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Diffusion: the process by which a piece
of information spreads and reaches
individuals through interactions in a
netowork.



Why do we care?

Modeling epidemics



Why do we care?

Viral marketing



Why do we care?

Viral marketing



Why do we care?

Opinion Formation



Outline

• Epidemic models

• Influence maximization

• Opinion formation models



EPIDEMIC SPREAD



Epidemics

Understanding the spread of viruses 
and epidemics is of great interest to 
• Health officials
• Sociologists
• Mathematicians
• Hollywood 

The underlying contact network clearly affects the 
spread of an epidemic



Epidemics

• Model epidemic spread as a random process 
on the graph and study its properties

• Questions that we can answer: 

– What is the projected growth of the infected 
population?

– Will the epidemic take over most of the network?

– How can we contain the epidemic spread?

Diffusion of  ideas and the spread of influence 
can also be modeled as epidemics



A simple model

 Branching process: A person transmits the disease to each 
people she meets independently with a probability p

 An infected person meets k (new) people while she is 
contagious

 Infection proceeds in waves. 

Contact network is a 
tree with branching 
factor k

D. Easley, J. Kleinberg. Networks, Crowds and Markets: Reasoning about a highly connected world.



Infection Spread

• We are interested in the number of people 
infected (spread) and the duration of the 
infection

• This depends on the infection probability p 
and the branching factor k

An aggressive 
epidemic with high 
infection probability

The epidemic survives
after three steps

D. Easley, J. Kleinberg. Networks, Crowds and Markets: Reasoning about a highly connected world.



Infection Spread

• We are interested in the number of people 
infected (spread) and the duration of the 
infection

• This depends on the infection probability p 
and the branching factor k An mild epidemic with 

low infection 
probability

The epidemic dies out
after two steps

D. Easley, J. Kleinberg. Networks, Crowds and Markets: Reasoning about a highly connected world.



Basic Reproductive Number

• Basic Reproductive Number (𝑅0): the expected number of 
new cases of the disease caused by a single individual

𝑅0 = 𝑘𝑝

• Claim: (a) If R0 < 1, then with probability 1, the disease dies 
out after a finite number of waves. (b) If R0 > 1, then with 
probability greater than 0 the disease persists by infecting 
at least one person in each wave.

1. If 𝑅0 < 1 each person infects less than one person in 
expectation. The infection eventually dies out.

2. If 𝑅0 > 1 each person infects more than one person in 
expectation. The infection persists.



Proof

• 𝑋𝑛 : number of infected nodes after n steps

• 𝑞𝑛 = Pr[𝑋𝑛 ≥ 1] : probability that there exists 
at least 1 infected node after n steps

• 𝑞∗ = lim𝑞𝑛 : the probability of having 
infected nodes as 𝑛 → ∞

• We want to show that if 𝑅0 < 1, 𝑞
∗ = 0 while 

if 𝑅0 > 1, 𝑞
∗ > 0.



Proof

n-1

p p p

𝑞𝑛−1 𝑞𝑛−1 𝑞𝑛−1

𝑞𝑛

Each child of the root starts a 
branching process of length n-1

𝑞𝑛 = 1 − 1 − 𝑝𝑞𝑛−1
𝑘

if 
𝑓 𝑥 = 1 − 1 − 𝑝𝑥 𝑘

then
𝑞𝑛 = 𝑓(𝑞𝑛−1)

We also have: 𝑞0 = 1.

So we obtain a series of values: 1, 𝑓 1 , 𝑓 𝑓 1 ,…

We want to find where this series converges



Proof

• Properties of the function 𝑓(𝑥):

1. 𝑓 0 = 0 and 𝑓 1 = 1 − 1 − 𝑝 𝑘 < 1.

2. 𝑓′ 𝑥 = 𝑝𝑘 1 − 𝑝𝑥 𝑘−1 > 0, in the interval 
[0,1] but decreasing. Our function is increasing 
and concave.

