_theory

Regularity Lemma
and Machine Learning

Importing the Szemerédi Regularity Lemma into

Machine Learning
January 7, 2012 by Shubhendu Trivedi

Synopsis of a recent direction of work with Gabor Sarkézy, Endre Szemerédi and
Fei Song — "The Regularity Lemma is a deep result from extremal graph theory
having great utility as a fundamental tool to prove theoretical results, but can it be

employed in more “practical” settings?”

More specifically we are interested in the problem of harnessing the power of the
regularity lemma to do clustering. This blog post is organized as follows: We first
sketch the reqgularity lemmma, we then see that it is an existential predicate and
state an algorithmic version, we then look at how this constructive version may be
used for clustering/segmentation. It must be noted that the idea seems to have
originated from an earlier interesting work by Sperotto and Pellilio.
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Minimum Dominating Set problem

What is the minimum number of queens needed
to occupy or attack all squares of an 8x8 board?

Let G be the graph in which every vertex corresponds to
a square and two vertices are adjacent if and only if they
belong to the same horizontal, vertical or diagonal line.
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to occupy or attack all squares of an 8x8 board?

Let G be the graph in which every vertex corresponds to

a square and two vertices are adjacent if and only if they %

belong to the same horizontal, vertical or diagonal line. W

Definition. A set of vertices in a graph is dominating if every vertex
outside of the set has a neighbour in the set.



Minimum Dominating Set problem

What is the minimum number of queens needed iy

to occupy or attack all squares of an 8x8 board?

Let G be the graph in which every vertex corresponds to

a square and two vertices are adjacent if and only if they %

belong to the same horizontal, vertical or diagonal line. W

Definition. A set of vertices in a graph is dominating if every vertex
outside of the set has a neighbour in the set.

Problem. Find a dominating set of minimum size.
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Applications

Domination arises in facility location problems, where the maximum distance
to a facility is fixed and one attempts to minimize the number of facilities
necessary so that everyone is serviced.



Minimum Dominating Set problem

Applications

Domination arises in facility location problems, where the maximum distance
to a facility is fixed and one attempts to minimize the number of facilities
necessary so that everyone is serviced.

Concepts from domination also appear in problems involving finding sets of
representatives, in monitoring communication or electrical networks, and in
land surveying (e.g., minimizing the number of places a surveyor must stand
in order to take height measurements for an entire region).



Multi-Document Summarization via
the Minimum Dominating Set

Chao Shen and Tao Li
School of Computing and Information Sciences
Florida Internation University
{cshen001|taoli}@cs.fiu.edu

Abstract

Multi-document summarization has
been an important problem in infor-
mation retrieval. It aims to dis-
till the most important information
from a set of documents to gener-
ate a compressed summary. Given
a sentence graph generated from a
set of documents where vertices repre-
sent sentences and edges indicate that
the corresponding vertices are simi-
lar, the extracted summary can be de-
scribed using the idea of graph dom-
ination. In this paper, we propose
a new principled and versatile frame-
work for multi-document summariza-
tion using the minimum dominating
set.  We show that four well-known

entire input set (Jurafsky and Martin, 2008).
The generated summary can be generic where
it simply gives the important information con-
tained n the input documents without any
particular information needs or query/topic-
focused where 1t 1s produced in response to a
user query or related to a topic or concern the
development of an event (Jurafsky and Mar-
tin, 2008; Mani, 2001).

