1. Bioinformatics and Computational tools for
high-throughput analysis of biological data

1. Bioinformatics and Big problems in Biology

2. Next Generation Sequencing, Genome
assembling and bacterial gene 1dentification

3. HMM ecukaryotic gene finding, fast sequence
reads alignment, big data analysis

Victor Solovyev

The lecture uses personal as well as publicly available WEB
and publications materials
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Computational Genomic group
Human genome Sequencing era




Joint Genome Institute, Berkeley National
Lab. California

Genome annotation group



Royall Holloway, University of London

- ’ 1l

ﬂ\.\
-~
g
= W
-



iy

=
\.§

.:§
i
..§
.:E
=]
=

7
7

=

- _:ﬂj 5 a [l
LIl

I‘wﬁﬂﬂ“h%“”ﬂ! '

KAUST (Saudi Arabia)



Bioinformatics - The application of computer science
and mathematics to solve biological problems

Biologists
collect molecular data:

DNA & Protein sequences,
gene expreasion, etc.

Bioinformaticians

Study biological questions
by analyzing molecular
data

Computer scientists
(+Mathematicians, Statisticians, etc.)
Develop tools, softwares, algorithms
to store and analyze the data.



- Life begins with the cell

uclear membrane
- Plasma

membrane

Golgi vesicles
Mitochondrion
Peroxisome

Lysosome

Rough
endoplasmic
reticulum

Secretory
vesicle

* A cell 1s a smallest structural unit of an organism
that is capable of independent functioning

e All cells have some common features



Cell Information and Machinery

* A cell stores all information to replicate itself
— Human genome 1s around 3 billion base pairs long
— Almost every cell in human body contains same set of genes
— But not all genes are used or expressed by those cells

* Machinery:
— Collect and manufacture components

— Carry out replication

— Kick-start its new offspring




All Iife depends on 3 critical molecules

* DNAs

— Hold information on how cell works
 RNAS

— Act to transfer short pieces of information to
different parts of cell

— Provide templates to synthesize into protein

 Proteins

— Form enzymes that send signals to other cells and
regulate gene activity

— Form body’s major components (e.g. hair, skin, etc.)



Chromosomes and genes

gcnomc,
cell

(hromosonu g
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Genes contain
instructions
for making
proteins

{it‘% . proteins '.'- )

‘)..

;:i., g

~ - e
Proteins act alone Y
or in complexes 1o
perform many cellular

functions

From Genes to Proteins

DNA in the human
genome is arranged into
24 distinct
chromosomes

Each chromosome
contains many genes,
the basic physical and
functional units of
heredity. Genes are
specific sequences of
bases that encode
instructions on how to
make proteins.



Base Pairing in the DNA Double Helix
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The Central Dogma of Biology

Genetic information in genes flows into proteins: DNA — RNA — protein

transcription

translation

|

Protein

CCTGAGCCAACTATTGATGAA

CCUGAGCCAACUAUU GAA

PEPTI E

It was first stated by Francis Crick in 1958 and re-stated in a Nature paper

published 1n 1970



Genome s1zes

Species Chromosomes Genes
Human (Homo sapiens) 46 (23 pairs) 28-35,000
Mouse (Mus musculus) 40 22.5-30,000
Pufferfish (Fugu rubripes) 44 ~31,000
Malaria Mosquito
(Anopheles gambiae) b K00
Sea Squirt
(Ciona intestinalis) = i
Fruit Fly
(Drosophila melanogaster) 8 1000
Roundworm (C. elegans) 12 19,000
Bacterium (£, coli) " ~5,000

*Bacterial chromosomes are chromonemes,

not true chromosomes .

Base Pairs

~3.1 billion

~2.7 billion
~365 million

~289 million

~ 160 million

~137 million

~97 million
~4.1 million



Genome si1ze

‘ Human 3 000 000 000 base pairs of genome DNA

Arabidopsis
. Rice
o Potato Wheat
® Sugarcane

‘ Cotton

‘ Barley
Diameter proportional to haploid genome size



Nitrogenous bases commonly
found in RNA and DNA

PURINES PYRIMIDINES RNA (AU GC)

I ||
H = HEH, H
% v
H
DNA (AT GC)
| Ve AT (A-U) G=C
: 3 5 Complementary
NH. N 0” 6 pairs

Cytosine

Adenm

Guanine



Hierarchical organization
of RNA molecules

Primary structure:

5" to 3’ list of covalently linked
nucleotides, named by the attached base

Commonly represented by a string S over
the alphabet 2={A,C,G,U}



Example of RNA Primary Structure

« InRNA, A, C, G, and U are linked by 3’ -5" ester bonds
between ribose and phosphate

RNA (ribonucleic acid)
NH,
?_ Free 5' /N
-
°=T_°“CH2 - N/) Adenine (A)
m i
O OH N
L . W (1 -
e N~ o Cytosine (C)
o— :
WNE_ o
| H
3'-5' Phosphodiester O OH &
bond | ‘
°='|’—°—°“z NH, Guanine (G)
2 @

/Ko Uracil (U)

OH OH
Free 3'



RNA synthesis and fold

 RNA immediately starts to fold when 1t 1s

S ntheSized HE1  HE2
“N6
|
N 1’*"C6“ 5~ N\:
) I “ts-Hs
l S L
Wobble (A)

Base Pairing

Guanine

©) ()

Cytosine



RNA secondary structures

Single stranded bases within a stem are called a bulge of bulge loop if
the single stranded bases are on only one side of the stem.

