2. Bioinformatics of Next Generation sequencing: Sequence assembling, bacterial genome annotation

Victor Solovyev

The lecture uses personal as well as publicly available WEB and publications materials

Short read genome sequencing

Illumina HiSeq2000

- 8 days per run
- I billion reads/run
- Read length of 100bp (x2)
- Generates ~ 200 Gb per run

Read Length	Run Time	Output
1 × 35 bp	~1.5 days	26–35 Gb
2 × 50 bp	~4 days	75–100 Gb
2 × 100 bp	~8 days	150–200 Gb

*Sequencing output generated with a PhiX library and cluster densities between 260,000–347,000 clusters/mm² that pass filtering on a HiSeq 2000.

Throughput

Up to 25 Gb per day for a 2 × 100 bp run.

Why sequence genomes using short reads?

Some Applications of NGS Whole genome Sequencing

• 1000 Human Genomes Project

An international effort to map variability in the genome The 1000 Genomes Project Consortium, *Nature (Oct 2010) 467: 1061–1073*

Prostate Cancer Genomics

M.F. Berger et al., Nature (Feb 2011) 470: 214-220

Genome 10K Project

- A continuation of Human (2001), Mouse (2002), Rat (2004), Chicken (2004), Dog (2005), Chimpanzee (2005), Macaque (2007), Cat (2007), Horse (2007), Elephant (2009), Turkey (2011), etc. genomes.
- An international effort to sequence, *de novo* assemble, and annotate 10,000 vertebrate genomes; 300+ species are started in 2011.
 Genome 10K Community of Scientists, *J Heredity (Sep 2009) 100 (6): 659-674*

De Novo Assembly paradigms

- overlap-layout-consensus methods
 - greedy (TIGR Assembler, Phrap, CAP3...)
 - overlap graph-based (Celera Assembler, Arachne)
- k-mer graph (especially useful for assembly from short reads)

TIGR Assembler/phrap

- Build a rough map of fragment overlaps
- Pick the largest scoring overlap
- Merge the two fragments
- Repeat until no more merges can be done

Assembling using overlap graph

Objective: Find a Hamiltonian Path (for linear genomes) or a Hamiltonian Circuit (for circular genomes) A billion (10^9) reads necessitate a quintillion (10^{18}) alignments.

(b) In traditional Sanger sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the cycle, the sequence wraps around to the start of the genome.

Hamiltonian Path Approach

٠

٠

٠

Repeats

(harder to solve)

C) An alternative assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is shifted by one position. This procedure recovers the genome but does not scale well to large graphs.

d) modern short-read assembly algorithms construct **a de Bruijn graph** by representing all *k*-mer prefixes and suffixes as nodes and then drawing edges that represent *k*-mers having a particular prefix and suffix.

For example, the *k*-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in which each successive *k*-mer (from successive edges) is shifted by one position.

De Bruijn graphs were first brought to bioinformatics in 1989 as a method to assemble *k*-mers generated by sequencing by hybridization; this method is very similar to the key algorithmic step of today's short-read assemblers.

Pevzner, P.A. J. Biomol. Struct. Dyn. 7, 63–73 (1989).

Pevzner, P.A., Tang, H., and Waterman, M.S. 2001. An Eulerian path approach to DNA fragment assembly. *Proc. Natl. Acad. Sci.* **98:** 9748–9753.

- Does not require all-pairs overlap calculation!
- But: loss of information about reads can lead to "chimeric" contigs, and incorrect assemblies
- Also produces fragmented assemblies (even shorter contigs)

Sequencing Errors Generate Lightly Travelled Divergent Paths in *de Bruijn* graphs

sequence ATGGAAGTCGCGGAATC

Short read 5* - TCGCGGATTC

Sequence assembly algorithms can prune such lightly travelled paths but reconstruct the genome from heavily traversed paths.

Repeat Content in Targets Add Graph Cycles

De Bruijn graph example

De Bruijn graph after simplification

Generating the sequence:

TAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAG

Final simplification...

One possible walk through the graph ...

TAGTCGAG GAGGCTTTAGA AGATCCGATGAG GAGGCTTTAGA AGAGACAG

No matter what

- Because of
 - Errors in reads
 - Repeats
 - Insufficient coverage
 - the overlap graphs and de Bruijn graphs generally don't have Hamiltonian paths/circuits or Eulerian paths/ circuits
- This means the first step doesn't completely assemble the genome

Challenges in Fragment Assembly

- Repeats: A major problem for fragment assembly
- > 50% of human genome are repeats:
 - over 1 million Alu repeats (about 300 bp)
 - about 200,000 LINE repeats (1000 bp and longer)

Reads, Contigs, and Scaffolds

- Reads are what you start with (35bp-800bp)
- Fragmented assemblies produce contigs that can be kilobases in length
- Putting contigs together into scaffolds is the next step

Mate Pairs Give Order & Orientation

Jute Genome Project

A consortium of researchers from University of Dhaka, **Bangladesh** Jute Research Institute and private software company DataSoft Systems Bangladesh Limited in close collaboration with Centre for Chemical Biology at University of Science Malaysia and University of Hawaii, USA have **successfully decoded the draft genome of jute**. The project was funded by the Ministry of Agriculture, Government of Bangladesh.