Recently, new summarization tasks such as
update summarization (Dang and Owczarzak,
2008) and comparative summarization (Wang
et al., 2009a) have also been proposed. Up-
date summarization aims to generate short
summaries of recent documents to capture
new Information different from earlier docu-
ments and comparative summarization aims
to summarize the differences between compa-
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Variations of Domination

Connected Domination
Independent Domination
Roman Domination
Fractional Domination
Total Domination

Paired Domination
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Determine if a CNF formula is satisfiable

i SATISFIABILITY in terms of graphs

(XvyvI)(Xvyvi)(Xvyvi)

Cy G C3

X X Yy y 7 Independent Domination

SAT: is there an independent set in the bottom part
of the graph which dominates the upper part?
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Determine if a CNF formula is satisfiable

i SATISFIABILITY in terms of graphs

(XvyvI)(Xvyvi)(Xvyvi)

Cy G C3

X X Yy y 7 Independent Domination

N

Zverovich, Igor Edm. Satgraphs and independent domination. 1. 7/eoret.
Comput. Sci. 352 (2006), no. 1-3, 47-56.
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EDWARD BERTRAM AND PETER HORAK

ications

of Graph Theory to
Other Parts of
Mathematics

\gi ications networks and coding the-
ory), computer science (algorithms and computation), op-
timization theory, and operations research. The wide scope
of these and other applications has been well documented
(eg. [4, 11]).

Howewver, not everyone realizes that the powerful com-
binatorial methods found in graph theory have also been
used to prove significant and well-known results in a vari-
ety of areas of pure mathematics. Perhaps the best known
of these methods are related to a part of graph theory called
matching theory. For example, results from this area can
be used to prove Dilworth's chain decomposition theorem
for finite partially ordered sets. A well-known application
of matehing in group theory shows that there is a common
set of left and right coset representatives of a subgroup in

ing («
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any mathematicians are now generally aware of the signifi-
cance of graph theory as it is applied to other areas of science
and even to societal problems. These areas include organic chem-
istry, solid state physics and statistical mechanics, electrical

a finite group. Also, the existence of matchings in certain
infinite bipartite graphs played an important role in
Laczkovich's affirmative answer to Tarski's 1925 problem
of whether a circle is piecewise congruent to a square.
Other applications of graph theory to pure mathematics
may be found scattered throughout the literature.
Recently, a collection of examples [10] showing the ap-
plication of a variety of combinatorial ideas to other areas
has appeared. There, for example, matching theory is ap-
plied to give a very simple constructive proof of the exis-
tence of Haar measure on compact topological groups, but
the other combinatorial applications do not focus on graph
theory. The graph-theoretic applications presented here do
not overlap with those in [10], and no attempt has been
made at a survey. Rather, we present five examples, from
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the other combinatorial applications do not focus on graph
theory. The graph-theoretic applications presented here do
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made at a survey. Rather, we present five examples, from

Fermat's (Little) Theorem

There are many proofs of Fermat's Little Theorem, even
short algebraic or number-theoretic proofs. The first
known proof of the theorem was given by Euler, in his let-
ter of 6 March 1742 to Goldbach. The idea of the graph-
theoretic one presented below can be found in [5] where
this method, together with some number-theoretic results,
was used to prove Euler’s generalization to nonprime mod-
ulus.

Theorem (Fermat): Let p be a prime such that a is not
divisible by p. Then, a? — a is divisible by p.

Proof. Consider the graph G = (V, E), where V is the set
of all sequences (a1, g, . . . , ) of natural numbers be-
tween 1 and ¢ (inclusive), with o; # a; for some i #J.
Clearly, Vhas ¢? - a elements. Foranyu €V, u = (y,.. .,
-1, Up), let us say that uv € E just in case v = (uy, Uy,
.+, Uy1). Clearly, each vertex of G is of degree 2, so each
component of G is a cycle, of length p. But then, the num-
ber of components must be (a” - a)/p, so pla? —a. O
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A graph-theory method for pattern identification
in geographical epidemiology

Abstract

Background: Graph theoretical methods are extensively used in the field of computational
chemistry to search datasets of compounds to see if they contain particular molecular sub-
structures or patterns. We describe a preliminary application of a graph theoretical method,
developed in computational chemistry, to geographical epidemiology in relation to testing a prior
hypothesis. We tested the methodology on the hypothesis that if a socioeconomically deprived
neighbourhood is situated in a wider deprived area, then that neighbourhood would experience
greater adverse effects on mortality compared with a similarly deprived neighbourhood which is
situated in a wider area with generally less deprivation.




