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Royal Holloway, University of London

Opened by Queen Victoria in 1886, it’s one of the larger
colleges of the University of London ...
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Computer Learning Research Centre

Established in January 1998 by a decision of the College’s

Academic Board.

Goal: to provide a focus for fundamental research, academic

leadership, and the development of commercial-industrial

applications in the field of machine learning.

http://clrc.rhul.ac.uk
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People

• Local members: Kalnishkan, Luo, Vovk (co-director),

Watkins, Gammerman (co-director).

• Outside fellows, including several prominent ones, such as:

Vapnik and Chervonenkis (the two founders of statistical

learning theory), Shafer (co-founder of the

Dempster–Shafer theory), Rissanen (inventor of the

Minimum Description Length principle), Levin (one of the 3

founders of the theory of NP-completeness, made

fundamental contributions to Kolmogorov complexity)

• RAs and PhD students
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Directions of research

• Statistical learning theory (Vapnik, Chervonenkis, founders

of the field)

• Conformal prediction (Gammerman, Luo, Shafer, Vovk)

• Competitive prediction (Kalnishkan, Shafer, Vovk)

• Computational and mathematical finance (Shafer, Vovk)

• Information-theoretic analysis of evolution (Watkins)

• Reinforcement learning (Watkins, one of the founders of

the field)
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Hedging predictions in machine learning

Hedge: protect oneself against loss on (a bet or investment) by
making balancing or compensating transactions.

• The hedged predictions for the labels of new objects include
quantitative measures of their own accuracy and reliability.

• These measures are provably valid under the assumption
that the objects and their labels are generated
independently from the same probability distribution.

• It becomes possible to control (up to statistical
fluctuations) the number of erroneous predictions by
selecting a suitable confidence level.

• Conformal predictors developed by Gammerman and Vovk
at Royal Holloway, University of London.

6



Outlines

We will discuss the following topics:

• Introduction to Prediction with confidence

• Conformal Prediction

– Transductive Conformal Prediction (TCP)

– On-line TCP

– Inductive Conformal Predictor (ICP)

– Mondrian Conformal Predictor (MCP)

• Applications and conclusions
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Section: Introduction to Prediction with Confidence

• Machine Learning

• Supervised learning vs unsupervised learning

• Batch vs on-line learning
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Why machine learning?

• Data is cheap and abundant but knowledge is expensive

and scarce

• Learning is used when:

– Human expertise does not exist (e.g. navigating on

Mars)

– Humans are unable to explain their expertise (e.g.

speech recognition, face recognition)

– Solution changes in time (e.g. routing on a computer

network)

• Build a model that is a good and useful approximation to

the data.
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Example: hand-written digits
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USPS dataset - hand-written digits

US Postal Service data set: 9298 hand-written digits (7291

training examples and 2007 test examples).

Each example consists of an image (16 × 16) matrix with

entries in the interval (-1,1) that describe the brightness of

individual pixels and its label.

For every new hand-written digit we predict a possible label (0

to 9).
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Which digit?

3 or 5
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Learning methodology

How can a computer perform an “intelligent” task (e.g.,

recognise hand-written digits)?

1. we can give the computer explicit rules and instructions

• we may not know the rules ourselves; how would you

describe a digit “2”?

• or the explicit rules may be computationally expensive

2. we can give the computer examples (of handwritten digits)

and let it learn the difference

• this is really a universal method!

• we just need enough examples and a method of learning
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A popular definition

Machine Learning is giving computers the ability to learn

without being explicitly programmed.

(Samuel, 1959)
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Machine learning in the CS curriculum

The four levels of the Computer Science curriculum:

Level 1: Hardware. Performs simple operations.

Level 2: Software (programs). Makes hardware do what we
want.

Level 3: Algorithms: complicated tasks expressed in high-level
languages, possibly even in English.

• the author of a program or an algorithm must still foresee
and analyse every eventuality

Level 4: Machine learning: the algorithms that can learn and
improve themselves.
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What is learning?

a working definition: A computer program is said to

• learn from experience E

• with respect to some class of tasks T and performance

measure P ,

• if its performance at tasks in T , as measured by P ,

improves with experience E.