The public announcement of this major discovery and the unveiling of the high through-put technology used in this Discovery was made on 24th of June, 2010

1.2 GB genome \$2 million dollars Fgenesh has been applied to annotate the genome

Jute genome sequences ~ 1.1 GB

number of sequences = 1240856 minimal sequence length = 200.00 maximal sequence length = 1188242.00 average sequence length = 873.58

range	number	00
	of seq.	
0	0	0.0
100	0	0.0
200	801229	64.6
500	271108	21.8
1000	120844	9.7
3000	21873	1.8
5000	15356	1.2
10000	4732	0.4
15000	2127	0.2
20000	3587	0.3
0	1240856	100.0
100	1240856	100.0
200	1240856	100.0
500	439627	35.4
1000	168519	13.6
3000	47675	3.8
5000	25802	2.1
10000	10446	0.8
15000	5714	0.5
20000	3587	0.3

Genome Assembly Workshop, Genome 10K, March 2011

Assemblathon 2: evaluating *de novo* methods of genome assembly in three vertebrate species (2013) **21 teams**

"From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies"

Team name	Team identifier	Number of assemblies submitted		semblies ed	Sequence data used for bird assembly	Institutional affiliations	Principal assembly software used	
		Bird	Fish	Snake				
ABL	ABL	1	0	0	4 + 1	Wayne State University	HyDA	
ABySS	ABYSS	0	1	1		Genome Sciences Centre, British Columbia Cancer Agency	ABySS and Anchor	
Allpaths	ALLP	1	1	0	I.	Broad Institute	ALLPATHS-LG	
BCM-HGSC	BCM	2	1	1	4 + I + P ¹	Baylor College of Medicine Human Genome Sequencing Center	SeqPrep, KmerFreq, Quake, BWA, Newbler, ALLPATHS-LG, Atlas-Link, Atlas-GapFill, Phrap, CrossMatch, Velvet, BLAST, and BLASR	
CBCB	CBCB	1	0	0	4 + I + P	University of Maryland, National Biodefense Analysis and Countermeasures Center	Celera assembler and PacBio Corrected Reads (PBcR)	
CoBiG ²	COBIG	1	0	0	4	University of Lisbon	4Pipe4 pipeline, Seqclean, Mira, Bambus2	
CRACS	CRACS	0	0	1		Institute for Systems and Computer Engineering of Porto TEC, European Bioinformatics Institute	ABySS, SSPACE, Bowtie, and FASTX	
CSHL	CSHL	0	3	0		Cold Spring Harbor Laboratory, Yale University, University of Notre Dame	Metassembler, ALLPATHS, SOAPdenovo	
CTD	CTD	0	3	0		National Research University of Information Technologies, Mechanics, and Optics	Unspecified	
Curtain	CURT	0	0	1		European Bioinformatics Institute	SOAPdenovo, fastx_toolkit, bwa, samtools, velvet, and curtain	
GAM	GAM	0	0	1		Institute of Applied Genomics, University of Udine, KTH Royal Institute of Technology	GAM, CLC and ABySS	
IOBUGA	IOB	0	2	0		University of Georgia, Institute of Aging Research	ALLPATHS-LG and SOAPdenovo	

Table 1 Assemblathon 2 participating team details

MLK Group	MLK	1	0	0	1	UC Berkeley	ABySS
Meraculous	MERAC	1	1	1	I	DOE Joint Genome Institute, UC Berkeley	meraculous
Newbler-454	NEWB	1	0	0	4	454 Life Sciences	Newbler
Phusion	PHUS	1	0	1	I	Wellcome Trust Sanger Institute	Phusion2, SOAPdenovo, SSPACE
PRICE	PRICE	0	0	1		UC San Francisco	PRICE
Ray	RAY	1	1	1	I	CHUQ Research Center, Laval University	Ray
SGA	SGA	1	1	1	1	Wellcome Trust Sanger Institute	SGA
SOAPdenovo	SOAP	3	1	1	²	BGI-Shenzhen, HKU-BGI	SOAPdenovo
Symbiose	SYMB	0	1	1		ENS Cachan/IRISA, INRIA, CNRS/ Symbiose	Monument, SSPACE, SuperScaffolder, and GapCloser

N50 is the length of the smallest contig when we take the fewest (largest) contigs, whose combined length represents at least 50% of the assembly

sequences

Figure 3 NG graph showing an overview of snake assembly scaffold lengths. The NG scaffold length (see text) is calculated at integer thresholds (1% to 100%) and the scaffold length (in bp) for that particular threshold is shown on the y-axis. The dotted vertical line indicates the NG50 scaffold length: if all scaffold lengths are summed from longest to the shortest, this is the length at which the sum length accounts for 50% of the estimated genome size. Y-axis is plotted on a log scale. Snake estimated genome size = \sim 1.0 Gbp.

Adapter Trimming

Jiang et al. BMC Bioinformatics 2014, 15:182

Table 2 Performance of adapter trimmers on 2Gbp simulated data

Method (Single End/Paired End)		Speed (Mbp/s)	Memory (Mb)	PPV (%)	Sen. (%)	Spec. (%)	mCC
FastX	SE	0.92	13.8	68.90	90.84	77.97	0.6683
SeqTrim	SE	0.03	115.7	67.07	85.27	81.24	0.6618
TagCleaner	SE	0.54	37.6	100.0	45.50	100.0	0.5898
FA-Tools	SE	12.04	17.7	59.24	99.72	61.32	0.6010
LATOOIS	PE	11.54	30.0	59.16	99.43	61.36	0.5983
Cutadant	SE	4.36	34.5	94.55	96.27	96.93	0.9286
Cutadapt	PE	3.44	42.8	94.55	96.00	96.93	0.9266
TrimGalore	SE	3.81	19.4	59.24	99.72	61.32	0.6010
mindalore	PE	3.26	19.6	59.16	99.44	61.36	0.5984
SeqPrep	PE	0.64	22.0	99.84	99.82	99.92	0.9975
Btrim	SE	23.63	11.2	99.96	53.44	100.0	0.6503
baim	PE	5.79	15.3	99.89	53.30	100.0	0.6490
Scythe	SE	3.15	11.2	99.56	90.86	99.92	0.9283
Elevhar	SE	2.82	9.5	57.90	99.12	59.48	0.5814
Flexbal	PE	2.70	9.7	57.77	99.09	59.29	0.5795
Trimmomotic	SE	16.73	2593.0	99.99	72.31	100.0	0.7907
mininomatic	PE	16.40	2292.0	100.0	71.54	100.0	0.7850
AdapterRemoval	SE	1.67	6.3	75.09	97.74	81.89	0.7675
Adaptemenioval	PE	0.73	8.3	99.93	94.47	99.97	0.9566
AlienTrimmer	SE	1.64	2319.9	85.62	57.11	99.96	0.6769
	PE	<mark>1.</mark> 61	2248.9	83.71	55.67	99.95	0.6659
Skewer	SE	8.79	13.6	94.56	96.32	96.93	0.9291
JUCIVEI	PE	8.88	22.2	100.0	99.86	100.0	0.9989