A graph-theory method for pattern identification
in geographical epidemiology

Data:

We used the Trent Region Health Authority area for this
study. It had a population of approximately 5 million people.
We used census enumeration districts (CED) as a proxy for
neighbourhood areas, of which there were 10,665 in the
Trent Region. CEDs were the lowest level of 1991 census
geography at which detailed population information was
available in England and Wales.



A graph-theory method for pattern identification
in geographical epidemiology

Graph: the nodes represented CEDs and the edges were determined by
whether or not CEDs were neighbours (i.e. they shared a common boundary).
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Figure 2. Map of part of the Trent region with the graph for enumeration district (ED) 05CGGD10 superimposed. The nodes
(black dots) represent EDs and the edges (black lines) represent EDs that are adjacent to ED 05CGGD10.



A graph-theory method for pattern identification
in geographical epidemiology

Graph: the nodes represented CEDs and the edges were determined by
whether or not CEDs were neighbours (i.e. they shared a common boundary).

Each node was assigned the deprivation quintile (level)
which is a number from 1 to 5

1 — affluent

2 — affluent

3 — neither affluent nor deprived
4 — neither affluent nor deprived
5 — deprived (2094 nodes)
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in geographical epidemiology

Table |: Distribution of the number of neighbouring CEDs for
2094 deprived CEDs.

Number of adjacent CEDS Frequency Percent

27 1.3
1 60 7.6
347 16.6
506 24.2
433 20.7
303 14.5
125 6.0
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A graph-theory method for pattern identification
in geographical epidemiology

Group Meighbours Diagrams with deprivation gquintile values
Group 1 | 5 affluent neighbours (deprivation 1-
quintiles 1 or 2) 2

Group 2 | 4 affluent neighbours {(deprivation
quintiles 1 or 2) and 1 non-affluent
neighbour (deprivation quintiles 3, 4 or
5).

Group 3| 3 affluent neighbours (deprivation
quintiles 1 or 2) and 2 non-affluent
neighbours {(deprivation quintiles 3, 4 or
5).

Group 4 | 2 non-affluent neighbours (deprivation
quintiles 3, 4 or 5), 2 non-deprived
neighbours {(deprivation quintiles 1 to 4)
and 1 non-affluent and non-deprived
neighbour (deprivation quintiles 3 or 4).

Group 5
3 deprived neighbours (deprivation
quintile 5) and 2 non-deprived
neighbours {deprivation quintiles 1 to 4).
Group 6

4 deprived neighbours (deprivation
quintile 5) and 1 non-deprived
neighbour (deprivation quintiles 1 to 4).

Group 7 | 5 deprived neighbours (deprivation
quintile 5).




A graph-theory method for pattern identification
in geographical epidemiology

Table 3: Deaths, population counts and age and sex adjusted mortality rate ratios for deprived CEDs with five neighbours categorised
by deprivation levels in the neighbouring CEDs.

Group* Number of deprived CEDs Deaths Population count Adjusted rate ratio (95% CI)
1988-1998

I 0 - - -

2 4 359 1189 1.08 (0.93 — 1.26)

3 17 1089 8089 0.86 (0.78 — 0.93)

4 214 16315 105424 [.00 (1.00 — 1.00)

5 95 6404 48388 0.98 (0.94 — 1.02)

6 8l 4999 39001 1.02 (0.98 — 1.07)

7 85 4947 41519 [.02 (0.97 — 1.07)

* Group | — all five neighbouring CEDs were affluent; Group 7 — all five neighbouring CEDs were deprived.