3. 𝑓′ 0 = 𝑝𝑘 = 𝑅0



Proof

• Case 1: 𝑅0 = 𝑝𝑘 > 1. The function starts with 
above the line 𝑦 = 𝑥 but then drops below 
the line.

𝑓 𝑥 crosses the line 𝑦 = 𝑥 at some point
D. Easley, J. Kleinberg. Networks, Crowds and Markets: Reasoning about a highly connected world.



Proof

• Starting from the value 1, repeated 
applications of the function 𝑓 𝑥 will converge 
to the value 𝑞∗ = 𝑞𝑛 = 𝑓(𝑞𝑛)

D. Easley, J. Kleinberg. Networks, Crowds and Markets: Reasoning about a highly connected world.



Proof

• Case 2: 𝑅0 = 𝑝𝑘 < 1. The function starts with 
below the line 𝑦 = 𝑥. Repeated applications of 
𝑓(𝑥) converge to zero.

D. Easley, J. Kleinberg. Networks, Crowds and Markets: Reasoning about a highly connected world.



Branching process

• Assumes no network structure, no triangles or 
shared neihgbors



The SIR model

• Each node may be in the following states

– Susceptible: healthy but not immune

– Infected: has the virus and can actively propagate it

– Removed: (Immune or Dead) had the virus but it is no 
longer active

• Parameter p: the probability of an Infected node to 
infect a Susceptible neighbor



The SIR process

• Initially all nodes are in state S(usceptible), 
except for a few nodes in state I(nfected).

• An infected node stays infected for 𝑡𝐼 steps.
– Simplest case: 𝑡𝐼 = 1

• At each of the 𝑡𝐼 steps the infected node has 
probability p of infecting any of its susceptible
neighbors
– p: Infection probability

• After 𝑡𝐼 steps the node is Removed



Example
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Example

D. Easley, J. Kleinberg. Networks, Crowds and Markets: Reasoning about a highly connected world.





SIR and the Branching process

• The branching process is a special case where the 
graph is a tree (and the infected node is the root)
– The existence of triangles shared neighbors makes a

big difference

• The basic reproductive number is not necessarily 
informative in the general case

D. Easley, J. Kleinberg. Networks, Crowds and Markets: Reasoning about a highly connected world.



Percolation

• Percolation: we have a network of “pipes” 
which can curry liquids, and they can be either 
open, or closed

– The pipes can be pathways within a material

• If liquid enters the network from some nodes, 
does it reach most of the network?

– The network percolates



SIR and Percolation

• There is a connection between SIR model and 
percolation

• When a virus is transmitted from u to v, the edge (u,v) 
is activated with probability p

• We can assume that all edge activations have 
happened in advance, and the input graph has only the 
active edges.

• Which nodes will be infected?
– The nodes reachable from the initial infected nodes

• In this way we transformed the dynamic SIR process 
into a static one.
– This is essentially percolation in the graph.



Example

D. Easley, J. Kleinberg. Networks, Crowds and Markets: Reasoning about a highly connected world.



The SIS model

• Susceptible-Infected-Susceptible
– Susceptible: healthy but not immune
– Infected: has the virus and can actively propagate it

• An Infected node infects a Susceptible neighbor 
with probability p

• An Infected node becomes Susceptible again with 
probability q (or after 𝑡𝐼 steps)
– In a simplified version of the model q = 1

• Nodes alternate between Susceptible and 
Infected status



Example

• When no Infected nodes, virus dies out

• Question: will the virus die out?

