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About Twitter

John Green ©john N
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» microblog service
» users can post short messages,

» and read posts of other users they follow
» other aspects:
» hashtag: topic label (like #TDF2015, #July4, #Google)
» mention another user
> retweet a tweet
» geographical information



Recommending hashtags online

The task:
» recommend new hashtags to users

» knowing the time and place of their tweets
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» implicit recommendation

> the location is not unique neither to the user, nor to the
hashtags



Our dataset

» tweets from 2012

» through Twitter API

» filter: should contain geo info

> 1,266,004,930 tweets, 173,493,860 containing hashtags

Cleaning the data

> V (user, hashtag) pair only the first occurrence
» skip the first 3 weeks
» 3 months until a break in the dataset

» 2,993,183 (user, hashtag) pairs from 49 countries
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Geographical hierarchy of regions

» idea: use a geographical partition with variable coarseness
» tree of regions from gadm.org

214,230 regions, among which 190,315 are leaves

17,000 leaves have tweets from the cleaned data

5 layers, +1 for continents
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Model 1

Popularity by time and location

v

count the hashtags in the nodes of the GADM tree,
in the last time interval

v

» score: sum on the path from the root

Pu,h,Lt)= > log(pop(',h,1))
I’ ePath(1)

» or: learn weights for the nodes:

Z wy - log(pop(l', h,t))
I'cPath(l)



Model 2

Using hashtag recency

» store the last appearance of the hashtags in the nodes.

?(u>h7 l? t) = Z wy f(t - tlast(llah))

I'€Path(l)

for time decay functionf(t) =1 — (1 + %)(1_@
» we learn the w; weights with SGD



Baseline models

Online matrix factorization

TA"(M, h7 la t) - Pth
» optimize for MSE using SGD

Nearest neighbors

r(u,h,lt) = Z JL_H) where

ai,ry?’
(' 1l #)ENg(1,t,h)

» fis a time decay function

» Ni(l,t,h) is the set of k nearest tweets to [ that uses hashtag
h, until time ¢



Popularity-based models
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Recency-based models

0.4

0.35

=
o

=
o

0.1

average cumlative DCG@100

o

—4@— countries
—%— countries without recency

E —h— tree 1
—>— tree with learned node weights
1 1 1 1 1

2 4 6 § 10 12 14 16 18 20
time (days)



Best performances
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Combination
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