If single stranded bases interrupt both sides of a stem, they are called an
internal (interior) loop.

Internal A C
loop p /’7\\ A




Transfer RNA
tRNA has a tertiary structure that 1s L-shaped

- one end attaches to the amino acid and the other binds to the mRNA
by a 3-base complimentary sequence

Acceptor stem 3'

end
3 3'end :
h. 2K P71

~-0OH Forms ester bond
to amino acid

Acceptor stem

-----
-----

Complementary
bases form double
stranded section

(a) =+ Anticodon loop (b) Anticodon
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Genetic code

C

/

9,

Growing
Polypeptide
Chain of Amino Acids

Translation

9

Ribosome

/ N\
U C A anticodon AUG
A G U codon UAC mRNA 3
2nd base in codon
Phe | Ser Tyr Cys U
LJ | phe | Ser Tyr Cys C W

S Leu | Ser | sTop|sTOP | A £
b Leu | Ser | STOP| Trp G 4
o Leu | Pro His Arg U o
£ C Leu | Pro His Arg o 5
a Leu | Pro Gin Arg A 0
p: Leu | Pro Gln Arg G -4
. e Thr Asn Ser U g
- A lle Thr Asn Ser &

lle Thr Lys Arg A

Met | Thr Lys Arg G

Val Ala | Asp Gly U

G Val Ala Asp Gly C
Val Ala Glu Gly A
Val Ala Glu Gly G

@ Amino acid

mMRNA



Amino acids - The protein building blocks

A.  Amino acids with electrically charged side chains
Positive

- - N
Arginine Histidine Lysine
(Arg) (His) (Lys)
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B.  Amino acids with polar but uncharged side chains

Serine Threonine
(Ser) (Thr)
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Protein Folding

The structure that a
protein adopts is vital to
its chemistry

Its structure determines
which of its amino acids
are exposed to carry out
the protein’s function

Its structure also
determines what
substrates it can react
with

Tertiary protein structure
occurs when cartain attractio

Quaternary protein structure
is a protein consisting of more th

Primary protein structure
is sequence of a chain of amino acids
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Alpha helix
Secondary protein structure
occurs when the saquence of amino ac!
are linkaed by hydro gen bonds

oc tions are pr
batween alpha helicas and pleatad sheats.
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How do we commonly represent
DNA sequences?

* Both strands depicted with bases only
e 5’ ATCTTTGGCTCAGTCTAGTGCACCCAGTT 3’
e« 3’ TAGAAACCGAGTCAGATCACGAGGGTCAA 5’

o The coding strand, 5’ to 3°. The coding strand is the

strand whose sequence is the same as the corresponding
mRNA sequence

DNA ATCTTTGGCTCAGTCTAGTGCACCCAGTT

mRNA AUCUUUGGCUCAGUCUAGUGCACCCAGUU
e Protein: F G S V



Molecular Bioinformatics

Molecular Bioinformatics involves the use
of computational tools to discover new
information in complex data sets (from the
one-dimensional information of DNA through
the two-dimensional information of RNA and
the three-dimensional information of proteins,
to the four-dimensional information of
evolving living systems).

29




Examples of some important
Problems from the Biological side

Protein folding

Find Homologies (Similarities)

Finding genes in new genomes

Phylogenetic Trees

Analysis of Gene Expression data

Prediction of special (regulatory) sites in DNA
Determine Pathways/gene interaction networks
Databases/Data mining

Stochastic Modelling / Simulation of biosystems



Find genes 1n DNA sequence

GAATTCTAATCTCCCTCTCAACCCTACAGTCACCCATTTGGTATATTAAAGATGTGTTGTCTACTGTCTAGTATCCCTCA
AGTAGTGTCAGGAATTAGTCATTTAAATAGTCTGCAAGCCAGGAGTGGTGGCTCATGTCTGTAATTCCAGCACTGGAGAG
GTAGAAGTGGGAGGACTGCTTGAGCTCAAGAGTTTGATATTATCCTGGACAACATAGCAAGACCTCGTCTCTACTTAAAA
AAAAAAAAATTAGCCAGGCATGTGATGTACACCTGTAGTCCCAGCTACTCAGGAGGCCGAAATGGGAGGATCCCTTGAGC
TCAGGAGGTCAAGGCTGCAGTGAGACATGATCTTGCCACTGCACTCCAGCCTGGACAGCAGAGTGAAACCTTGCCTCACG
AAACAGAATACAAAAACAAACAAACAAAAAACTGCTCCGCAATGCGCTTCCTTGATGCTCTACCACATAGGTCTGGGTAC
TTTGTACACATTATCTCATTGCTGTTCGTAATTGTTAGATTAATTTTGTAATATTGATATTATTCCTAGAAAGCTGAGGC
CTCAAGATGATAACTTTTATTTTCTGGACTTGTAATAGCTTTCTCTTGTATTCACCATGTTGTAACTTTCTTAGAGTAGT
AACAATATAAAGTTATTGTGAGTTTTTGCAAACACATGCAAACACAACGACCCATATAGACATTGATGTGAAATTGTCTAT
TGTCAATTTATGGGAAAACAAGTATGTACTTTTTCTACTAAGCCATTGAAACAGGAATAACAGAACAAGATTGAAAGAAT
ACATTTTCCGAAATTACTTGAGTATTATACAAAGACAAGCACGTGGACCTGGGAGGAGGGTTATTGTCCATGACTGGTGT
GTGGAGACAAATGCAGGTTTATAATAGATGGGATGGCATCTAGCGCAATGACTTTGCCATCACTTTTAGAGAGCTCTTGG
GGACCCCAGTACACAAGAGGGGACGCAGGGTATATGTAGACATCTCATTCTTTTTCTTAGTGTGAGAATAAGAATAGCCA
TGACCTGAGTTTATAGACAATGAGCCCTTTTCTCTCTCCCACTCAGCAGCTATGAGATGGCTTGCCCTGCCTCTCTACTA
GGCTGACTCACTCCAAGGCCCAGCAATGGGCAGGGCTCTGTCAGGGCTTTGATAGCACTATCTGCAGAGCCAGGGCCGAG
AAGGGGTGGACTCCAGAGACTCTCCCTCCCATTCCCGAGCAGGGTTTGCTTATTTATGCATTTAAATGATATATTTATTT
TAAAAGAAATAACAGGAGACTGCCCAGCCCTGGCTGTGACATGGAAACTATGTAGAATATTTTGGGTTCCATTTTTTTTT
CCTTCTTTCAGTTAGAGGAAAAGGGGCTCACTGCACATACACTAGACAGAAAGTCAGGAGCTTTGAATCCAAGCCTGATC