D. Easley, J. Kleinberg. Networks, Crowds and Markets: Reasoning about a highly connected world.



An eigenvalue point of view

• If A is the adjacency matrix of the network, then the 
virus dies out if

𝜆1 𝐴 ≤
𝑞

𝑝

• Where 𝜆1(𝐴) is the first eigenvalue of A

Y. Wang, D. Chakrabarti, C. Wang, C. Faloutsos. Epidemic Spreading in Real 
Networks: An Eigenvalue Viewpoint. SRDS 2003



Reminder

• Adjacency matrix of a graph

• Eigenvalue of matrix 𝐴 is a value 𝜆 such that 
𝐴𝑥 = 𝜆𝑥

𝐴 =

0 1
0 0

1 0
1 1

0 0
1 0

0 1
0 0

𝑣1

𝑣2

𝑣3

𝑣4



Multiple copies model

• Each node may have multiple copies of the same 
virus
– 𝒗: state vector : 𝑣𝑖 : number of virus copies at node 𝑖

• At time 𝑡 = 0, the state vector is initialized to 𝒗0

• At time t,
For each node i

For each of the 𝑣𝑖
𝑡 virus copies at node 𝑖

the copy is copied to a neighbor 𝑗 with prob 𝑝

the copy dies with probability 𝑞

G. Giakkoupis, A. Gionis, E. Terzi, P. T. Models and algorithms for network immunization. Technical Report C-2005-75, 
Department of Computer Science, University of Helsinki, 2005



Analysis

• The expected state of the system at time t is 
given by

𝒗𝒕 = 𝑝𝑨 + 1 − 𝑞 𝑰 𝒗𝒕−𝟏 = 𝑴𝒗𝒕−𝟏

𝑀 =

1 − 𝑞 𝑝
0 1 − 𝑞

𝑝 0
𝑝 𝑝

0 0
𝑝 0

1 − 𝑞 𝑝
0 1 − 𝑞

𝑣1

𝑣2

𝑣3

𝑣4

Probability that the copy from 
node 𝑣4is copied to node 𝑣1

Probability that the copy from 
node 𝑣4 survives at 𝑣4



Analysis

• As 𝑡 → ∞

– if 𝜆1 𝑀 < 1 ⇔ 𝜆1 𝐴 < 𝑞/𝑝 then 𝑣𝑡 → 0

• the probability that all copies die converges to 1

– if 𝜆1 𝑀 = 1 ⇔ 𝜆1 𝐴 = 𝑞/𝑝 then 𝑣𝑡 → 𝑐

• the probability that all copies die converges to 1

– if 𝜆1 𝑀 > 1 ⇔ 𝜆1 𝐴 > 𝑞/𝑝 then 𝑣𝑡 → ∞

• the probability that all copies die converges to a constant < 1



Including time

• Infection can only happen within the active 
window 

D. Easley, J. Kleinberg. Networks, Crowds and Markets: Reasoning about a highly connected world.



Concurrency

• Importance of concurrency – enables 
branching

D. Easley, J. Kleinberg. Networks, Crowds and Markets: Reasoning about a highly connected world.
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INFLUENCE MAXIMIZATION



Maximizing spread

• Suppose that instead of a virus we have an item
(product, idea, video) that propagates through contact
– Word of mouth propagation.

• An advertiser is interested in maximizing the spread of 
the item in the network
– The holy grail of “viral marketing”

• Question: which nodes should we “infect” so that we 
maximize the spread? 

D. Kempe, J. Kleinberg, E. Tardos. Maximizing the Spread of Influence through a Social 
Network. Proc. 9th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, 2003.



Independent cascade model

• Each node may be active (has the item) or 
inactive (does not have the item)

• Time proceeds at discrete time-steps. At time 
t, every node v that became active in time t-1
activates a non-active neighbor w with 
probability 𝑝𝑢𝑤. If it fails, it does not try again

• The same as the simple SIR model



Influence maximization

• Influence function: for a set of nodes A (target set) 
the influence s(A) is the expected number of active 
nodes at the end of the diffusion process if the item 
is originally placed in the nodes in A. 

• Influence maximization problem: Given an network, 
a diffusion model, and a value k, identify a set A of k
nodes in the network that maximizes s(A).

• The problem is NP-hard



• What is a simple algorithm for selecting the set A?

• Computing s(A): perform multiple simulations of the process 
and take the average.

• How good is the solution of this algorithm compared to the 
optimal solution?