17



Examples (1)

Chess playing problem:

• task T: playing chess (choosing a move in a given position)

• performance measure P: percent of games won against

opponents

• training experience E: playing practice games (against

opponents or itself)
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Examples (2)

The handwritten digits learning problem:

• task T: classifying handwritten digits from 0 to 9

• performance measure P: percentage of digits correctly

classified

• training experience E: a database of handwritten digits with

given classifications
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Example (3)

Medical diagnosis problem:

• task T: making diagnoses among a class of possible diseases

• performance measure P: percentage of correct diagnoses

• training experience E: a set (database) of past patients

records with their diagnoses
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Supervised learning (1)

The handwritten digits and the medical diagnosis problems

have a similar structure

• they deal with objects (or cases or instances or unlabelled

examples or input variables) x

• the task is to provide a label (or outcome or response or

output variables) y for an object x

• we learn from a set of observations (or labelled examples),

which are pairs (x, y) consisting of an object x and its label

y
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Supervised learning (2)

The handwritten digits recognition problem:

• an object is a scanned image of a symbol

• a label belongs to the set {0,1,2, ...,9}

The problem of supervised learning consists of providing labels

for new (test) objects.
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Supervised learning (3)

• if the set of possible labels in supervised learning is finite,
the problem is called classification (and then labels are
sometimes referred to as classes)

– binary classification: two possible labels; for example:
differentiating 0s from the other digits

– multi-class classification: more than two (but finitely
many) possible labels; for example: recognising digits
from the set {0,1,2, ...,9}

• if the set of possible labels in supervised learning is infinite
(usually the set R of real numbers), the problem is called
regression

– example: determining the price of a house from its
description
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Exploration and exploitation

• supervised learning can proceed according to two protocols:

batch or on-line

• in batch learning we are given a training set of observations

(x1, y1), (x2, y2), ..., (xn, yn) and we need to work out labels

for the objects from a test set xn+1,xn+2, ...,xm.

• there are two stages:

1. the training (or exploration) stage, when we analyse the

training set (and possibly find a hypothesis describing it)

2. the exploitation stage, when we apply the hypothesis to

the test data
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Induction vs transduction (1)

• sometimes we do not create a hypothesis

• induction: based on our experience (data set), we arrive at

a general hypothesis which tells us something about the

unseen data

• transduction: we avoid a general hypothesis and deal with

each instance of new data individually

• the difference can be subtle (e.g., computational)
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Induction vs transduction (2)

Vapnik, The Nature of Statistical Learning Theory, 1995

Model

Data Prediction

Induction Deduction

Transduction
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On-line learning

• in on-line (supervised) learning we are given observations as

follows:

– we see x1

– we work out the predicted label for x1

– we see the true label y1 for x1

– we see x2

– we work out the predicted label for x2

– we see the true label y2 for x2

– etc.

• examples: predicting the weather or stock prices
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Unsupervised Learning

Unsupervised learning is concerned with analysing data without

labels, e.g., finding out the structure of the data

• for example: clustering, i.e., finding clusters (groups of

similar examples) in data
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Nearest Neighbours algorithms

• Nearest Neighbour (NN) is a simple algorithm for

classification or regression

• suppose we are given a training set

(x1, y1), (x2, y2), ..., (xn, yn)

• we need to predict the label for a test object x

• the algorithm:

– search for the training object that is nearest the test

object x

– predict that the label of the new object is the same as of

this nearest training object
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Example (1)

• training set:

– positive objects: (0, 3), (2, 2), (3, 3)

– negative objects: (-1, 1), (-1,-1), (0, 1)

• test object: (1, 2)

• let us calculate the distance from the new object to each

training object
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Example (2)

Training object Label Euclidean distance

(0, 3) +1 1.414
(2, 2) +1 1
(3, 3) +1 2.236
(-1, 1) -1 2.236
(-1;-1) -1 3.506
(0, 1) -1 1.414

(2, 2) is the nearest object and it is positive

• we predict that our new object is positive too
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Transduction

this is our first example of transduction

• we do not formulate any hypothesis; we simply output a

prediction on the test object
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K-Nearest Neighbours

• K-Nearest Neighbours (KNN) is an enhancement of simple

Nearest Neighbours

• the algorithm for classification:

– find the K nearest neighbours to the new object

– take a vote between them to decide on the best label for

the new object

• the algorithm for regression:

– find the K nearest neighbours to the new object

– predict with the average of their labels
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Discussion

+ No assumptions and simple methodology

+ Very flexible method

− Potential computational problems

− Problems in high dimensions
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Bare prediction algorithms

The learning machines such as KNN and decision trees are

“universal”: they can be used for solving a wide range of

problems. They can be used for:

• hand-written digit recognition

• face recognition

• predicting house prices

• medical diagnosis

The main differences are not in the problems they can be

applied to but in their efficiency in coping with those problems.
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Motivation

• How good is your prediction ŷ?

• How confident are you that the prediction ŷ for a new

object is the correct label?