Gene Structure - Prokaryotes

5% - Gene - 3
ATGCTACCGOATO. ..., ;

Regulatory  Promoter Start codon Stop codon
Region




Gene Expression

How do genes in one cell work together over time?

What is the difference of gene activity between a young and old
cell or between healthy and sick cell?

What set of genes is activated in cancer cells?



RIIA fragments with fluorescent tags from sample to be tested

RIIA fragmenat hybridizes with DIIA on GenaeChip



GeneChip =

Expression Analysis

GeneChip® Expression Analysis Process

C \> ¥ Y £ Biotinylated RNA

—— _\ / /. from experiment
v
GeneChip expression Each probe cell contains a
millions of copies of a specific RS

analysis probe array

oligonucleotide probe RENP S
~ ~

~ ; N -— @
Q2 —

S LS Streptavidin-

s A : | phycoerythrin
Image of hybridized probe array conjugate



Information Derivable from Chip Data

Microarray data is becoming a key source of data

for computational inference of biological networks

— who interact with who
— who regulate who

How does this

work?

Pentose Phosphate
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Genetic Regulatory Network

the set of mutually activating and repressing genes
and gene products and their interactions

Cytoplasm
Transcription _cissites

Fact .
Intracellular S0 Genetic

Signaling RQgU'ﬂtOI’“'_
Network

Receptors Translation + Nucleus

processing
lon

Channels

Extracellular




Microarray analysis model using gene expression profiles
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mRNA Expression Data Format

From cDNA microarray E X P matrix
Intensity In.tensity Ratio
(treated) | (wild type) 0.78 | ...... 0.50
Gene A 0.22 0.24 0.917 0.73 | ...... 0.09
Gene B 0.67 1.21 0.598 0.99 |...... 0.56
Gene C 1.13 0.43 2.630 0.60 |...... 0.41
Gene D 2.45 2.44 1.01 0.44 ... 0.86
0.07 |...... 0.05
0 < ratio < Inf.
0.28 |...... 0.89
-Inf. < log,(ratio) < + Inf. 091 |...... 0.00
where
log,(ratio) > 0: increase ~  p— "~ 1"
log,(ratio) < 0: decrease 0.28 |...... 0.89




Problem Definition

Gene 4 Gene 2 Gene 3
[
Gene 1
Gene 5
Gene 6
Microarray data Genetic regulation network

Difficulty in Reconstructing Genetic Regulatory Network
1. mRNA expression is only a partial picture

2. the number of sample is much smaller than the number of genes

3. high noise



Clustering

v Grouping genes with similar patterns of expression
Common role gene clustered together
Uncharacterized gene function guessed

| Tf—'ﬁ—?ﬁ
-~ D e = 11 =

Similarity measure : standard correlation coefficient, ..
Method : Hierarchical clustering, K-means, SOM ..

Can’t reveal the inner interaction structure !



Molecular Networks Constructed from
High-throughput assays

” w.

Correlation or co-expression network: =™ 7
A graphical representation that averages A
over observed expression data. Nodes are
mRNA molecules, edges represent
correlations between expression levels of
connected nodes.

Bayesian networks:

A directed, graphical representation of the
probabilities of one observation given another.
Nodes represent mRNA molecules; edges
represent the probability of a particular
expression value given the expression values
of the parent nodes.