A Greedy algorithm

Greedy algorithm
Start with an empty set A
Proceed in k steps

At each step add the node u to the set A the maximizes the 
increase in function s(A)

• The node that activates the most additional nodes



Approximation Algorithms

• Suppose we have a (combinatorial) optimization 
problem, and X is an instance of the problem, 
OPT(X) is the value of the optimal solution for X, 
and ALG(X) is the value of the solution of an 
algorithm ALG for X
– In our case: X = (G,k) is the input instance, OPT(X) is 

the spread S(A*) of the optimal solution, GREEDY(X) is 
the spread S(A) of the solution of the Greedy 
algorithm

• ALG is a good approximation algorithm if the ratio 
of OPT and ALG is bounded.



Approximation Ratio

• For a maximization problem, the algorithm 
ALG is an 𝛼-approximation algorithm, for 𝛼 <
1, if for all input instances X, 

𝐴𝐿𝐺 𝑋 ≥ 𝛼𝑂𝑃𝑇 𝑋

• The solution of ALG(X) has value at least α%
that of the optimal

• α is the approximation ratio of the algorithm
– Ideally we would like α to be a constant close to 1



Approximation Ratio for Influence 
Maximization

• The GREEDY algorithm has approximation 

ratio 𝛼 = 1 −
1

𝑒

𝐺𝑅𝐸𝐸𝐷𝑌 𝑋 ≥ 1 −
1

𝑒
𝑂𝑃𝑇 𝑋 , for all X



Proof of approximation ratio

• The spread function s has two properties:

• S is monotone:
𝑆(𝐴) ≤ 𝑆 𝐵 if 𝐴 ⊆ 𝐵

• S is submodular:
𝑆 𝐴 ∪ 𝑥 − 𝑆 𝐴 ≥ 𝑆 𝐵 ∪ 𝑥 − 𝑆 𝐵 𝑖𝑓 𝐴 ⊆ 𝐵

• The addition of node x to a set of nodes has greater
effect (more activations) for a smaller set.
– The diminishing returns property



Optimizing submodular functions

• Theorem: A greedy algorithm that optimizes a 
monotone and submodular function S, each 
time adding to the solution A, the node x that 
maximizes the gain 𝑆 𝐴 ∪ 𝑥 − 𝑠(𝐴)has 

approximation ratio 𝛼 = 1 −
1

𝑒

• The spread of the Greedy solution is at least 
63% that of the optimal



Submodularity of influence

• Why is S(A) submodular?

– How do we deal with the fact that influence is defined 
as an expectation?

• We will use the fact that probabilistic propagation 
on a fixed graph can be viewed as deterministic 
propagation over a randomized graph

– Express S(A) as an expectation over the input graph
rather than the choices of the algorithm



Independent cascade model

• Each edge (u,v) is considered only once, and it is 
“activated” with probability puv.

• We can assume that all random choices have been made 
in advance 
– generate a sample subgraph of the input graph where edge (u,v)

is included with probability puv

– propagate the item deterministically on the input graph
– the active nodes at the end of the process are the nodes 

reachable from the target set A

• The influence function is obviously(?) submodular when 
propagation is deterministic

• The linear combination of submodular functions is also a 
submodular function



Linear threshold model 

• Again, each node may be active or inactive 
• Every directed edge (v,u) in the graph has a weight bvu, such 

that

 

𝑣 is a neighbor of 𝑢

𝑏𝑣𝑢 ≤ 1

• Each node u has a randomly generated threshold value Tu

• Time proceeds in discrete time-steps. At time t an inactive
node u becomes active if

 

𝑣 is an active neighbor of 𝑢

𝑏𝑣𝑢 ≥ 𝑇𝑢

• Related to the game-theoretic model of adoption.