Methods that process only single-end (SE) or paired-end (PE) reads are indicated.

are circularized and subsequently re-tragmented, yielding smaller fragments suitable for clustering. Subfragments containing the original circularization junction are enriched via a biotin pull-down tag (B) in the original adapter. Sequencing adapters (grey and purple) are then added to the enriched set, enabling amplification and sequencing on an Illumina flow cell.

Technical Note: Sequencing

the mapping orientation (either FR or RF, 'forward-reverse' and 'reverse-forward', respectively) of the resulting read pairs is shown to the right. Sections of genomic DNA sequence are shown in blue and the TruSeq adapter sequences are shown in purple and grey. Amplification/sequencing primer adapters are shown in grey and purple.

Mixed

Circular adapter CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG Read1 adapter GATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT

AACTTAAATCAATACTATCTCTGTTAAGAAAACAGGCACGCAGTATAAATA CTGTCTCTTATACACA GATCGGAAGAGCGTCGTGTAGGGAAAGAGC CTGCGCGTTATTTATCAAAAGAAGGGCAGAGGGCTGTATTGTGTACTGTGAGATACAG CTGTCTCTTATACACA GATCGGAAGAGCGTCGTGTAGGG

> Circular adapter CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG Read2 Adapter GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

Jute genome sequences ~ 1.1 GB

number of sequences = 1240856 minimal sequence length = 200.00 maximal sequence length = 1188242.00 average sequence length = 873.58

range	number	00
	of seq.	
0	0	0.0
100	0	0.0
200	801229	64.6
500	271108	21.8
1000	120844	9.7
3000	21873	1.8
5000	15356	1.2
10000	4732	0.4
15000	2127	0.2
20000	3587	0.3
0	1240856	100.0
100	1240856	100.0
200	1240856	100.0
500	439627	35.4
1000	168519	13.6
3000	47675	3.8
5000	25802	2.1
10000	10446	0.8
15000	5714	0.5
20000	3587	0.3

Fully corrected read. Moving into «Clean» base

CORREC	TED SEQ	:A	CTGG	AAG	AACA	ACA	AAG	CTI	'AT'	ГТА	TG'	TC	AGC	СТС	A.	TTT	CT.	ACZ		ATG	ACI	TAT	GAC	AA J	AAC	CCZ	ATG	AT-		-
CORREC	TION INFO	: +	++++	++++	++-+	+++	+++	+++	++-	+++	++•	+++	+++	+++	#	+++	++	++1	++-	+++	++1		+++	# *	+++	++-	+++	++		
NATIVE	SEQ	: A	CTGG	iAAGA	ACA	ACA	AAG	CTT	'A'I''	L.I.A	TG:	TCI	AGC	CTC	.C.	1.1.1	CT.	ACA		4TG	ACI	'AT	GAC	IC A	AAC	CCI	ATG.	A.I.		
MATCH	LINE	: -													• * •									17-						
(+)	98631/1	:tggcc													Α									-						-
(+)	1178306/1	:tggcc	1111		A										-									- -						-
(+)	1499213/1	:cc													Α									A				t	gaga	а
(+)	1565295/1	:	1111											A									2	411				ltg	agaa	
(+)	2120123/1	:													A									A				t	gaga	а
(+)	2985036/1	:tggcc					-																							-
(+)	3362669/1	:	1111				111	111						111	Α	111					111		111	A				t	gaga	a
(+)	3386401/1	:tggcc					111	111						111	Α			111			111									-
(+)	3574688/1	:tggcc	1111				111	111																						-
(-)	303011/1	:					111	111						111	Α			111			111		111	A						-
(-)	549322/1	:tggcc	1111			111	111	111						111	Α		1-													-
(-)	717850/1	:tggcc	1111			111																		┥┥-						-
(-)	872255/1	:cc	İİİ			İİİ	111	111						111	А	111		111			111		111	A		11				-
(-)	1306474/1	:tggcc	1111			11-																		- ⊢ -						-
(-)	1881431/1	:				111	111	111			11			111	А	111	11	111			111		111	A I		11		llt	qaqa	a
(-)	2033267/1	:ccl	iiii	111		İİİ	iii	iii	11	İİİ	Ϊİ.			iii	А	i i i	İİ.	iii	İİ		iii		iii	AI		ii.				_
(-)	2596027/1	:tggcc	iiii	iii	iiii	iii	iii	iii	ii	iii	ii	ii	iii	iii	A٠		<u> </u>				<u> </u>			┥┥╴		·				_
(-)	2858093/1	:tggcc	İİİİ			İİİ	iii	iii	11	İİİ	İİ			iii	A٠															_
(-)	2920890/1	:taaccl	iiii			iii																								_
(-)	2979309/1	:	iiii	i i i i		iii	111	111	11		11			111	А		11	111			111			ΑI		11		llt	αααα	а
(-)	3059842/1	:taacc	iiii	iii	iiii	i																				<u> </u>				_
(-)	3859862/1	:taacel	iiii	i i i i		in	111	111			11			111	А		11	I												_
· ·									• •		• •	•••					• •	•												