• If the label y is a number, how close do you think the

prediction ŷ is to y?

The usual prediction goal: we want new predictions to perform

as well as past predictions
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Can we ...

1. Allow a user to specify a confidence level or error rate so

that a method cannot perform worse than the predefined

level or rate before prediction or

2. provide confidence/uncertainty level for all possible

outcomes?
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Why prediction with confidence

Algorithms predict labels for new examples without saying how
reliable these predictions are.

Reliability of method is often given by measuring general
accuracy across an independent test set.

• Accuracy is a measurement made following the learning
experiment and is not subject to experimental control.

• There is no formal connection between accuracy on the
test set and the confidence in a prediction on any particular
new and unknown example.

• For prediction, knowing the general rate of error may not
be useful, as we are interested primarily in the probability of
prediction for each particular case.
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Confidence intervals for Gaussian distribution

Given a sample mean µ and variance σ2, how good an estimate
is the sample mean of the true mean?

The computation of a confidence interval (CI) allows us to
answer this question quantitively.

Let µ and σ be the sample mean and sample standard deviation
computed from the results of a random sample from a normal
population with mean µ, then a 100(1− α)% confidence
interval for µ is (µ− tα/2,n−1

σ√
n
, µ+ tα/2,n−1

σ√
n

)

The t-distribution is used with n− 1 degrees of freedom for
samples of size n, to derive a t-statistic tα/2,n−1 for the
significance level α.
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Bayesian learning

Data is modelled as probability distribution

Probability as confidence

Bayes rule:

P (y|x) =
P (x|y)P (y)

P (x)

Assumptions: The data-generating distribution belongs to a
certain parametric family of distributions and the prior
distribution for the parameter is known

When prior distributions are not correct, there is no theoretical
base for validity of these methods
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Statistical learning theory

Statistical learning theory (Vapnik, 1998) including the PAC
theory (Valiant, 1984) allows us to estimate with respect to
some confidence level the upper bound on the probability of
error.

Three main issues:

• Bounds produced may depend on the VC-dimension of a
family of algorithms or other numbers that are difficult to
attain for methods used in practice.

• The bounds usually become informative when the size of
the training set is large.

• The same confidence values ara attached to all examples
independent of their individual properties.
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Prediction with confidence

• Traditional classification methods give bare predictions.
Not knowing the confidence of predictions makes it difficult
to measure and control risk of error using a decision rule

• Some measure of confidence for learning algorithm can be
derived using the theory of PAC (Probably Approximately
Correct)

– These bounds are often too broad to be useful

• Traditional statistical methods can be used to compute
confidence intervals

– Small sample size means the confidence intervals are often too
broad to be useful

• Bayesian methods need strong underlying assumptions
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Prediction with confidence goals

• A predictor is valid (or well-calibrated) if its frequency of

prediction error does not exceed ε at a chosen confidence

level 1− ε in the long run.

• A predictor is efficient (or perform well) if the prediction set

(or region) is as small as possible (tight)
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Assumptions

i.i.d. = “independent and identically distributed”: there is a

stochastic mechanism which generates the digits

(digit=image+classification) independently of each other.

Traditional statistics: parametric families of distributions.
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Bags

A bag (also called a multiset) of size n ∈ N is a collection of n

elements some of which may be identical.

A bag resembles a set in that the order of its elements is not

relevant, but it differs from a set in that repetition is allowed.

We write Hz1, ..., znI for the bag consisting of elements z1, ..., zn,

some of which may be identical with each other.
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Prediction with confidence - our approach

For concreteness: the problem of digit recognition.

The problem is to classify an image which is a 16× 16 matrix
of pixels; it is known a priori that the image represents a
hand-written digit, from 0 to 9. We are given a training set
containing a large number of classified images. We can
confidently classify the new image as, say, 7 if and only if all
other classifications are excluded (and 7 is not excluded).

What does it mean that an alternative classification, such as 3,
is “excluded”? We regard classification 3 excluded if the
training set complemented with the new image classified as 3
contains some feature that makes it highly unlikely under the
iid assumption.
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Prediction with confidence

We will study the standard machine-learning problem:

• We are given a training set of examples

(x1, y1), . . . , (xn−1, yn−1), every example zi = (xi, yi)

consisting of its object xi and its label yi.

• We are also given a test object xn; the actual label yn is

withheld from us.

• Our goal is to say something about the actual label yn
assuming that the examples (x1, y1), . . . , (xn, yn) were

generated from the same distribution independently.
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Section: Conformal Prediction

Suppose we want to classify an image; it is known that the
image represents either a male or a female face. We are given
a training set containing a large number of classified (M/F, or
1/0) images.