Influence Maximization

• KKT03 showed that in this case the influence 
S(A) is still a submodular function, using a 
similar technique

– Assumes uniform random thresholds

• The Greedy algorithm achieves a (1-1/e) 
approximation 



Proof idea

• For each node 𝑢, pick one of the edges 
(𝑣, 𝑢) incoming to 𝑢 with probability 𝑏𝑣𝑢and 
make it live. With probability 1 −  𝑏𝑣𝑢 it picks 
no edge to make live

• Claim: Given a set of seed nodes A, the following 
two distributions are the same:
– The distribution over the set of activated nodes using 

the Linear Threshold model and seed set A 

– The distribution over the set of nodes of reachable 
nodes from A using live edges.



Proof idea

• Consider the special case of a DAG (Directed Acyclic Graph)
– There is a topological ordering of the nodes 𝑣0, 𝑣1, … , 𝑣𝑛 such 

that edges go from left to right

• Consider node 𝑣𝑖 in this ordering and assume that 𝑆𝑖 is the 
set of neighbors of 𝑣𝑖 that are active. 

• What is the probability that node 𝑣𝑖 becomes active in 
either of the two models?
– In the Linear Threshold model the random threshold 𝜃𝑖 must be 

greater than  𝑢∈𝑆𝑖 𝑏𝑢𝑖 ≥ 𝜃𝑖
– In the live-edge model we should pick one of the edges in 𝑆𝑖

• This proof idea generalizes to general graph.



Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

Assume that all edge weights incoming to any node sum to 1



Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

The nodes select a single incoming edge with probability 
equal to the weight (uniformly at random in this case



Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

Node 𝑣1 is the seed



Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

Node 𝑣3 has a single incoming neighbor, therefore for 
any threshold it will be activated



Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

The probability that node 𝑣4 gets activated is 2/3 since it has 
incoming edges from two active nodes.
The probability that node 𝑣4 picks one of the two edges to 
these nodes is also 2/3 



Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

Similarly the probability that node 𝑣6 gets activated is 2/3 
since it has incoming edges from two active nodes.
The probability that node 𝑣6 picks one of the two edges to 
these nodes is also 2/3 



Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

The set of active nodes is the set of nodes reachable from 𝑣1
with live edges (orange). 



Experiments



Another example

• What is the spread from the red node?

• Inclusion of time changes the problem of 
influence maximization
– N. Gayraud, E. Pitoura, P. Tsaparas, Diffusion Maximization on Evolving 

networks



Evolving network

• Consider a network that changes over time

– Edges and nodes can appear and disappear at 
discrete time steps

• Model:

– The evolving network is a sequence of graphs 
{𝐺1, 𝐺2, … , 𝐺𝑛} defined over the same set of 
vertices 𝑉, with different edge sets 𝐸1, 𝐸2, … , 𝐸𝑛
• Graph snapshot 𝐺𝑖 is the graph at time-step 𝑖 .

N. Gayraud, E. Pitoura, P. Tsaparas. Maximizing Diffusion in Evolving Networks. ICCSS 2015



Time

• How does the evolution of the network relates to the 
evolution of the diffusion?
– How much physical time does a diffusion step last?

• Assumption: The two processes are in sync. One 
diffusion step happens in on one graph snapshot

• Evolving IC model: at time-step 𝑡, the infectious nodes 
try to infect their neighbors in the graph 𝐺𝑡.

• Evolving LT model: at time-step 𝑡 if the weight of the 
active neighbors of node 𝑣 in graph 𝐺𝑡 is greater than 
the threshold the nodes gets activated.



Submodularity

• Will the spread function remain monotone 
and submodular?

• No!



Monotonicity for the EIC model
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Monotonicity for the EIC model

𝑮𝟏 𝑮𝟐 𝑮𝟑𝑮𝟎

𝑮𝟏 𝑮𝟑𝑮𝟐𝑮𝟎

The spread is not monotone in the case of the Evolving IC model



Submodularity for the EIC model
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Submodularity for the EIC model
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Activating node 𝑣1 at time 𝑡 = 0 has spread 7
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Submodularity for the EIC model

Activating node 𝑣1 at time 𝑡 = 0 has spread 7

Adding node 𝑣6 at time 𝑡 = 3 does not increase the spread
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Submodularity for the EIC model