Bayesian Network

Probabilistic framework for inference of interactions in the
presence of noise

v’ G: a directed-acyclic graph structure

v ©: a set of parameters for conditional distribution of each variable

P(A,B,C, D, E)=1P(X | Parent(X) )
= P(A) P(B) P(C|A,B) P(D|B) P(E|D)



Bayesian Network - Structure Learning

The two key components of a structure learning algorithm are
a) searching for/generating ‘“‘good” structures and
b) scoring these structures

v' Heuristic Search Approaches
greedy-hill climbing, simulated annealing etc

s

R B B B
@@\{

® 5




Bayesian Network — Structure Learning

Get the score for each network with respect to the training data

pfior Iil¢<elihood
S(G:D) = log p(D, S") = log p(S™) + log p(D|S™)

Likelihood log p(D|S") = ¥ log p(x; | pa(x;), SP)

Model with the highest log likelihood is a model that is the best
predictor of the data D



Summary

Bayesian network is suitable for genetic network reconstruction
v’ Can deal with stochastic nature

v" Ideal for sparse domain (Useful for locally interacting components)

v" Can handle noisy data

v Missing data

v'Inference reasoning

More research needed
v" Incorporation of more biological information
v To model feedback process

=> Dynamic Bayesian networks



References on networks building

Differential Expression

Inferring Gene Regulator Networks from Time-Ordered Gene Expression Data Using
Differential Equation

by Michiel de Hoon et al. 2002.

Stability of Genetic Regulatory Network with Time Delay

by Luonan chen et al. 2002.

Modeling Gene Expression with Differential Equations

by Ting Chen et al. 1999.

Bayesian Network

Estimating gene networks from gene expression data by combining Bayesian
network model with promoter element detection

by Yoshinori et al. 2003.

Combining Location and Expression data for Principled Discovery of
Genetic Regulatory Network Models

by Hartemink et al. 2002.

Inferrring Subnetworks from Perturbed Expression Profiles

by Pe’er et al. 2001.

Using Bayesian Networks to Analyze Expression Data

by Friedman et al. 2000.



Mutation network for S. Cerevisiae
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Mutation network filtered for the genes marked in red (mating)
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Topological link prediction

Observed network Real/Future topology



A Local Community Approach to Link Prediction

People You May Know See All

— — *®
3 mutual friends
251 Add as friend

CN(z,y) = [[(z) NT(y)|




Shift from nodes to links: local community links
and CAR

Local community

Local community links (LCL)

CAR(z,y) =CN(z,y)-LCL=3-3=9

 Cannistraci, C.V., Alanis-Lobato, G. & Ravasi, T. (2013) From link-prediction in brain connectomes
and protein interactomes to the local-community-paradigm in complex networks. Scientific Reports 3,
1613. http://dx.doi. org/10.1038/srep01613. ©The Author 2013. Published by Nature Publishing

Group.



CAR variants of classical link predictors

s~ L@NTE)| _ CN(zy) _ _CAR(z,y)
0@ = [N UTw)| ~ T UGl > CICE@Y) = Ty uTw)]

Internal links, i, = i, = CN(z,y)

External links: €z, €y

PA(z,y) = |I'(z)| - T'(y)]
= (iz + €z)(iy + €y)

l

CPA(z,y) = (CAR(z,y) + ez)(CAR(z,y) + ey)



Prediction Power (dB)
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10% of links removed. Mean prediction precision considered relative
to the mean random predictor performance



Network 2 PPIN Macaque cortical connectome San Franosco road network

LCP-corr(G) = Pearson(C N,V LCL)



LCP and non-LCP networks
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Protein Folding Tertiary Network
(Hydrogen bonds and Ice
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Information Derivable from Chip Data

e The problem is the internal structure of a cell is very complex

Deciphering internal structure of a cell networks
through computational prediction is extremely
challenging and exciting problem!

High-throughput Gl detection

reliability (Costanzo et al., 2010)
0.7
70% L=
0.525 - —
035 1 40% —— —
0.175 +— —_— - N 7 TE
\n‘ sssss e o . = B e el o - i,
0 ' ' \ .
Spurious Missing T




Folding of chymotrypsin protein




Protein Folding Problem

A protein folds into a unique 3D structure under the
physiological condition.

Can we predict structure (fold) from sequence?

Lysozyme sequence:

KVFGRCELAA
RGYSLGNWVC
QATNRNTDGS
RWWCNDGRTP
SALLSSDITA
DGNGMNAWVA

QAWIRGCRL

AMKRHGLDNY
AAKFESNENT
TDYGILQINS
GSRNLCNIPC
SVNCAKKIVS
WRNRCKGTDV




Many proteins with dissimilar sequences
fold into similar structures

Estimated number of folds: ~10000

Protein Folds: sequential and spatial arrangement of secondary structures




Examples of different Folds

Refers to the spatial arrangement of 1ts secondary
structural elements (a-helices and (3-strands)




*Ab initio prediction

(no similarity with any sequence of known structure)

Given only the sequence, predict the 3D structure from “first
principles”, based on energetic or statistical principles.

*Sequence-structure threading = Fold recognition

(sequences with <= 30% sequence identity to sequences of known
structure)

Given the sequence, and a set of folds observed in PDB, see if any
of the sequences could adopt one of the known folds.

Homology Modelling

Given a sequence with homology (> 30%) to a known structure in
PDB, use known structure as template to create a 3D model

from the sequence.



Approaches to Ab-initio Prediction

Molecular Mechanics
+ folded form is the minimal energy

conformation of the protein

Molecular Dynamics
« Simulates the forces that governs the protein

within water

Problems:

Thousands of atoms
Huge number of time steps to reach folded protein
There is no correct energy function

Optimization in multi-minima space (most methods can reach
only local minimum)

=» Intractable problem



Forces Involved in Molecular Interactions

— Bond stretch

— Bond angle bending

— Torsion (bond rotation)

— Hydrogen bonding

— van der Waals interactions

— Electrostatic interactions

— Empirical solvation free energy
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Electrostatic interactions: Solvent dielectric model?