Discussion

We found that the basic graph theory method we used to identify neighbourhoods which
were surrounded by varying levels of deprivation showed that there was some evidence
of a trend towards higher mortality in neighbourhoods surrounded by deprived areas.
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Graph Mining for Business Processes

Investigation of Graph Mining for Business Processes

Azeem Lodhi, Gamal Kassem, Veit Koeppen, Gunter Saake
Department of Technical and Business Information Systems
Faculty of Computer Science
Otto-von-Guericke-University Magdeburg
Universitdtsplatz 2, 39106 Magdeburg, Germany
e-mail: {firstname.lastname } @ovgu.de

Abstract—Business process management and business intel-
ligence are fields which gain a lot of attention in recent years.
These techniques try to improve not only efficiency of processes
but also save considerable cost. Graph based representation
of concepts (objects, data) are also used in business domain
to support aforementioned techniques. Graph mining methods
are successful in many fields for discovery of new relations,
knowledge, and visualization. In this paper, we briefly discuss
the fields in which graph mining is successfully applied. We
also discuss challenges of applying graph mining in business
processes and what are the benefits.

Keywords-Graph mining, business processes, graph mining
applications, business intelligence, business process analysis

frequently used to accomplish defined tasks? What are the
common characteristics and relationships between activities,
business objects, and their flow or relation (business process
executions)? What common features can we discover be-
tween successful and unsuccessful scenarios? Prediction on
a certain business flow whether it will lead to a desired state
or failure. What commonalities can we find between the
executions of business applications by users? How should
an organization be structured to get maximum benefits from
the employees (dealing with social network analysis)? What
would be the next information request from the user of a
system during business process execution?



‘L Graph Mining for Business Processes

An often used example of graph mining in media industry
uses IMDB! (Internet Movie Database) website as a resource
website. This website contains information about movies and
television programs. It provides movies and programs detail
information to users through online queries freely. Graph
mining 1s used on IMDB movie database in which movies
attributes (actors, director, producer, etc.) are represented as
graph nodes, and then graph mining methods are applied to
discover new relations and knowledge. This knowledge is
used to make a predictions like how much business will a
certain movie do during a time-span? Will it be nominated
for an award or not? The results of applying graph mining
on IMDB and to some other fields are discussed in [4].
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(phonetically), we might infer that two words which rhyme in a text
had identically pronounced endings for the text’s author. Unfortunately,
this reasoning breaks down because of the presence of “half” rhymes.

This paper explores the connection between pronunciation and network
structure in sets of rhymes. It discusses how rhyme graphs could be used
for historical pronunciation reconstruction.



Applications of graph theory
to an English rhyming corpus

How much can we infer about the pronunciation of a language —
past or present — by observing which words its speakers rhyme?

For instance, how can we reconstruct what English sounded like for Shakespeare?

Because rhymes are usually between words with the same endings
(phonetically), we might infer that two words which rhyme in a text
had identically pronounced endings for the text’s author. Unfortunately,
this reasoning breaks down because of the presence of “half” rhymes.

This paper explores the connection between pronunciation and network
structure in sets of rhymes. It discusses how rhyme graphs could be used
for historical pronunciation reconstruction.

In particular, the author builds classifiers to separate half from full
groups of rhymes, based on the groups’ rhyme graphs.



Applications of graph theory
to an English rhyming corpus

Data:

Although the long-term goal of this project is to infer historical pronunciation,
this paper uses recent poetry, where the pronunciation is known, to develop
and evaluate methods.

Our corpus consists of rhymes from poetry written by English authors around
1900. The contents of the corpus, itemized by author, are summarized in Table 1

Table |

Summary of authors of rhymes used in the corpus. “Georgian Poets™ are contributors to the Georgian Poetry anthologies (Marsh, 1916-1922).
Poet # Rhymes (103) Sources

A.E. Housman (1859-1936) 1.52 Housman (1896, 1922, 1936, 1939)
Rudyard Kipling (1865-1936) 2.60 Kipling (1889-1896, 1892, 1886)
T.W.H. Crosland (1865-1924) 0.60 Crosland (1917)

Walter de la Mare (1873—-1956) 1.74 de la Mare (1901-1918)

G.K. Chesterton (1874—1936) 1.29 Chesterton (1911)

Edward Thomas (1878-1917) 0.52 Thomas (1917)

Rupert Brooke (1887-1915) 1.05 Brooke (1915)

Georgian Poets (c. 1890) 3.07 Georgian Poetry (1911-1919)




Applications of graph theory
to an English rhyming corpus

Data:
Poems were first hand-annotated by rhyme scheme,
then parsed using Perl scripts to extract rhyming pairs.
Some definitions

A rhymeis a pair of two words, w; and w,, observed in rhyming
position in a text.