Activating nodes 𝑣1 and 𝑣5 at time 𝑡 = 0 has spread 4
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Evolving LT model

• The evolving LT model is monotone but it is not 
submodular

• Expected Spread: the probability that 𝑢 gets infected
– Adding node 𝑣3 has a larger effect if added to the set  
{𝑣1, 𝑣2} than to set {𝑣1}.
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One-slide summary

• Influence maximization: Given a graph 𝐺 and a budget 𝑘, 
for some diffusion model, find a subset of 𝑘 nodes 𝐴, such 
that when activating these nodes, the spread of the 
diffusion 𝑠(𝐴) in the network is maximized.

• Diffusion models:
– Independent Cascade model
– Linear Threshold model

• Algorithm: Greedy algorithm that adds to the set each time 
the node with the maximum marginal gain, i.e., the node 
that causes the maximum increase in the diffusion spread.

• The Greedy algorithm gives a 1 −
1

𝑒
approximation of the 

optimal solution 
– Follows from the fact that the spread function 𝑠 𝐴 is 

• Monotone
• Submodular 

𝑠 𝐴 ≤ 𝑠 𝐵 , if 𝐴 ⊆ 𝐵

𝑠 𝐴 ∪ {𝑥} − 𝑠 𝐴 ≥ 𝑠 𝐵 ∪ 𝑥 − 𝑠 𝐵 , ∀𝑥 if 𝐴 ⊆ 𝐵



Improvements

• Computation of Expected Spread
– Performing simulations for estimating the spread 

on multiple instances is very slow. Several 
techniques have been developed for speeding up 
the process.
• CELF: exploiting the submodularity property

• Maximum Influence Paths: store paths for computation

• Sketches: compute sketches for each node for 
approximate estimation of spread

J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. M. VanBriesen, N. S. Glance. Cost-effective outbreak 
detection in networks. KDD 2007

W. Chen, C.Wang, and Y.Wang. Scalable influence maximization for prevalent viral marketing in large-
scale social networks. KDD 2010.

Edith Cohen, Daniel Delling, Thomas Pajor, Renato F. Werneck. Sketch-based Influence Maximization and 
Computation: Scaling up with Guarantees. CIKM 2014



Extensions

• Other models for diffusion
– Deadline model: There is a deadline by which a node can be 

infected

– Time-decay model: The probability of an infected node to infect 
its neighbors decays over time

– Timed influence: Each edge has a speed of infection, and you 
want to maximize the speed by which nodes are infected.

• Competing diffusions
– Maximize the spread while competing with other products that 

are being diffused. 

A. Borodin, Y. Filmus, and J. Oren. Threshold models for competitive influence in social networks. WINE, 2010.
M. Draief and H. Heidari. M. Kearns. New Models for Competitive Contagion. AAAI 2014.

N. Du, L. Song, M. Gomez-Rodriguez, H. Zha. Scalable influence estimation in continuous-time diffusion networks. NIPS 2013.

W. Chen, W. Lu, N. Zhang. Time-critical influence maximization in social networks with time-delayed diffusion process. AAAI, 2012.

B. Liu, G. Cong, D. Xu, and Y. Zeng. Time constrained influence maximization in social networks. ICDM 2012.



Extensions

• Reverse problems:
– Initiator discovery: Given the state of the 

diffusion, find the nodes most likely to have 
initiated the diffusion

– Diffusion trees: Identify the most likely tree of 
diffusion tree given the output

– Infection probabilities: estimate the true infection 
probabilities
M. Gomez-Rodriguez, D. Balduzzi, B. Scholkopf. Uncovering the temporal dynamics of diffusion 
networks. ICML, 2011.

M. Gomez Rodriguez, J. Leskovec, A. Krause. Inferring networks of diffusion and influence. KDD 
2010

H. Mannila, E. Terzi. Finding Links and Initiators: A Graph-Reconstruction Problem. SDM 2009
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OPINION FORMATION IN SOCIAL 
NETWORKS



Diffusion of items

• So far we have assumed that what is being 
diffused in the network is some discrete item:

– E.g., a virus, a product, a video, an image, a link etc.