Ť

Iterative procedure for cleaning NGS reads

Loop. Iterate until «Additional clean reads base» is not too small or empty

CleanReads program accuracy on E.coli data: 1% errors

CLEANED READS				
Nucleotides	185448	3000/ 185587	000 99.92510)3%
left errors	:	99	0.005706%	0.000053%
non-corrected	err :	93	0.005360%	0.000050%
wrong-correcte	d:	6	0.000346%	0.00003%
over-corrected	L :	0	0.000008	0.000008
miss-corrected	l :	6	0.000346%	0.00003%
initial mutati	.on :	1735154	100.000008	0.935655%
seq : 463	9675			
cln : 463	9552	99.997414%	99.997349 %	
ori : 463	9672	100.00000%	99.999935%	

DIRTY READS

Nucleotides	139000/	1855870	0.074	4897 응
left errors	:	359	17.950000	। ८.258273%
non-corrected err	::	327	16.350000	8 0.2352528
wrong-corrected	:	32	1.600009	৬ 0.023022%
over-corrected	:	0	0.000009	8 0.000008
miss-corrected	:	32	1.600009	৬ 0.023022%
initial mutation	:	2000	100.000009	ነ.438849 %

BIOINFORMATICS

Vol. 00 no. 00 2014 Pages 1–7

Karect: Accurate Correction of Substitution, Insertion and Deletion Errors for Next-generation Sequencing Data

Amin Allam, Panos Kalnis and Victor Solovyev

Computer, Electrical and Mathematical Sciences & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT

Motivation: Next-generation sequencing generates large amounts of data affected by errors in the form of substitutions, insertions, or deletions of bases. Error correction based on the high-coverage information, typically improves *de novo* assembly. Most existing tools can correct substitution errors only; few support insertions and deletions, but accuracy is low.

Results: We present *Karect*, a novel error correction technique based on multiple alignment. Our approach supports substitution, insertion and deletion errors. It can handle non-uniform coverage as well as moderately covered areas of the sequenced genome. Experiments with data from Illumina, 454 FLX and Ion Torrent sequencing machines demonstrate that Karect is more accurate than previous methods, both in terms of correcting individual-bases errors

Table 1. NGS error types. Read lengths are as follows: Small \approx 36-200 bps, moderate \approx 200-700 bps, very long \approx 1000-10000 bps.

Brand	Read length	Throughput	Dominant error type
Illumina	small	very high	substitutions
SOLiD	small	high	substitutions
454 FLX	moderate	moderate	insertions, deletions
Ion Torrent	moderate	high	insertions, deletions
Pacific Biosciences	very long	very high	insertions, long gaps

assemblers, such as SOAPdenovo (Li et al., 2010), ALLPATHS-I.G. (Gnerre et al. 2011), SGA (Simpson and Durbin 2012)

+(c)+(τ)

*(C)+(A)

4(G)

(c)

r : CTGGCAACTCAGC Т

(G)

r : - - - CTGGCAACT - CAGC - - -

(G)

(C)

(A)

(A)

Assembling E.coli using only CLEANED READS by Oligozip

1	Ι	513877	0.1107
4	Ι	1265087	0.2726
10	Ι	2378497	0.5126
17	Ι	3284011	0.7078
30	Ι	4185763	0.9021
37	Ι	4417366	0.9520
48	Ι	4552357	0.9811
54	Ι	4571792	0.9854

Assembling Karect corrected READS (all set)

1	Ι	393827	0.0848
4	Ι	1213458	0.2615
10	Ι	2397824	0.5168
17	I	3290989	0.7093
30	Ι	4187960	0.9026
37	Ι	4420252	0.9527
47	Ι	4548090	0.9802
54	Ι	4572496	0.9855

Assembling 1	Chr 22 on 401933	PE CLEANED READS 0.011519	(without dirty reads)
49	8777626	0.251547	
131	17470752	0.500673	
284	26189746	0.750540	
473	31407197	0.900060	
624	33153525	0.950106	
854	33913502	0.971885	
Assembling	on Karect	CLEANED READS	
Assembling 1	on Karect 129453	CLEANED READS 0.003710	
Assembling 1 168	on Karect 129453 8755653	CLEANED READS 0.003710 0.250918	
Assembling 1 168 500	on Karect 129453 8755653 17484657	CLEANED READS 0.003710 0.250918 0.501071	
Assembling 1 168 500 1159	on Karect 129453 8755653 17484657 26176317	CLEANED READS 0.003710 0.250918 0.501071 0.750155	
Assembling 1 168 500 1159 2033	on Karect 129453 8755653 17484657 26176317 31408372	CLEANED READS 0.003710 0.250918 0.501071 0.750155 0.900094	
Assembling 1 168 500 1159 2033 2656	on Karect 129453 8755653 17484657 26176317 31408372 33151562	CLEANED READS 0.003710 0.250918 0.501071 0.750155 0.900094 0.950050	

Main steps of Oligozip de novo reads assembling

Support by paired reads

Identical letters in column

Contig alternative extending.

Pair alignment contig tail with reads base with 100% homology

100% hml alignment with contig tail region

Alternative expanding. Both clusters valid, more tan one way for extension. Stop extension in this direction.