A word’s short rhyme stem is the nucleus and coda of its final syllable,
and its /ong rhyme stemis all segments from the primary stressed
nucleus on.

The rhyme is ful/if the rhyme stems of w; and w, are the same,
and half otherwise.



Applications of graph theory
to an English rhyming corpus

The rhyme graph:

The number of nodes (words) — 4464
The number of edges (rhymes) — 6350
The weight of an edge — the number of times the rhyme was observed

The graph has 70 connected components.
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The rhyme graph: common components

 all or nearly all words have the same stem

rhyme

(c) o (d)
A offence
1
/ 6 4 slime
rime dense 1
1
4
\ _ -2~ chime 1\
time sense
1 1
1
1
1 2 2
clime L
. 1
climb pence 1 1

thyme thence
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to an English rhyming corpus

The rhyme graph: common components

« two or more dense clusters corresponding to different
stems with relatively few edges between the clusters.
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The rhyme graph: less common components

« contain many edges corresponding to half rhymes
between words with similar spellings (spéelling riymes)
and poetic pronunciation conventions

) unconsciousness
T 1  caress nakedness
1 less _ .
1 1
'l i
kindliness _ distress
endern > press
1 1
oveliness

tend
- 1 1 2
move
! 1
1
mess ——— dress

N

confess

(a) i (b)

remove
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Classification problem: predict which group a given component falls

into, using features derived from its graph structure.

Feature set:
10 non-spectral features / spectral features

e cut lower bound 1:

e mean/max degree

oedgeraﬁo e cut upper bound 1:
e max clique size e cut lower bound 2:
e max vertex betweenness centrality

e diameter e cut upper bound 2:
e mean shortest path e cut lower bound 3:
e radius e cut upper bound 3:

e mean clustering coefficient
e log size

e subset perim/area

Ago
2
V1= (1—=2xp)
A10
2
e\ 2
(1 _ 20
= (1-5)
Al
2
2 }\.[]
1 2
bound: i=U=#0w0)

[+(1—00)”



Applications of graph theory
to an English rhyming corpus

Classification problem: predict which group a given component falls
into, using features derived from its graph structure.

Binary classification task

For both short and long rhyme stem data, we wish to classify components of
the rhyme graph as “positive” (consisting primarily of true rhymes) or “negative
(otherwise). As a measure of component goodness, we use the percentage of
vertices corresponding to the most common rhyme stem.

n

Classifiers

There are 33 positive/37 negative components for long rhyme stems, and
39 positive/31 negative components for short rhyme stems.

We use three non-trivial classifiers: &-nearest neighbors, classification
and regression trees and support vector machines



Applications of graph theory
to an English rhyming corpus

Some conclusions:

We have found that spectral features are more predictive of component
goodness than non-spectral features; and that classifiers using a single
spectral feature have 85-90% accuracy.

Graph structure for the most part transparently reflects actual pronunciation.
It is (in principle) possible to “read off” pronunciation from structure.

Considering linguistic data as graphs (or networks) gives new insights into
how language is structured and used. Specifically, we found a strong and
striking association between graph spectra and linguistic properties.



5
3
:
o

Jeffrey R. Petrella, MD

Use of Graph Theory to Evaluate
Brain Networks: A Clinical Tool for

a Small World?

his issue of Radiology features an

article by Whitlow et al (1) in which

graph theory methods are applied
to neuroimaging data to extract infor-
mation on how the brain is organized.
Whitlow et al used resting-state func-
tional magnetic resonance (MR) imaging
to show that it is possible to accurately
obtain graph theory metrics of large-
scale brain network connectivity in as
little as 2 minutes.