* Problem: Inhomogeneous permittivity

Depends on local structure and
interactions with water



Folding Free Energy Landscape

Molecular

Dynamics Simulations | -
100-200 structures SN
to sample ‘%




Ab initio protein folding simulation
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Physical time for simulation 10— seconds
Typical time-step size 10-1° seconds
Number of MD time steps 10™
Atoms in a typical protein and water simulation 32’000
Approximate number of interactions in force calculation 10°
Machine instructions per force calculation 1000
Total number of machine instructions 1023
BlueGene capacity (floating point operations per second) (101%)

=> Blue Gene will need 3 years to simulate 100 psec.



Why Do We Need Homology Modelling?

= Ab Initio protein folding (“random” sampling):

— 100 aa, 10 conf./residue gives approximately 10'""
different overall conformations!

* Random sampling 1s NOT feasible, even 1f conformations

can be sampled at picosecond (10-!% sec) rates.
— Levinthal’s paradOX if a protein were to attain its correctly folded confignration

by sequentially sampling all the possible conformations, it would require a time longer
age of the universe to arrive at its correct native conformation

= Do fold recognition or homology modelling instead.




Comparative Modeling
(homology modeling)

KOFTKCELSONLYDIDGYGRIALPELICTMEFH
TSGYDTQAIVENDESTEYGLEQISNALWCKSS
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Homologous
M

Share
Similar
Sequence
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Use as template
& model
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Comparative modelling of protein structure
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Fold Recognition

Homology modeling refers to the easy case when the
template structure can be identified using BLAST alone.

What to do when BLAST fails to identify a template?

*Use more sophisticated sequence methods
Profile-based BLAST: PSIBLAST
*Hidden Markov Models (HMM)

*Use secondary structure prediction to guide the selection
of a template, or to validate a template

*Use threading programs: sequence-structure alignments

*Use all of these methods! Meta-servers



Fold Recognition: problem definition

A Library of Protein Folds (finite number)

MTYGFRIPLNCERWGHKLSTVILKRP...

Goal: find to what folding template the sequence fits best

l

Find ways to evaluate sequence-structure fit




Essentials of GenTHREADER

Solv. Energy —*

Alignment score —* —* Proteins related

Alignment length — —* Proteins unrelatec

len] (Struct) —» y Output Loyer

len2 (Seq) —»



Structure-Based Drug Design

Structure-based
rational drug design is
still a major method
for drug discovery.

HIV protease inhibitor



The role of Bioinformatics in support of
genomics

Gene prediction in

Sequencing/ new genomes

Sequence assembling

o
==
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Genome Annotation




The role of bioinformatics
supporting genetics
[

1321 agcagcttct aatttgggtg ogtggttgag agogotcage tgtcagecct goctitgagy
1)01 gctgggtece ttttoccatc actgggtcat taagagcaag tgggggcgag gogacagoco
1441 toocogracge tQogttgoag CLgCcacaggt AgoCacgctg Cagtoctige tgoctggogt
1501 tggggcccag ggacogotgt gggtttgooe ttcagatgge cctgecagea gotgeoctgt
1561 g993cctyayy getgagectg gacctggcty agragggcce tocttggcag grggggcagy
1621 ag tgta gg9agy: < 99 geagy cooctgagga gogatgacgyg aatataaget
1681 ggrggtggty 9gogcogecy grgtoggcaa gagtgegctg ACCALCCAQS LGALCCAGAA
1741 ccatittgtg gacgaatacg accccactat agaggtgage ctagegeoge ogtocaggtg
1801 geagetyg ctgogggcga g A cagccaggat agggotggct gcagoocctg
1861 grcooctgea tggtgeotgtyg goecCigtete CLOCttecte tagaggaggy gagtcoctog
1921 tctcagcace cCcaggagagg agggggcatg aggggcatga gaggtaccag ggagaggctyg
1981 gctgtgtgaa ctocococac ggaaggtoct gagggggtec ctgageooctg toctoctgea
2041 ggattcoctac cggaagcagy tggtcattga tggggagacg tgootgttgg acatcctgga

PPAL AMSALAAMALAL A A

R

|ldentification of sequence
functions and functional signals L

Structures

Phylogenetic trees



Bioinformatics in support of Post-
Genomic Research
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Genomes: Comparative

Genomics (homology, evolution)

SNPs

Individual Genome
mutations/variations

—
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Proteomlcs
(proteins in cells)

DNA microarrays
Transcriptome Sequencing

Functional
Genomics
(MRNAS)



Bioinformatics in support of

Systems B

Metabolic
Pathways

Genetic
Networks

lology
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Why 1s Computing and Mathematics
necessary to solve bio-medical problems?

The big change: New technology
allows biologists to perform
experiments much more
efficiently (using complex
machines).

e This provides a growing amount
of information/data from
experiments.

* The data has to be analyzed in a
hopefully efficient way.

The European Bioinformatics Institute
(EBI) in Hinxton, UK,

currently stores 20 petabytes (1 petabyte
is 1015 bytes) of data

and back-ups about genes, proteins and

small molecules.

DATA EXPLOSION

The amount of genetic sequencing data stored
at the European Bioinformatics Institute takes
less than a year to double in size.