We try all possible classifications k = 0,1 of the new image;
therefore, we have 2 possible completions: both contain the
n− 1 training examples and the new object (classified as 0 in
one completion and as 1 in the other). For every completion
we solve the SVM classification problem separating 1s from 0s
(male from female faces) obtaining the n Lagrange multipliers
αi for all examples in the completion.

At this point you are only required to know that Lagrange
multipliers reflect the strangeness of the examples.
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Nonconformity and Conformity (1)

A nonconformity (or strangeness) measure is a way of scoring

how different a new example is from a bag of old examples.

Formally, a nonconformity measure is a measurable mapping

A : Z(∗) × Z → R

to each possible bag of old examples and each possible new

example, A assigns a numerical score indicating how different

the new example is from the old ones.

Given a nonconformity measure A, a sequence z1, ..., zl of

examples and an example z, we can score how different z is

from the bag Hz1, ..., zlI: A(Hz1, ..., zlI, z).

49



Nonconformity and Conformity (2)

A conformity measure B(Hz1, ..., zlI, z) measures conformity.

Given a conformity measure B we can define a nonconformity

measure A using any strictly decreasing transformation, e.g.

A := −B or A := 1/B.

When we compare a new example with an average of old

examples, we usually first define a distance between the two

rather than devise a way to measure their closeness.

For this reason, we emphasize nonconformity rather than

conformity.
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Nonconformity measure example - 1NN (1)

Natural individual conformity measure: αs are defined, in the

spirit of the Nearest Neighbour Algorithm, as

αi :=
minj 6=i:yj=yi d(xi,xj)

minj 6=i:yj 6=yi d(xi,xj)

where d is the Euclidean distance.

An object is considered strange if it is in the middle of objects

labelled in a different way and is far from the objects labelled in

the same way.
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Nonconformity measure example - 1NN (2)
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Nonconformity measure examples for classification (1)

Support vector machine (SVM)

arg min
w,b

max
α≥0
{

1

2
||w||2 −

n∑
i=1

αi[yi(w · xi − b)− 1]}

• Lagrange multipliers α

Decision tree

• After a decision tree is constructed, a conformity score

B(x, y) of the new example (x, y) as the percentage of

examples labeled as y among the training examples whose

objects are classified in the same way as x by the decision

tree
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Nonconformity measure examples for classification (2)

Neural network

• When fed with an object x ∈ X, a neural network outputs a

set of numbers oy, y ∈ Y, such that oy reflects the likelihood

that y is x’s label.

A(x, y) =

∑
y′∈Y:y′ 6=y oy′

oy + γ

where γ ≥ 0 is a suitably chosen parameter.

Logistic regression

A(x, y) :=

{
1 + e−ŵx if y =1
1 + eŵx if y =0
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Hypothesis testing

A hypothesis is a conjecture about the distribution of some

random variables.

• For example, a claim about the value of a parameter of the

statistical model.

There are two types of hypotheses:

• The null hypothesis, H0, is the current belief.

• The alternative hypothesis, Ha, is your belief, it is what you

want to show.
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Guidelines for hypothesis testing

Hypothesis testing is a proof by contradiction.

1. Assume H0 is true

2. Use statistical theory to make a statistic (function of the data) that
includes H0. This statistic is called the test statistic.

3. Find the probability that the test statistic would take a value as
extreme or more extreme than that actually observed. Think of this as:
probability of getting our sample assuming is true.

4. If the probability we calculated in step 3 is high it means that the
sample is likely under H0 and so we have no evidence against . If the
probability is low, there are two possibilities:

• we observed a very unusual event, or

• our assumption is wrong
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p-value

The p-value is the probability, calculated assuming that the null

hypothesis is true, of obtaining a value of the test statistic at

least as contradictory to H0 as the value calculated from the

available sample.

Important points:

• This probability is calculated assuming that the null

hypothesis is true

• The p-value is NOT the probability that H0 is true, nor is it

an error probability
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Decision rule based on p-value

Clearly, if the significance level chosen is ε, then

1. Reject H0 if p-value ≤ ε

2. Do not reject H0 if p-value > ε
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Randomness – an example

According to classical probability theory, if we toss a fair coin n

times, all sequence {0,1}n will have the same probability 1
2n of

occurring.

We would be much more surprised to see a sequence like

11111111...1 than a sequence like 011010100...1.

The classical approach to probability theory can only give

probabilities of different outcomes, but cannot say anything

about the randomness of sequence.
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Randomness

Assumption: examples are generated independently from the

same distribution.