Graph theory is a branch of math-
ematics developed in the 18th century
that deals with global and local character-
istics of networks, systems modeled as a
collection of elements or nodes hinked

a powerful tool with which to model re-
lations and process dynamics in many
physical, hiologic, and social systems. As
recently as 1998, it was recognized that
certain common properties were inher-
ent in diverse and efficient networks
in nature, such as the neural network
of the Caenorhabditis elegans worm,
the power grid of the western United
States, and the social network of the
Screen Actors Guild (3). These networks
were labeled small-world networks, a
term that came from the small-world
phenomenon, more popularly known
as six degrees of separation. Until this
tfime networks had heen con<idered
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Use of Graph Theory to
Evaluate Brain Networks

The brain can be considered a network on multiple scales.

At the most elementary level, there are synaptic connections
between neurons;

at a higher level, there are corticocortical or cortico-deep gray
connections between different cell types;

at a yet higher level, there are large-scale connections between
brain regions in the form of white matter bundles or fascicles.
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Use of Graph Theory to
Evaluate Brain Networks

Graph theory can help us understand the biologic
underpinnings of behavioral function and dysfunction.

A number of psychiatric and neurocognitive disorders
can be classified as disconnection syndromes, in which
there is damage to white matter connections.

The emergence of particular symptoms can be
theoretically related to particular types of damage to
large-scale brain networks.

A number of studies have shown abnormalities in
intrinsic brain networks in patients with different
abnormal conditions, including Alzheimer disease (AD).



Use of Graph Theory to
Evaluate Brain Networks

For example, a significant decrease in the clustering coefficient
and small-world properties was found in patients with AD
compared with control subjects.

Also, a group of researchers examined the effect of random
deletions of nodes and links versus targeted deletions of highly
interconnected nodes and long-distance links in healthy subjects
and those with AD.

In healthy subjects, the network was resistant to both types of
attack; however, in patients with AD, the network was
approximately as robust to random failures but was particularly
vulnerable to targeted attacks, presumably as a result of altered
network organization (disrupted small world architecture).



Use of Graph Theory to
Evaluate Brain Networks

In addition to helping us understand the biologic underpinnings
of a number of brain disorders, brain network measures may
have applications in patient care, such as early diagnosis.

Evidence is starting to accumulate in patients with disorders such
as schizophrenia, depression, and attention deficit hyperactivity
disorder that suggests a possible role for graph theory network
measures in early diagnosis of these conditions.
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LANDSCAPE CONNECTIVITY: A GRAPH-THEORETIC PERSPECTIVE

DeAN URBAN!Y? AnND TimMoTHY KEITT24

'Nicholas School of the Environment, Duke University, Durham, North Carolina 27708 USA
*National Center for Ecological Analysis and Synthesis, Santa Barbara, California 93101 USA

Abstract. Ecologists are familiar with two data structures commonly used to represent
landscapes. Vector-based maps delineate land cover types as polygons, while raster lattices
represent the landscape as a grid. Here we adopt a third lattice data structure, the graph.
A graph represents a landscape as a set of nodes (e.g., habitat patches) connected to some
degree by edges that join pairs of nodes functionally (e.g., via dispersal). Graph theory is
well developed in other fields, including geography (transportation networks, routing ap-
plications, siting problems) and computer science (circuitry and network optimization). We
present an overview of basic elements of graph theory as it might be applied to issues of
connectivity in heterogeneous landscapes, focusing especially on applications of metapo-
pulation theory in conservation biology. We develop a general set of analyses using a
hypothetical landscape mosaic of habitat patches in a nonhabitat matrix. Our results suggest
that a simple graph construct, the minimum spanning tree, can serve as a powerful guide
to decisions about the relative importance of individual patches to overall landscape con-
nectivity. We then apply this approach to an actual conservation scenario involving the
threatened Mexican Spotted Owl (Strix occidentalis lucida). Simulations with an incidence-
function metapopulation model suggest that population persistence can be maintained de-
spite substantial losses of habitat area, so long as the minimum spanning tree is protected.
We believe that graph theory has considerable promise for applications concerned with
connectivity and ecological flows in general. Because the theory is already well developed
in other disciplines, it might be brought to bear immediately on pressing ecological ap-
plications in conservation biology and landscape ecology.
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Applications of graph theory in protein structure
identification