[-]				~		ATTCTCCTGCCTCAGCAGGCACGTGCCACCATGCCC	AGCTAATTTT
[-]				*	geeteeeaggtteaageg		
*#+-		0		-	c	ATTCTCCTGCCTCAGCAGGCACGTGCCACCATGCCC	
*#+-		0		-	ageg	ATTCTCCTGCCTCAGCAGGCACGTGCCACCATGCC	
*#+-		0		-	aageo	ATTCTCCTGCCTCAGCAGGCACGTGCCACCATGCCC	
*#+-		0		-	tcaaged	ATTCTCCTGCCTCAGCAGGCACGTGCCACCATGC-	
*#+-		0		-	aggttcaageg	ATTCTCCTGCCTCAGCAGGCACGTGCCACCATGCCC	
*#+-		0		-	aggttcaageg	ATTCTCCTGCCTCAGCAGGCACGTGCCACCATGC-	
*#+-		0		-	ctcccaggttcaagco	ATTCTCCTGCCTCAGCAGGCACGTGCCACCATG	
*#+-	1	1	ōr	τ	gcctcccaggttcaage	ATTCTCCTGCCTCAGCAGGCACGTGCCACCATGCC	
*#+-	1	1	accto	c	gcctcccaggttcaagco	ATTCTCCTGCCTCAGCAGGCACGTGCCACCATG	
*#+-	!	1	cactgcaaccto	c	gcctcccaggttcaagco	ATTCTCCTGCCTCAGCAGGCACGTGCCACCATGCCC	
*#+-	1	1	gcagtagtataatctcggctcactgcaaccto	d	gcctcccaggttcaagco	ATTCTCCTGCCTCAGCAGGCACGTGCCA	
*#+-	!	1	gagggcagtagtataatctcggctcactgcaacctc	c	gcctcccaggttcaagco	ATTCTCCTGCCTCAGCAGGCACGT	
*#+-	!	1	-gctggagggcagtagtataatctcggctcactgcaacctc	d	gcctcccaggttcaagco	ATTCTCCTGCCTCAGCAGGC	
*#+-	1	2	ccto	c	gcctcccaggttcaage	ATTCTCCTGCCTCAGCAGGCACGTGCCACCATGCC	
*#+-	. I. I	2	accto	c	gcctcccaggttcaagco	ATTCTCCTGCCTCAGCAGGCACGTGCCACCATGC-	
*#+-	!	2	ataatctcggctcactgcaacctg	d	gcctcccaggttcaagco	ATTCTCCTGCCTCAGCAGGCACGTGCCACCATGC-	
*#+-	!	2	gggcagtagtataatctcggctcactgcaaccto	d	gcctcccaggttcaagco	ATTCTCCTGCCTCAGCAGGCACGTGC	
*#+-	!	2	tggagggcagtagtataatctcggctcactgcaacctc	d	gcctcccaggttcaagco	ATTCTCCTGCCTCAGCAGGCAC	
				1	5		
			L	Ц			

100% hml alignment with contig tail region

Different letters. Split into clusters zone.

Good cluster 1

Good cluster 2

Pairwise alignment between the assembled contigs

Masking contigs parts with >= 99% homology

Paired reads mapping on pair contigs.

Contig pairs connection statistics

CONTIG:66 N:19	132769		
0	+0.000	+0.000	+0.000
0	+0.000	+0.000	+0.000
1	-703.000	+500.000	+500.000
0	+0.000	+0.000	+0.000
N:28			
0	+0.000	+0.000	+0.000
60	-315.500	+58.332	+50.000
0	+0.000	+0.000	+0.000
0	+0.000	+0.000	+0.000
CONTTG: 37	141721		
N:17	/		
0	+0.000	+0.000	+0.000
0	+0.000	+0.000	+0.000
8	+1172.667	+559.241	+500.000
0 0	+0.000	+0.000	+0.000
N:19			
167	-480.329	+517.342	+500.000
0	+0.000	+0.000	+0.000
3	-1413.000	+451.114	+500.000
0	+0.000	+0.000	+0.000
N:28			
0	+0.000	+0.000	+0.000
Õ	+0.000	+0.000	+0.000
0	+0.000	+0.000	+0.000
3	+967.000	+602.719	+500.000
CONTTG: 62	86790		
N:48			
0	+0.000	+0.000	+0.000
0	+0.000	+0.000	+0.000
82	+1358.293	+487.531	+500.000
0	+0.000	+0.000	+0.000

Contigs connections Human chromosome 21.

Iteration 1 (connections graph)

Simplifying contigs chains by removing non-informative connections.

Contigs connections Human chromosome 21.

Iteration 2 (connections graph)

Iteration 3 (connections graph)

Contigs patching

Assembling Human chromosome 21 produce 3 largest contigs covering 99%. Original length – 35106642 (without poly-N).

Contig	Length	Overall Length	Coverage	Overall Coverage	Defects	Sum Defects
1	20546395	20546395	0.583788	0.583788	95	95
2	11119456	31665851	0.315790	0.899578	70	165
3	3373878	35039729	0.095639	0.995217	37	202

GenomeMatch assembled contigs alignment to sequence of Human chromosome 21. Total execution time ~ 6.5 hours

Gsbl alignment contigs to original Human chromosome 21. Contig 1 – defects.

DotPlot View

of 1 sequence chr21_noN

3 Base sequences [./human/res/chr21.res].

Not patched masked by poly-N sequences

Assembling Ecoli-k12 2 largest contigs. Original length – 4639675

Contig	Length	Overall Length	Coverage	Overall Coverage	Defects	Total Defects
1	3632383	3632383	0.772727	0.772727	23	23
2	1000365	4632748	0.214343	0.987070	5	28

of 1 sequence ecoli_K12 gi|48994873|gb|U00096.2| Escherichia coli K12 MG1655, complete genome

GenomeMatch assembled contigs alignment to sequence of Ecoli-k12 genome.

2 largest contigs cover 0.987% One is chimeric

Total execution time ~ 15 minutes

KAUST example: Pathogenic bacteria isolated from a patient in Mecca by Arnab Pain group *Stenotrophomonas maltophilia* is an emerging global opportunistic pathogen

Only PE reads 300 bp

Overall number of sequences = 34 Overall length of sequences = 4386843

Assembled by Oligozip

minimal sequence length = 6058.00 maximal sequence length = 461551.00 average sequence length = 129024.79

Annotation by Fgenesh pipeline

'Antibiotic resistance' gene: the aminoglycoside/hydroxyurea kinase found in Mecca isolate

Velvet:

Total number of contigs: 1067
n50: 11757
length of longest contig: 69162
Total bases in contigs: 4368900
Number of contigs > 1k: 530 Av: 8059
Total bases in contigs > 1k: 4271434

Assembled by Oligozip

Overall number of sequences > 1K=34Overall length of sequences = 4386843maximal sequence length = 461551.00average sequence length = 129024.79