A data sequence is said to be random with respect to a

statistical model if a test does not detect any lack of

conformity between the two.

Kolmogorov’s algorithmic approach to complexity: formalising

the notion of a random sequence.

Complexity of a finite string z can be measured by the length

of the shortest program for a universal Turing machine that

outputs the string z.
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Martin-Löf test for randomness

Let Pn be a set of computable probability distributions in a

sample space Xn containing elements made up of n data

points. A function t: Xn → N , the set of natural numbers N

including ∞, is a Martin-Löf test for randomness if

• t is lower semi-computable; and

• for all n ∈ N and m ∈ N and P ∈ Pn,

P [x ∈ Xn : t(x) ≥ m] ≤ 2−m.
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The connection

Using the Martin-Löf randomness test definition, one can

reconstruct the critical regions in the theory of hypothesis. By

transform the test t using f(a) = 2−a, one gets

Definition: Let Pn be a set of computable probability

distributions in a sample space Zn containing elements made

up of n data points. A function t : Zn → (0,1] is a p-value

function if for all n ∈ N,P ∈ Pn and r ∈ (0,1],

P [z ∈ Zn : t(z) ≤ r] ≤ r

Equivalent to the statistical notion of p-value, a measure on

how well the data support or discredit a null hypothesis.
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Prediction via hypothesis testing

• A new example x is assigned a possible label y: (x, y).

• Hypothesis Test:

– Ho: The data sequence S ∪ {(x, y)} is random in the

sense that they are generated independently from the

same distribution.

– Ha: The data sequence S ∪ {(x, y)} is not random.
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Transductive Conformal Prediction

TCP: a way to define a region predictor from a “bare

predictions” algorithm.

Formally: “individual nonconformity measure” 7→ region

predictor.

A family of measurable

An : (z1, ..., zn) 7→ (α1, ..., αn)

(n = 1,2, ...) is an individual nonconformity measure if every αi
is determined by the bag Hz1, ..., znI and zi.
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Conformal prediction (1)

We define the p-value associated with a completion to be

py =
#{i : αi ≥ αn}

n
.

In words: the p-value is the proportion of αs which are at least

as large as the last α and has the value between 1/n and 1.

Example: the last α, αn, is the largest.

• It is small (close to its lower bound 1/n for a large n), then

the example is very nonconforming (an outlier).

If p-value is large (close to its upper bound 1), then the

example is very conforming.
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Conformal prediction (2)

Theorem. Every function t(z1, ..., zn) = #{i:αi≥αn}
n obtained by

a computable individual nonconformity measure α will satisfy

equation

P [(z1, ..., zn : t(z1, ..., zn) ≤ r] ≤ r

Proof (Vovk and Gammerman, 1999)
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Two ways to make prediction

The property means that p-values can be used as a principled

approach to obtain calibrated predictions.

There are different ways to package p-values into predictions.

Two forms have been devised for TCP

• predictions with confidence and credibility

• the region predictor
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Predicting with confidence and credibility

• compute the p-values p0 and p1 for both completions (with

the tentative labels 0 and 1 for the new image,

respectively);

• if p0 is smaller [intuitively, 0 is a stranger label than 1],

predict 1 with confidence 1− p0 and credibility p1;

• if p1 is smaller [intuitively, 1 is a stranger label than 0],

predict 0 with confidence 1− p1 and credibility p0.

In general, we output arg maxy p(y) as the prediction and say

that 1− p2 (where p2 is the 2nd largest p-value) is the

confidence and that the largest p-value p1 is the credibility.
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Confidence and credibility

The ideal situation (“clean and easy” data set): max(p0, p1)

close to 1; min(p0, p1) close to 0. In this case: both confidence

and credibility close to 1.

Intuitive meaning of confidence & credibility. Noisy/small

(confidence informative) and clean/large (credibility

informative) data sets.

Low credibility implies either the training set is non-random

(biased) or the test object is not representative of the training

set.
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USPS Dataset - Example

Results (in %) obtained using Support Vector Machine (SVM)
0 1 2 3 4 5 6 7 8 9 L P Conf Cred

0.01 0.11 0.01 0.01 0.07 0.01 100 0.01 0.01 0.01 6 6 99.89 100
0.32 0.38 1.07 0.67 1.43 0.67 0.38 0.33 0.73 0.78 6 4 98.93 1.43
0.01 0.27 0.03 0.04 0.18 0.01 0.04 0.01 0.12 100 9 9 99.73 100

If, say, the 1st example were predicted wrongly, this would
mean that a rare event (of probability less than 1%) had
occurred; therefore, we expect the prediction to be correct.