Yan Yan'? Shenggui Zhang', Fang-Xiang Wu*’

From International Workshop on Computational Proteomics
Hong Kong, China. 18-21 December 2010

Abstract

There is a growing interest in the identification of proteins on the proteome wide scale. Among different kinds of
protein structure identification methods, graph-theoretic methods are very sharp ones. Due to their lower costs,
higher effectiveness and many other advantages, they have drawn more and more researchers’ attention
nowadays. Specifically, graph-theoretic methods have been widely used in homology identification, side-chain
cluster identification, peptide sequencing and so on. This paper reviews several methods in solving protein
structure identification problems using graph theory. We mainly introduce classical methods and mathematical
models including homology modeling based on clique finding, identification of side-chain clusters in protein
structures upon graph spectrum, and de novo peptide sequencing via tandem mass spectrometry using the
spectrum graph model. In addition, concluding remarks and future priorities of each method are given.
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USE OF GRAPH THEORY TO SUPPORT GENERALISATION

William Mackaness and Kate Beard

National Center for Geographic Information and Analysis,
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University of Maine,

ME 04469, USA

Abstract

This paper discusses the utilization of graph theory to aid in the subtle application of specific
generalization techniques during map design. The visualization of space encapsulates the notion of
context, the representation of the interdependence of salient variables and even that of aesthetics;
many of the subtleties of the cartographic hand rely on a rich understanding of those relationships.
It is argued that any equivalent automated system needs to have the same rich knowledge explicitly
or implicitly stored with each feature. The consequences for database design from this perspective
are very different from ones that require efficiency or cater to spatial query.
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Graph theoretical (GT) applications in chemistry underwent a dramatic revival lately. Con-
stitutional (molecular) graphs have points (vertices) representing atoms and lines (edges) sym-
bolizing covalent bonds. This review deals with definition, enumeration, and systematic coding
or nomenclature of constitutional or steric isomers, valence isomers (especially of annulenes),
and condensed polycyclic aromatic hydrocarbons. A few key applications of graph theory in
theoretical chemistry are pointed out. The complete set of all possible monocyclic aromatic and
heteroaromatic compounds may be explored by a combination of Pauli’s principle, Pdlya’s theorem,
and electronegativities. Topological indices and some of their applications are reviewed. Reaction
graphs and synthon graphs differ from constitutional graphs in their meaning of vertices and
edges and find other kinds of chemical applications. This paper ends with a review of the use
of GT applications for chemical nomenclature (nodal nomenclature and related areas), coding,
and information processing/storage/retrieval.

INTRODUCTION

All structural formulas of covalently bonded compounds are
graphs: they are therefore called molecular graphs or, better,
constitutional graphs. From the chemical compounds de-
scribed and indexed so far, more than 90% are organic or
contain organic ligands in whose constitutional formulas the
lines (edges of the graph) symbolize covalent two-electron
bonds and the points (vertices of the graph) symbolize atoms
or, more exactly, atomic cores excluding the valence electrons.
Constitutional graphs represent only one type of graphs that
are of interest to chemists. Other kinds of graphs (synthon
graphs, reaction graphs, etc.) will be mentioned later. This
review will try to highlight applications of such graphs in
chemistry: graph theory provides the basis for definition,
enumeration, systematization, codification, nomenclature,
correlation, and computer programming.'”’

Chemistry is privileged to be, both potentially and actually,
the best documented branch of science. This is mainly due
to the facte that most of the chemical information i ascociated
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Jewish prof pens unique crime-busting novel

Mike Cohen
Quebec Bureau Chief

MONTREAL - Alain Hertz,
a Jewish professor in the
department of mathematical
and industrial engineering
of the Ecole Polytechnique
of the Université de Mon-
tréal, has used the expertise
gained in his profession to
write a fairly unique novel.
It is a mystery based on
mathematics.