Results comparable with the best Bacterial assembler Spade (that made 38 contigs > 1K Total L =4371351 JOURNAL OF COMPUTATIONAL BIOLOGY Volume 19, Number 5, 2012 ; ANTON BANKEVICH,1,2 SERGEY NURK,1,2 DMITRY ANTIPOV,1 ALEXEY A. GUREVICH,1 MIKHAIL DVORKIN,1 ALEXANDER S. KULIKOV,1,3 VALERY M. LESIN,1 SERGEY I. NIKOLENKO,1,3 SON PHAM,4 ANDREY D. PRJIBELSKI,1 ALEXEY V. PYSHKIN,1 ALEXANDER V. SIROTKIN,1 NIKOLAY VYAHHI,1 GLENN TESLER,5 MAX A. ALEKSEYEV,1,6 and PAVEL A. PEVZNER1,4 Bacterial reads ~ $5*10^6 * 40 \sim 2* 10^8 \sim 200 \text{ MB}$ ~ 10^6 reads

Eukaryotic reads ~ $3*10^9 * 40 \sim 10^{11} \sim 100 \text{ GB}$ ~ 10^9 reads

Linear: 10^3 Quadratic x 10^6

 $0.1 \text{ hour } \sim> 4 \text{ days} \qquad 4000 \text{ days}$

TASK: Implementation algorithms on cluster computer

Find genes in DNA sequence

GAATTCTAATCTCCCTCTCAACCCTACAGTCACCCATTTGGTA AGTAGTGTCAGGAATTAGTCATTTAAATAGTCTGCAAGCCAC *Escherichia coli* K-12 GTAGAAGTGGGAGGACTGCTTGAGCTCAAGAGTTTGATATT AAAAAAAATTAGCCAGGCATGTGATGTACACCTGTAGTCC(TCAGGAGGTCAAGGCTGCAGTGAGACATGATCTTGCCACTG TTTGTACACATTATCTCATTGCTGTTCGTAATTGTTAGATTAA CTCAAGATGATAACTTTTATTTTCTGGACTTGTAATAGCTTTC AACAATATAAAGTTATTGTGAGTTTTTGCAAACACATGCAAA TGTCAATTTATGGGAAAACAAGTATGTACTTTTTCTACTAAG(ACATTTTCCGAAATTACTTGAGTATTATACAAAGACAAGCAC GTGGAGACAAATGCAGGTTTATAATAGATGGGATGGCATCTA GGACCCCAGTACACAAGAGGGGGACGCAGGGTATATGTAGAC TGACCTGAGTTTATAGACAATGAGCCCTTTTCTCTCTCCCAC' GGCTGACTCACTCCAAGGCCCAGCAATGGGCAGGGCTCTG1 AAGGGGTGGACTCCAGAGACTCTCCCTCCCATTCCCGAGCA TAAAAGAAATAACAGGAGACTGCCCAGCCCTGGCTGTGACA CCTTCTTTCAGTTAGAGGAAAAGGGGGCTCACTGCACATACA

Overview of Important Features the Sequence

ì

4,639,221 bp of circular DNA

Protein-coding genes account for 87.8% of the genome

0.8% encodes stable RNAs and tRNAs

0.7% consists of noncoding repeats

11% available for regulatory and other functions

A widely used approach: Markov models

•Markov chain models (1st order, higher order and inhomogeneous models; parameter estimation; classification)

• Hidden Markov models (forward, backward and Baum-Welch algorithms; model topologies; applications to gene finding and protein family modeling

Markov Chain Models

- a Markov chain model is defined by:
 - a set of states
 - some states *emit* symbols
 - other states (e.g. the *begin* state) are *silent*
 - a set of transitions with associated probabilities
 - the transitions emanating from a given state define a distribution over the possible next states

Markov Chain Models

- given some sequence x of length L, we can ask how probable the sequence is given our model
- for any probabilistic model of sequences, we can write this probability as $Pr(x) = Pr(x_L, x_{L-1}, ..., x_1)$

=
$$\Pr(x_L | x_{L-1}, ..., x_1) \Pr(x_{L-1} | x_{L-2}, ..., x_1) ... \Pr(x_1)$$

• key property of a (1st order) Markov chain: the probability of each X_i depends only on X_{i-1}

$$Pr(x) = Pr(x_{L}|x_{L-1}) Pr(x_{L-1} | x_{L-2}) \dots Pr(x_{2} | x_{1}) Pr(x_{1})$$
$$= Pr(x_{1}) \prod_{i=2}^{L} Pr(x_{i} | x_{i-1})$$

Markov Chain Models

Pr(cggt) = Pr(c)Pr(g|c)Pr(g|g)Pr(t|g)

Higher Order Markov Chains

- the Markov property specifies that the probability of a state depends only on the probability of the previous state
- but we can build more "memory" into our states by using a higher order Markov model
- in an nth order Markov model

$$\Pr(x_i \mid x_{i-1}, x_{i-2}, ..., x_1) = \Pr(x_i \mid x_{i-1}, ..., x_{i-n})$$
Higher Order Markov Chains

- An *n*th order Markov chain over some alphabet is equivalent to a first order Markov chain over the alphabet of *n*-tuples
- Example: a 2nd order Markov model for DNA can be treated as a 1st order Markov model over alphabet:
 AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, and TT (i.e. all possible dinucleotides)