The credibility of the 2nd example is low ( less than 5%).
From the confidence we can conclude that the labels other
than 4 are excluded at level of 5%, but the label 4 itself is also
excluded at the level 5%. This shows that the prediction
algorithm was unable to extract from the training set enough
information to allow us to confidently classify the example.
Unsurprisingly, the prediction for the 2nd example is wrong.

70



Exercise

The training set is

X: at (1,0) and (0,1)

O: at (−1,0), (0,0) and (1,−1)

Find the prediction, confidence and credibility using the Nearest

Neighbour algorithm with Euclidean distance measure if the

new example is:

• (0.5,−2)
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Region prediction

Given a nonconformity measure, the conformal algorithm
produces a prediction region Γε for every probability of error ε
(significance level).

R = Γε = {y ∈ Y : p(y) > ε}

The regions for different ε are nested: when ε1 > ε2, so that
(1− ε1) is a lower level of confidence than 1− ε2 , we have
Γε1 ⊆ Γε2.

If Γε contains only a single label (the ideal outcome in the case
of classification), we may ask how small ε can be made before
we must enlarge Γε by adding a second label; the corresponding
value of (1− ε) is the confidence level we assert in the
predicted label.
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Region prediction

• Empty prediction: |R|=0.

• Certain prediction: |R|=1.

• Uncertain prediction: |R| > 1.

Performance:

• Validity the number of errors made by the system should be
1− δ, if the confidence value is given as δ

• Accuracy the quantity of predictions made correctly.

• Efficiency the size of the region prediction. We want to
have small region size, with certain predictions being the
most efficient predictions.
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Example: region predictions at 95% confidence level for
hand-written digits
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Lemma

• Lemma 1: The sequences of non-conformal scores for data

generated from a source satisfying the exchangeability

assumption is exchangeable.

• Lemma 2: p-values from the conformal predictor on data

generated from a source satisfying the exchangeability

assumption are independent and uniformly distributed on

[0, 1].
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TCP Calibration theorem

Theorem (Vovk 2002). A transductive conformal predictor is

valid in the sense that the probability of error that a correct

label

y /∈ Γε(S,x)

at confidence level 1− ε never exceeds ε, with the error at

successive prediction trials not independent (conservative), and

the error frequency is close to ε in the long run.
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Comparison

Key differences between TCP and traditional learning

algorithms

Performance Traditional Conformal predictor
measure learning algorithm (region prediction)

Accuracy Maximised Strictly controlled
by confidence level

Efficiency Fixed Maximized
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Example: region prediction

Given: py=1 = 0.3, py=2 = 0.2, py=3 = 0.7, py=4 = 0.9,

py=5 = 0.4, py=6 = 0.6, py=7 = 0.7, py=8 = 0.8, py=9 = 0.5,

py=0 = 0.8.

Γ0.85 = {4} (confidence level 15%)

Γ0.75 = {4,8,0} (confidence level 25%)

Γ0.65 = {4,8,0,3,7} (confidence level 35%)

Γ0.05 = {0,1,2,3,4,5,6,7,8,9} (confidence level 95%)
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Exercise 1 – region predictions

Given the following p-values (in %)

0 1 2 3 4 5 6 7 8 9 Label
0.01 0.11 0.01 0.01 0.07 0.01 100 0.01 0.01 0.01 6
0.32 0.38 1.07 0.67 1.43 0.67 0.38 0.33 0.73 0.78 6
0.01 0.27 0.03 0.04 0.18 0.01 0.04 0.01 0.12 100 9
0.11 0.23 5.03 0.04 0.18 0.01 0.04 0.01 23.12 0.01 8

What are region predictions at the following confidence level

• 99%

• 95%

• 80%
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Exercise 2 – region prediction

The training set is

X: at (1,0) and (0,1)

O: at (−1,0), (0,0) and (1,−1)

Find the region prediction at confidence level 95% and 80%

respectively, using the Nearest Neighbour algorithm with

Euclidean distance measure if the new example is:

• (0.5,−2)
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Section: On-line TCP

On-line learning protocol
Err0 := 0

Unc0 := 0

FOR n = 1,2, . . . :

Nature outputs xn ∈ X
Learner outputs Γn ⊆ Y
Nature outputs yn ∈ Y

errn :=

{
1 if yn /∈ Γn

0 otherwise

Errn := Errn−1 + errn

uncn :=

{
1 if |Γn| > 1
0 otherwise

Uncn := Uncn−1 + uncn

END FOR
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On-line TCP at confidence level 99%
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The solid line shows the cumulative number of errors, dotted the cumulative number of

uncertain predictions.
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On-line TCP at confidence level is 95%
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Evaluation

Since all on-line conformal predictors are valid, the main

criterion for comparing different predictors is their efficiency,

i.e., the size of output prediction region.