200

Sequencers begin
giving flurries of data

Terabases

2004 2006 2008 2010 2012



Tools 2010: 1230 databases

2006: 856 databases and tools
and tools Nucleic Acids
2000: 230 databases Nucleic Acids Research
1996: first annual and tools listed in R*‘S*“ff" - A'
compilation of compilation e *

databases and tools
lists 57 databases and

tools

The annual database issue of Nucleic Acids Research (NAR) has grown exponentially
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The online 2011 NAR Database Collection lists
1330 molecular biology databases
http://www.oxfordjournals.org/nar/database/a/
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Over the coming years, the National Cancer Institute will
sequence a million genomes to understand biological pathways
and the genomic variation. Given that the whole genome of a
tumor and a matching normal tissue sample consumes 1 TB of
uncompressed data (this could be reduced by a factor of 10 1f
compressed); one million genomes will require 1 million TB,
equivalent to 1000 petabyte (PB) or 1 Exabyte (EB)



To Cloud computing

Biomedical research,
driven by continued
increases in data-
generation capability,
has become a data-
intensive science.

a Many different types of data can be systematically scored

Gene expression and |
non-coding RNA

[ Different gene isoforms £ ™
&

| :'
[ Histone modification ~— I l;'”.,' Il.
\{

V[ & ’ Metabolites

| DNA methylation |

|
NN
[ Protein phosphorylation / &5 \\B ’ Protein expression

For example, in the context of next-generation sequencing (NGS), a de novo
assembly analysis step might require vastly more memory (RAM) in a single
machine compared to a BLAST search step, which is much more limited by the

clock speed of the CPU.

Fortunately, in recent years, cloud computing has emerged as a viable
option to quickly and easily acquire computational resources required for

an analysis.



Traditional Virtualisation
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The transition from traditional computing where applications interact with the
hardware via one instance of the Operating System (OS), to virtualised
environments where multiple OS images share the hardware resources (CPU,
RAM, storage and networking), which are allocated and managed by
virtualisation software known as a hypervisor or virtual machine monitor
(VMM). Journal of Biomedical Informatics 46 (2013) 774-781



The earliest service provider to realize a practical cloud computing environment
was Amazon, with its Elastic Cloud Computing (EC2) service introduced in
2005. It supports a variety of Linux and Windows virtual machines, a virtual
storage system, and mechanisms for managing internet protocol (IP) addresses.

EC2 contains a variety of user selectable instance types that range in
computing power and cost

An EBS volume is a storage device that can be attached to a running
instance, similar to a USB thumb drive, and currently ranges in size from 1
GB to 1 TB.

S3 1s an extremely reliable persistent storage system that also makes data
readily available over the Internet.

Pay-per-use model for enabling

convenient, on-demand network ac- "
cess to a shared pool of configurable / ,
computing resources (e.g., net- Generic Worker '
works, servers, storage, applications e
and services) that can be rapidly Windows Azure

<>

Azure Mass Storage

provisioned and released with Researcher
minimal management effort or
service provider interaction




Web interface $3 (bucket) EC2 (instances)

+ Simple storage service
« Free data transfer
to and from EC2

+ Cloud computational cluster
+ Large-scale computing

+ Hosts a Hadoop framework
for processing big data

Your laptop as your
interface into the cloud

Figure 3 | Amazon Web Services. Amazon Web Services provides a simple and intuitive web-based interface into the
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Cloud Computing Models are largely categorised as Infrastructure, Platform or
Software as a Service (IaaS, PaaS, SaaS). Each model differs in the level of
functionality provided to the user by the cloud provider.
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CloudBurst: highly sensitive read mapping with MapReduce

CloudBurst 1s a new parallel read-mapping algorithm
optimized for mapping next-generation sequence data to the
human genome and other reference genomes, for use in a
variety of biological analyses including SNP discovery,
genotyping and personal genomics.

CloudBurst uses the open-source Hadoop implementation of
MapReduce to parallelize execution using multiple compute
nodes.

MapReduce (Dean et al., 2008) 1s the software framework
developed and used by GoogleTM to support parallel
distributed execution of their data intensive applications.
Google uses this framework 1nternally to execute thousands
of MapReduce applications per day, processing petabytes of
data, all on commodity hardware.



map shuffle reduce
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Fig. 1. Schematic overview of MapReduce. The input file(s) are
automatically partitioned into chunks depending on their size and the desired
number of mappers. Each mapper (shown here as m; and m3) executes a
user-defined function on a chunk of the input and emits key—value pairs. The
shuffle phase creates a list of values associated with each key (shown here as
ki1, k> and k). The reducers (shown here as r; and r;) evaluate a user-defined
function for their subset of the keys and associated list of values, to create
the set of output files.

Unlike other parallel computing trameworks, which require application
developers explicitly manage inter-process communication, computation in
MapReduce is divided into two major phases called map and reduce, separated
by an internal shuffle phase of the intermediate results (Fig. 1), and the
framework automatically executes those functions in parallel over any number
of processors.



MapReduce is designed for computations with extremely large datasets, far beyond
what can be stored in RAM. Instead it uses files for storing and transferring
Intermediate results, including the inter-machine communication between map and
reduce functions.

This could become a severe bottleneck, so Google developed the robust distributed
Google File System (GFS) (Ghemawat ef al., 2003) to efficiently support MapReduce.
GFS is designed to provide very high-bandwidth for MapReduce by replicating and
partitioning files across many physical disks. Files in the GFS are automatically
partitioned into large chunks (64MB by default), which are replicated to several
physical disks (three by default) attached to the compute nodes.