The book has already been
published in French and
German, with the English
version set to hit the shelves
as early as this week.

Quick on the Draw: Crime-
Busting with a Mathematical

Twist deals with a theft and
a hold-up, an impostor try-
ing to collect an inheritance,
the disappearance of a lab
mouse worth several hun-
dred thousand dollars, and a
number of other cases.

These are the investiga-
tions led by Hertz’s lead
character, Maurice Manori,
a police inspector known for
being quick on the draw. He
owes his reputation to his
highly effective - but very
unconventional - methods.
His secret weapon? Graph
theory. In search of the
truth, Inspector Manori
draws graphs that will intro-
duce readers to the ins and
outs of a mathematical dis-

PROFESSOR ALAIN HERTZ

cipline with countless handy
applications.

Hertz said that the novel
provides the layperson with
an excellent breakdown of a

science that’s not very well
known, using it to model a
wide range of everyday situ-
ations.

“Thanks to its fun
approach, it’s great for both
Sudoku and logic puzzle
lovers and for math and sci-
ence students and teachers,”
explained Hertz, a Swiss Jew
who has called Montreal
home for 11 years. “Learning
while having fun. Isn’t that
what we’d all like to do?”

Quick on the Draw, Hertz
said, speaks to having a fun
approach to learning graph
theory - a mathematical dis-
cipline with tons of every-
day applications - using
crime stories.

graph theory. Teachers can
use the companion lecture
notes, which will help them
integrate the book’s cases
into their course material
with fun exercises. But any-
one who loves logic games
and Sudoku will enjoy solv-
ing the cases set out in the
story.”

Graph theory makes it pos-
sible to model a wide range
of everyday situations.
Inspector Manori uses this
science to identify the crimi-
nals in the cases he leads.
Because he’s quick to draw
his graphs, he’s managed to
nail a number of suspects,
which has earned him the
reputation of being quick on
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‘L The case of the missing files

Important files were stolen from an archive on the night of 10 April.




i The case of the missing files

Important files were stolen from an archive on the night of 10 April.

The list of suspects includes 7 people who visited the archive 9 and 10 April.

The Case of the Missing Files 41

Suspects | Thursday, April 9, 2009 | Friday, April 10, 2009
Tait X X

Bonneau X

Epiney X X

Sporov X %

Lippo X X

Melkain X

Guerel X X




‘_L The case of the missing files

Important files were stolen from an archive on the night of 10 April.
The list of suspects includes 7 people who visited the archive 9 and 10 April.

The suspects were interviewed and the information of who saw whom is
reported in the two tables on the right.

The Case of the Missing Files 41 Thursday, April 9, 2009 Friday, April 10, 2009
TIBIE|S|L|G|M TIB|IE|S|IL|G|M

Suspects | Thursday, April 9, 2009 | Friday, April 10, 2009

: i x|x|x T X x| x
Tait X X
Bonneau X 4 B % = X
Epiney = . E|x X E Xix|x
Sporov < - S | x X x| %l & S x| % vl B
Lipge = % L|x 4 X L | % X | x
Melkain X G X X Glx|x|x]|x
Guerel X X M Xx|x|x M
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‘L The case of the missing files

Every suspect claims that on each day of the visit, (s)he entered and
left the archive exactly once.

Thursday graph Friday graph
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Every suspect claims that on each day of the visit, (s)he entered and
left the archive exactly once.
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‘_L The case of the missing files

Every suspect claims that on each day of the visit, (s)he entered and
left the archive exactly once.

Preliminary investigation showed that the thief is the person who was
the last in the archive on Thursday.
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‘_L The case of the missing files

Every suspect claims that on each day of the visit, (s)he entered and
left the archive exactly once.

Preliminary investigation showed that the thief is the person who was
the last in the archive on Thursday.

Therefore, the thief is T.
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