Clearly a smaller prediction region is more informative.

Efficiency is typically measured as the average number of labels

in the prediction sets.
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Section: Inductive Conformal Prediction (ICP)

Large data set: TCPs can be computationally inefficient.

ICP: sacrifices (in typical cases) predictive accuracy for

computational efficiency and provide a decision rule.

The idea of the Inductive Conformal Prediction (ICP):

• Divide the training set into the proper training set and the

calibration set.

• Construct a decision rule from the proper training set.
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Inductive Conformal Prediction (ICP)

“individual nonconformity measure” 7→ (“inductive algorithm”,

“discrepancy measure”)

Ŷ: prediction space (often Ŷ = Y)

Inductive algorithm:

D : Hz1, ..., znI 7→ (DHz1,...,znI : X→ Ŷ)

(DHz1,...,znI: decision rule).

Discrepancy measure ∆ : Y× Ŷ→ R



Inductive conformal prediction

• For every tentative label of the test example do the

following:

– For every example i in the calibration set and for the

test example with its tentative label compute αi, the

distance from the decision rule to example i

(i = 1,2, . . . ,m; m− 1 is the size of the calibration set;

the test example has number m).

– Compute the p-value #{i=1,2,...,m:αi≥αm}
m , where, again,

m− 1 is the size of the calibration set and αm is the test

example’s α.

• Compute the predicted label, confidence and credibility or

region prediction as before.
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An Example

Inductive algorithm: SVM (D(x) : ŷ = w · x + b)

Discrepancy measure ∆ = −y(w · x + b)

• This value is higher for labels which deviate greatly from

the decision made by SVM

We define αi = ∆(yi, D(xi)).
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ICP: Flow chart

Decision rule Calibration data

Discrepancy measure ∆

Inductive Confor-
mal Predictor (ICP)

Test data Calibrated
region predictions
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ICP: Nonconformity measure

D and ∆ define an individual nonconformity measure:

αi = ∆(yi, DH(x1,y1),...,(xn,yn)I(xi))

Alternatively

αi = ∆(yi, DH(x1,y1),...,(xi−1,yi−1),(xi+1,yi+1),...,(xn,yn)I(xi))

Inductive algorithms: “proper inductive algorithms” vs
“transductive algorithms” (Vapnik, 1995).

• Proper inductive algorithms: DHz1,...,znI can be “computed”;
after that, computing DHz1,...,znI(x) for a new x is fast.

• Transductive algorithms: little can be done before seeing x
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ICP algorithm

Fix a finite or infinite sequence m1 < m2 < ... (called update
trials); if finite, set mi :=∞ for i > length. ICP based on D, ∆
and m1,m2, ...:

• if n ≤ m1, Γ(x1, y1, ...,xn−1, yn−1,xn,1− ε) is found using
TCP;

• otherwise, find the k such that mk < n ≤ mk+1 and set

Γ(x1, y1, ...,xn−1, yn−1,xn,1− ε) := {y :
#{j = mk + 1, ..., n : αj ≥ αn}

n−mk

> ε}

where the αs are defined by

αj := ∆(yj, DH(x1,y1),...,(xmk,ymk)I(xj)), j = mk + 1, ..., n− 1

αn := ∆(y,DH(x1,y1),...,(xmk,ymk)I(xn))
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ICP at confidence level 99%
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Before (and including) example 4649: TCP; after that the calibration set consists of

examples 4649, . . . , n− 1.
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ICP at confidence level 95%
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Piet Mondrian
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Section: Mondrian conformal prediction

Our starting point is a natural devision of examples into several

categories: different categories can correspond to different

labels.

Conformal predictors do not guarantee validity within

categories (classes).

Mondrian conformal predictors (MCPs) represent a wide class

of conformal predictors which is the generalization of TCP and

ICP with a new property - validity within categories.
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Mondrian conformal predictor

Validity within categories (or conditional validity) is especially

relevant in the situation of asymmetric classification, where

errors for different categories of examples have different

consequences.

In this case, we cannot allow low error rates for some categories

to compensate excessive error rates for other categories.
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Mondrian conformal predictor

We are given a division of the Cartesian product N× Z into

categories: a measurable function

κ : N× Z → K

maps each pair (n, z) to its category, where z is an example and

n will be the ordinal number of this example in the data

sequence z1, z2, ....