MapReduce is also ‘data aware’: it attempts to schedule computation at a compute node
that has the required data instead of moving the data across the network.

Hadoop and the Hadoop Distributed File System (HDFS) are open source versions of
MapReduce and the GFS implemented in Java and sponsored by AmazonTM,
YahooTM, Google, IBMTM and other major vendors.



Like Google’s proprietary MapReduce framework, applications developers need
only write custom map and reduce functions, and the Hadoop framework
automatically executes those functions in parallel. Hadoop and HDF'S are used
to manage production clusters with 10 000 + nodes and petabytes of data,
including computation supporting every Yahoo search result. A Hadoop cluster
of 910 commodity machines recently set a performance record by sorting 1 TB
of data (10 billion 100 bytes records) in 209 s (http://www.hpl.hp.com/hosted/
sortbenchmark/).

Amazon’s Elastic Compute Cloud (EC2) (http://aws.amazon.com) contains tens
of thousands of virtual machines, and supports Hadoop with minimal effort. In
EC2, there are five different classes of virtual machines available providing
different levels of CPU, RAM and disk resources with price ranging from $0.10
to $0.80 per hour per virtual machine.



map shuffle reduce
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Fig. 2. Overview of the CloudBurst algorithm. The map phase emits k-mers
as keys for every k-mer in the reference, and for all non-overlapping k-mers
in the reads. The shuffle phase groups together the k-mers shared between the
reads and the reference. The reduce phase extends the seeds into end-to-end
alignments allowing for a fixed number of mismatches or indels. Here, two
grey reference seeds are compared with a single read creating one alignment
with two errors and one alignment with zero errors, while the black shared
seed is extended to an alignment with three errors.



Running Time vs Number of Reads Mapped to Chr 1
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Results: CloudBurst’s running time scales linearly with the number of
reads mapped, and with near linear speedup as the number of processors
increases. In a 24-processor core configuration, CloudBurst is up to 30
times faster than RMAP executing on a single core, while computing an
1dentical set of alignments. Using a larger remote compute cloud with 96
cores, CloudBurst improved performance by >100-fold, reducing the
running time from hours to mere minutes for typical jobs involving
mapping of millions of short reads to the human genome.



1000 Node Instance on AmazonEC2
(approximately $2040 to traverse 1PB of data)

Amazon S3

Aggregate throughput

is ~1PB/350min

Multiple “mappers” per node
Link from S3 to (for S0MB/sec total throughput per node)

EC2 Instance 15M8B/sec
r/nunn \]

15MB/sec
/‘\ Represents 15M8igc
Figure 1 | Applying a MapReduce approach in the cloud to solve embarrassingly parallelizable
problems. To traverse a 1 petabyte (PB) data set, Trelles et al. mistakenly assume that the 1 PB data set
needs to be traversed by every node. The ideal MapReduce application (depicted in the upper panel)
instead distributes 1 terabyte (TB) to each of the 1,000 nodes for concurrent processing (the ‘map’ step
in MapReduce). Furthermore, although Trelles et al. cite a paper that they claim indicates a 15 MB/s
link between storage and nodes®, the bandwidth quoted appears to be for a single input/output stream
only. As shown in the lower panel, best practice is to launch multiple ‘mappers’ per node to saturate
the available network bandwidth’, which has been previously benchmarked at ~50 MB/s® (threefold
higher than the 15 MB/s claimed) and consistent with the 90+ MB/s virtual machine (VM)-to-VM
bandwidth reported®. Each node can process 1 TB at 50 MB/s at $0.34/h; therefore, the back-of-the-
envelope calculations of Trelles et al. should be updated to state that 1,000 nodes could traverse 1PB
of data in ~350 minutes (not 750 days) at a cost of ~US$2,040 (not $6,000,000).
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Prototyping Developing Scalable Application Scaled Application

Amazon Web Services
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Amazon Web Services

Cluster management
software.
Development and
testing.

Work flow overview

: Amazon Web Services
|
—| |-\ 7 GB memory
:
|
I
|
|
]
|
]
|
]
|
|
|
|
|
|
I
I
|
|
|
|
|
I
|
I
|
|
|
|

1.7 TB disk space
$0.68/CPU hr.

Work flow overview Work flow overview

Truncated test set of NGS reads. Test set of NGS reads. Whole genome set of NGS reads.
2 files with 10,000 reads per file. 32 files with 1 million reads per file. 606 files with ~7 million reads per file.
[3 GB ref. genome + 2.2 MB read files] [3.34 GB read files] [370 GB read files]

Align reads and determine SNP calls
using MAQ.
[5 hours]

Align reads and determine SNP calls
using MAQ.
[12 hours]

Align reads and determine SNP calls
using MAQ.
[10 hours * 38 instances]

Final alignment output file Final alignment output file Final alignment output file

S B

[1 MB] [1.3 GB] [142 GB]
___________ $385 0 ____._..%60 o _____.%%2010
Internet Use your local computer to connect to instances using secure shell

(ssh) and transfer data using secure copy (scp).