A Fifth Order Markov Chain

Translation to 6 ORF

×		F	M	l	3	S	E.	Y	F	V	V	ĸ	٧		1	F	К	Q	R	Е	Е	R
D	l	L		С	С	L.	C	Т	F		G	K	C		D	L.	S	R	G	ĸ	K	G
-	L	08	Y	А	V		3	V	L	L	E	s	5	V	1	*	, A	E	Ξ (3	R	к
ΤG	A	ТΤ	TA	TG	CTG	TCT	гст	GTA	CT	ттт	GG	AAA	GT	GТ	GA	ттт	AAG	CAG	GAG	GA)	AGA	AAG
AC	Τ.	AA	AT.	AC	GAC	AGA	AGA	CAT	GA,	AAA	CC	ттт	CA	сA	ст,	AAA	TTO	GT	стсо	ст	тст	ттс
-		1	×	ļ	۹.	Т	Е	Т	s	K		s	L.	Т		Ĩ.	×	A	s	P	L	F
1	s	- 12	ĸ	H	Q	: 19 F	8	2	v	ĸ	P	F	5 19	H	s	K	E L	2 1	a in F		23	F
		N		F.	s	D	R	Y	4	<	Q	F	Т	13	H	Ν	Ľ	С	L	S	S	E

DNA:	CTT	rgco	GCT.	FTC	CAC	ACC	CAGC	AAA	ACAI	GGGC	CGCI	TCC	AGG	CTC	CAC	'AAT	'GAA
+3:	C		A I	F \$	S H	Ç	2 Q	р 1	ר ע	V F	λ Έ	r Q) A	P	, Č) *	Т
+2:	L	R	F	L	Т	Ρ	Α	N	Μ	Α	L	Р	G	S	Т	Μ	N
+1:	L	Α	L	S	H	Т	S	K	H	G	A	S	R	L	H	N	Е
DNA:	СТС	CCAC	GCG	CGTI	GAG	СТС	GTC	CAC	SCAG	SCAA	ATTC	CAG	GTC	AGA	GGC	CTG	GCC
-1:	L	Q	R	V	Ε	L	V	Q	Q	Q	F	Q	V	R	G	L	A
-2:	S	S	Α	L	S	W	S	S	S	N	S	R	S	E	Α	W	Ρ
-3:	I	2 2	A I	۲ S	r A	. G	B P		A	7 1	E	e G	; Q	R	E	, G	P

Codon Composition

Nucleotide variation at codon position:

Campylobacter jejuni

	Codon Position								
	1	2	3						
а	36%	36%	36%						
С	13%	17%	9%						
g	30%	14%	10%						
t	21%	33%	44%						

Mycobacterium smegmatis

	Codon Position								
	1	2	3						
а	19%	23%	6%						
С	27%	28%	48%						
g	42%	20%	39%						
t	12%	28%	7%						

Inhomogenous Markov Chains

A Fifth Order Inhomogenous Markov Chain

Selecting the Order of a Markov Chain Model

- Higher order models remember more "history"
- Additional history can have predictive value
- Example:

- predict the next word in this sentence fragment "...
finish __" (up, it, first, last, ...?)

now predict it given more history

• "Fast guys finish ___"

Sliding window Plot (length 120 nt)

Genes as long ORFs with signals

Sequencing bacterial communities

Many microorganisms are uncultivated.

For survival and reproductive success, species of bacteria often rely on close relationships with other species.

- A collection of bacteria occupying the same physical habitat is called a 'community' toxic and non-toxic bacterial serotypes
- Biofilms have been implicated in numerous chronic infections including cystic fibrosis, otitis media and prostatitis.

The sequencing techniques of a genomic DNA sample directly from the environment produce *shorter average sequence fragment length, higher frequency of sequencing errors, and the phylogenetic heterogeneity* of the organisms in the sample

It presents additional challenges in computational gene finding

Photograph of the biofilm in the Richmond mine. B) Probes targeting bacteria (EUBmix; fluoresceinisothiocyanate (green)) and archaea (ARC915; Cy5 (blue)) were used in combination with aprobe targeting the Leptospirillum genus (LF655; Cy3 (red)). Overlap of red and green(yellow) indicates Leptospirillum cells and shows the dominance of Leptospirillum. C) Relative microbial abundances.

Nature (2004) 428 (6978) , p. 37-43

articles

Community structure and metabolism through reconstruction of microbial genomes from the environment

Gene W. Tyson¹, Jarrod Chapman^{3,4}, Philip Hugenholtz¹, Eric E. Allen¹, Rachna J. Ram¹, Paul M. Richardson⁴, Victor V. Solovyev⁴, Edward M. Rubin⁴, Daniel S. Rokhsar^{3,4} & Jillian F. Banfield^{1,2}

Fgenesb annotator (*Solovyev & Salamov*) a complex pipeline for automatic annotation of bacterial genomes and metagenomic sequences has been developed to annotate millions bacterial sequences from acid mine drainage biofilm community.

Analysis of the predicted genes revealed the pathways for carbon and nitrogen fixation and energy generation

Fgenesb Bacterial Gene/Operon Prediction and Annotation Pipeline

Pipeline gene prediction algorithm is based on Markov chain models of coding regions and translation and termination sites.

The parameters of gene prediction are **self-learning**, so the only input necessary is a set of sequences.

- rRNA and tRNA genes
- Protein coding genes
- Promoter and Terminator signals
- Operon structure

Annotate function of predicted proteins Using COG, KEGG and NR databases

rRNA and tRNA annotation

- 1. Finds all potential ribosomal RRNA genes using BLAST against bacterial and/or archaeal RRNA databases and masks detected RRNA genes.
- 2. Predicts and masks tRNA genes using tRNAscan-SE program.

Genes and Operon identification

- 3. Initial predictions of long, slightly overlapping ORF are used as a starting point for calculating parameters of predictions. Iterates until stabilizes.
- 4. Automatically generates gene identification parameters as 5th-order in-frame Markov chains for coding regions, 2nd-order Markov models for region around start codon and upstream RBS site, Stop codon and probability distributions of ORF lengths. Uses these parameters for protein coding genes prediction
- 5. Predicts operons based only on distances between predicted genes.

Annotate genes comparing with user selected databases of known proteins

- 6. Runs blastp for predicted proteins against COG and KEGG databases and annotate genes/proteins by COGs and KEGG descriptions
- 7. Run blastp against NR for proteins having no COGs or KEGG hits and annotate genes/proteins by NR descriptions.