Given a Mondrian taxonomy κ, we can define Mondrian

nonconformity measure

An : Kn−1 × (Z(∗))K ×K × Z → R
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Mondrian taxonomies

left: Conformal prediction taxonomy

right: Label-conditional taxonomy

{1, 2, . . . }

Z

{1, 2, . . . }
X× {y(1)}

X× {y(2)}

X× {y(3)}
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TCP on USPS data - “5” digit images at 95% confidence level
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Mondrian conformal predictor

pn =
|{i : κi = κn&αi ≥ αn}|

|{i : κi = κn}|

The randomized MCP:

pn =
|{i : κi = κn&αi > αn}|+ τ |{i : κi = κn&αi = αn}|

|{i : κi = κn}|

where i ranges over {1, ..., n}, κi = κ(i, zi) and zi = (xi, yi).
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USPS dataset

Percentage of errors at the 95% confidence level and the

corresponding p-value
class size errors error rate (%) p-value

0 1553 13 0.84 3.35× 10−20

1 1269 12 0.95 1.02× 10−15

2 929 52 5.60 0.22
3 824 69 8.37 2.87× 10−5

4 852 90 10.56 4.29× 10−11

5 716 84 11.73 8.68× 10−13

6 834 23 2.76 9.24× 10−4

7 792 36 4.55 0.31
8 708 67 9.46 6.80× 10−7

9 821 31 3.78 0.06
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MCP on USPS data - “5” digit images at 95% confidence level
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MCP gives 5.31% of errors.
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Section: Applications

Biological/Medical Data

• Cancer prediction (e.g. childhood acute leukaemia, ovarian
cancer, breast cancer)

• Chronic gastritis diagnosis

• Abdominal pain diagnosis

(demo http://turing.cs.rhul.ac.uk/ ∼leo/)

• EEG hypoxia recognition

• Cardiac decision support

• Plant promoter prediction

• Depression MRI diagnosis
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Childhood acute leukaemia (1)

Affymetrix U133A with 22,283 gene probes

• SVM is used as the linear classifier without kernels.

• The NC strangeness measure is implemented with the
Euclidean distance.

• Feature selection is applied with CP using the FDR filter
with number of features per class label, t = 100.

• The Barts 120 database (94 Acute Lymphoblastic
Leukaemia and 26 Acute Myeloid Leukaemia) is used,
classifying subtypes ALL or AML. This forms a binary
classification problem.

• 10CV learning environment.
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Childhood acute leukaemia (2)

90% 95% 97.5%
Method Acc. Eff. Acc. Eff. Acc. Eff.
CP-NC 0.942 0.992 0.967 0.950 0.992 0.900
CP-SVM 0.958 0.950 0.958 0.883 0.983 0.792

Acc. is test accuracy.

Eff. is efficiency: ratio of certain predictions.
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Childhood acute leukaemia (3)

Off-line CP-NC with confidence levels 85–100%
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Depression MRI diagnosis

• Predicting clinical response of patient with depression who

receive anti-depression medication.

• Feature selection using t-test criterion

• SVM conformal prediction
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Applications – Image Data

• Head pose estimation

• Open-set face recognition

• Image Classification Problem in the TJ-II Thomson

Scattering Charged Coupled Device (TS CCD) Camera
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Applications – Time Series

Network Traffic Demand Prediction

• Traffic flow volume prediction for the next time period given

a set of previous traffic demand observation in a network.

• Extended to time series data

• Assume no long-term dependence between observations

• Use K-NN for non-conformal scores

• Mean value of the k neighbours’ label/value as the

predicted label/value.
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Conformal prediction framework: extensions and adaptations

• Active learning

• Model selection

• Feature selection

• Anomaly detection

• Change detection

• Quality assessment

• etc ...
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Conformal prediction in a nutshell

• Given an error probability ε, together with a method that

makes a prediction Y of a label y, it produces a set of

labels, typically containing y with probability 1− ε.

• (original) CP works in an online setting in which the labels

are predicted successively, each one being revealed before

the next is predicted. If successive examples are sampled

independently from the same distribution, then the

successive predictions will be right 1− ε of the time, even

though they are based on an accumulating data sequence

rather than on an independent data set.
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Summary

Main advantages of the conformal prediction approach to

prediction with confidence:

• New kind of guarantees.

• As compared to the standard theory of machine learning,

TCP error bounds are practically useful.

• As compared to statistics and the theory of Bayesian

learning, we do not assume anything beyond iid.

• There are many interesting real applications of CP.
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