Figure 1. Step-wise framework for creating a scalable NGS computing application. Using your local computer, ssh into an instance
running in AWS. The costs are representative of actual development time, data transfer into and out of the cloud, and the compute time using AWS
(Table 1). The costs presented may vary, as AWS frequently updates their pricing structure. (A) An additional 3 hours were included for installing
programs and testing the instance for the prototyping phase. (B) An additional 2 hours were included in developing the scalable application to learn
how to use the cluster management software. (C) For the final scaled application, we used a 38-instance cluster.
doi:10.1371/journal.pcbi.1002147.g001

StarCluster was created to simplify the cluster creation, management, and
job scheduling on AWS



Table 1 Bioinformatics cloud resources

Applications

CloudBLAST24 Scalable BLAST in the cloud
(http://www.acis.ufl.edu/~ammatsun/mediawiki-1.4.5/index.php/CloudBLAST_Project)

CloudBurst!3 Highly sensitive short-read mapping
(http://cloudburst-bio.sf.net)

Cloud RSD!?® Reciprocal smallest distance ortholog detection
(http:/froundup.hms.harvard.edu)

Contrail De novo assembly of large genomes
(http://contrail-bio.sf.net)

Crossbow!® Alignment and SNP genotyping
(http://bowtie-bio.sf.net/crossbow/)

Myrna (B.L., Differential expression analysis of mMRNA-seq

K. Hansen and J. Leek, (nttp://bowtie-bio.sf.net/myrna/)
unpublished data)

Quake (D.R. Kelley, Quality guided correction of short reads

M.C.S.and S.L.S,, (http://github.com/davek4 4/error_correction/)
unpublished data)

Analysis environments and data sets

AWS Public Data Cloud copies of Ensembl, GenBank, 1000 Genomes and other data
(http:/faws.amazon.com/publicdatasets/)

CLoVR Genome and metagenome annotation and analysis
(http://clover.igs.umaryland.edu)

Cloud BicoLinux Genome assembly and alignment
(http://www.cloudbiolinux.com/)

Galaxy2® Platform for interactive large-scale genome analysis

(http://galaxy.psu.edu)



Table 1
Categorization of Hadoop-based bioinformatics implementations.

Function Algorithm Description Reference
Genomic sequence CloudAligner A MapReduce based application for mapping short reads generated by next-generation sequencing [47]
mapping
CloudBurst A parallel read-mapping algorithm used for mapping next-generation sequence data to the human genome and [76]
other genomes
SEAL A suite of distributed applications for aligning, manipulating and analyzing short DNA sequence reads [77]
BlastReduce A parallel short DNA sequence read mapping algorithm optimised for aligning sequence data for use in SNP [78]
discovery, genotyping and personal genomics
Genomic Crossbow A scalable software pipeline that combines Bowtie and SoapSNP for whole genome re-sequencing analysis [46]
sequencing
analysis
Contrail An algorithm for de novo assembly of large genomes from short sequencing reads. Contrail relies on the graph- [79]
theoretic framework of de Bruijin graphs
CloudBrush A distributed genome assembler based on string graphs [80]
RNA sequence Myma A cloud computing pipeline for calculating differential gene expression in large RNA sequence datasets [48]
analysis
FX RNA sequence analysis tool for the estimation of gene expression levels and genomic variant calling [34]
Eoulsan An integrated and flexible solution for RNA sequence data analysis of differential expression [81]
Sequence file Hadoop- A novel library for scalable manipulation of aligned next-generation sequencing data [82]
management BAM
SeqWare A tool set used for next generation genome sequencing technologies which includes a LIMS, Pipeline and Query [35]
Engine
GATK A gene analysis tool-kit for next-generation resequencing data [43]
Phylogenetic MrsRF A scalable, efficient multi-core algorithm that uses MapReduce to quickly calculate the all-to-all Robinson Foulds  [83]
analysis (RF) distance between large numbers of trees
Nephele A set of tools, which use the complete composition vector algorithm in order to group sequence clustering into [84]
genotypes based on a distance measure
GPU bioinformatics  GPU-BLAST  An accelerated version of NCBI-BLAST which uses general purpose graphics processing unit (GPU), designed to [85]
software rapidly manipulate and alter memory to accelerate overall algorithm processing
SOAP3 Short sequence read alignment algorithm that uses the multi-processors in a graphic processing unit to achieve [86]
ultra-fast alignments
Search engine Hydra A protein sequence database search engine specifically designed to run efficiently on the Hadoop MapReduce [87]
implementation framework
CloudBlast Scalable BLAST in the cloud [88]
Miscellaneous BioDoop A set of tools which modules for handling Fasta streams, wrappers for Blast, converting sequences to the different [89]
formats and so on
BlueSNP An algorithm for computationally intensive analyses, feasible for large genotype-phenotype datasets [90]
Quake DNA sequence error detection and correction in sequence reads [91]
YunBe A gene set analysis algorithm for biomarker identification in the cloud [92]
PeakRanger A multi-purpose peak caller software package for detecting regions from chromatin immunoprecipitation (ChiP)  [93]

sequence experiments
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High-throughput experimental technique created
vast amounts of biological data
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Digging out the “treasure” from massive _—
biological data represents the primary SR e
challenge in bioinformatics, consequently placing
unprecedented demands on big data storage, data
manipulation and efficient analysis of this
information.

Integrated
Data

,
Systems 7
- i Itl

Biologists are increasingly finding that the management of complex
data sets is becoming a bottleneck for scientific advances.
Therefore, bioinformatics is rapidly become a key technology 1n all
fields of biology.