Promoters and Terminators prediction and improvement of operons assignment

- 8. Improve operon prediction using information on conservation of neighbor gene pairs in known genomes.
- 9. Predict potential promoters in the corresponding 5'-upstream region of predicted genes using dicriminant function with characteristics of sequence features of promoters (such as conserved motifs, binding sites and etc)
- 10. Predict pho-independent terminators as specific hairpins.
- 11. Refines operon predictions using predicted promoters and terminators

Fgenesb_annotator output:

1	1 Op	1	21/0.000	+	CDS	407 -	1747	1311	##	COG0593	ATPase involved in DNA
				+	Term	1786 -	1823	3.2			
				+	Prom	1847 -	1906	10.5			
2	1 Op	2	3/0.019	+	CDS	1926 -	3065	1237	##	COG0592	DNA polymerase
				+	Term	3074 -	3122	9.1			
				+	Prom	3105 -	3164	4.0			
3	2 Op	1	4/0.002	+	CDS	3193 -	3405	278	##	COG2501	Uncharacterized ACR
4	2 Op	2	4/0.002	+	CDS	3418 -	4545	899	##	COG1195	Recombinational DNA
5	2 Op	3	16/0.000	+	CDS	4578 -	6506	2148	##	COG0187	DNA gyrase B subunit
				+	Term	6516 -	6551	4.7			

>contig00033_scaffold00003_82492_86064 GENE 1 3 - 926 811 307 aa, chain + ## HITS:2 COG:BS_yumD KEGG:BCB4264_A5578 NR:ns

COG: BS_yumD COG0516 # Protein_GI_number: 16080266 # Func_class: F Nucleotide transport and metabolism # Function: IMP
dehydrogenase/GMP reductase # Organism: Bacillus subtilis # 1 305 21 325 326 538 84.0 1e-153
KEGG: BCB4264_A5578 # Name: guaC # Def: guanosine 5'-monophosphate oxidoreductase (EC:1.7.1.7) # Organism: B.cereus_B426
Pathway: Purine metabolism [PATH:bcb00230] # 1 307 22 328 328 546 87.0 1e-154
SRTECDTTVEFGGRTFKLPVVPANMQTIIDERISIQLAEKNYFYIMHRFQPEKRLAFVRD
MKSRGLYASISVGVKEEEYTFVQQLAEENLVPEYITIDIAHGHSNAVIKMIQHIKQLLPG
SFVIAGNVGTPEAVRELENAGADATKVGIGPGKVCITKIKTGFGTGGWQLAALRWCAKAA
SKPIIADGGIRTHGDIAKSVRFGASMVMIGSLFAGHEESPGETVEVNGKLYKEYFGSASE
FQKGEKKNVEGKKMHVEYKGALEDTLIEMEQDLQSSISYAGGNKLSAIKNVDYVIVKNSI
FNGDKVY

Togenbank: A set of scripts to convert FgenesB output to GenBank and Sequin formats, for visualization in popular viewers like Artemis and for submitting annotated sequences to Genbank.

Comparative accuracy estimated on comprehensive tests: Mavromatis et al. VOL.4 NO.6 | JUNE 2007 | **NATURE METHODS**:

Fgenesb correctly identified 10-30% more reference genes on the contigs than the Critica-Glimer pipeline in every data set

Figure 2 | Gene prediction in data sets. (a) Predicted genes on assembled sequences. (b) Predicted genes on unassembled reads. The combination of assembler/gene prediction method is shown on the *x* axis. The total number of original genes included in these sequences are shown on the top of the columns.

http://www.nature.com/naturemethods

Test of modern gene predictors on difficult artificial shotgun sequences (700 bp fragments from a set of 216 bacterial genomes).

The sequences of real genes cover only part of each sequence (its 5' - or 3' -fragment)

	(Sn+Sp)/2
FgenesB	95.55
GeneMark	94.05
Matagene	91.65

Accuracy can be increased further by using protein similarity
a)Predicting weak/short coding regions or correcting
frame shifts or other sequencing errors
b)Improving accuracy of start AUG identification

a) and b)
can be optionally accounted by Fgenesb pipeline.

Fgenesb pipeline applications:

~ 340 published bacterial genome/metagenomic sequencing projects Examples:

•New Hydrocarbon Degradation Pathways in the **Microbial Metagenome from Brazilian Petroleum Reservoirs**. **PLoS One**. 2014 Feb 26;9(2):e90087

•Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature, 2006, **439**, 847-850

•Comparative metagenomic analysis of a microbial community residing at a depth of 4,000 meters at station ALOHA in the North Pacific subtropical gyre. Appl Environ Microbiol. 2009 Aug;75(16):5345-55

Bprom (promoter prediction) and **FindTerm** (terminator prediction) modules of Fgenesb used in

Current project to study structure of gene regulatory signals of distant bacterial groups (having sequenced ~ 10K bacterial genomes)

Promoter -35 box consensus

Promoter -10 box consensus

Knowledge of regulatory site variations is necessary for creating organism specific synthetic gene constructs

Current projects to study bacterial communities

Assembling and Annotation of Bacterial community sequences

Analysis gene regulation in distant phylogenetic groups

binds to the operator, transcription is prevented

promoter operato

regulator gene

Building annotated Bacterial genomes database including complete genomes (~ 2K), draft genomes (~7K) and metagenomic sequences

Discovery new Metabolic Pathways

Why Sequence Microbes?

 By studying their DNA, scientists hope to find ways to use microbes to develop new pharmaceutical and agricultural products, energy sources, industrial processes, and solutions to a variety of environmental problems.

NIH Human Microbiome Project (2008) explores how complex communities of microbes interact with the human body to influence health and disease.

The oral microbiome consists of more than 600 different taxa of bacteria, viruses, fungi and protozoa

New ferments Biofuel New drugs