• For each network user a binary decision is being 
made about the item being diffused

– Being infected by the virus, adopt the product, watch 
the video, save the image, retweet the link, etc.

– (This decision may happen with some probability, but 
the probability is over the discrete values {0,1})



Diffusion of opinions

• The network can also diffuse opinions.

– What people believe about an issue, a person, an 
item, is shaped by their social network 

• Opinions assume a continuous range of 
values, from completely negative to 
completely positive.

– Opinion diffusion is different from item diffusion

– It is often referred to as opinion formation.



What is an opinion?

• An opinion is a real value

– In our models a value in the interval [0,1] 

(0: negative, 1: positive)



How are opinions formed?

• Opinions change over time



How are opinions formed?

• And they are influenced by our social network



An opinion formation model 
(De Groot)

• Every user 𝑖 has an opinion 𝑧𝑖 ∈ [0,1]

• The opinion of each user in the network is 
iteratively updated, each time taking the average
of the opinions of its neighbors and herself

𝑧𝑖
𝑡 =
𝑧𝑖
𝑡−1 +  𝑗∈𝑁(𝑖)𝑤𝑖𝑗𝑧𝑗

𝑡−1

1 +  𝑗∈𝑁(𝑖)𝑤𝑖𝑗

– where 𝑁(𝑖) is the set of neighbors of user 𝑖.

• This iterative process converges to a consensus 



What about personal biases?

• People tend to cling on to their personal 
opinions



Another opinion formation model 
(Friedkin and Johnsen)

• Every user 𝑖 has an intrinsic opinion 𝑠𝑖 ∈ [0,1]
and an expressed opinion 𝑧𝑖 ∈ [0,1]

• The public opinion 𝑧𝑖 of each user in the 
network is iteratively updated, each time 
taking the average of the expressed opinions 
of its neighbors and the intrinsic opinion of 
herself

𝑧𝑖
𝑡 =
𝑠𝑖 +  𝑗∈𝑁(𝑖)𝑤𝑖𝑗𝑧𝑗

𝑡−1

1 +  𝑗∈𝑁(𝑖)𝑤𝑖𝑗



Opinion formation as a game

• Assume that network users are rational (selfish) agents
• Each user has a personal cost for expressing an opinion

𝑐 𝑧𝑖 = 𝑧𝑖 − 𝑠𝑖
2 +  

𝑗∈𝑁(𝑖)

𝑤𝑖𝑗 𝑧𝑖 − 𝑧𝑗
2

• Each user is selfishly trying to minimize her personal 
cost.

Inconsistency cost: The cost for 
deviating from one’s intrinsic opinion

Conflict cost: The cost for 
disagreeing with the opinions 

in one’s social network

D. Bindel, J. Kleinberg, S. Oren. How Bad is Forming Your Own Opinion? Proc. 52nd 
IEEE Symposium on Foundations of Computer Science, 2011.



Opinion formation as a game

• The opinion 𝑧𝑖 that minimizes the personal 
cost of user 𝑖

𝑧𝑖 =
𝑠𝑖 +  𝑗∈𝑁(𝑖)𝑤𝑖𝑗𝑧𝑗

1 +  𝑗∈𝑁(𝑖)𝑤𝑖𝑗



Understanding opinion formation

• To better study the opinion formation process 
we will show a connection between opinion 
formation and absorbing random walks.



Random Walks on Graphs

• A random walk is a stochastic process performed on a 
graph

• Random walk:
– Start from a node chosen uniformly at random with 

probability 
1

𝑛
.

– Pick one of the outgoing edges uniformly at random

– Move to the destination of the edge

– Repeat.

• Made very popular with Google’s PageRank algorithm.
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Example
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Random walk

• Question: what is the probability 𝑝𝑖
𝑡 of being 

at node 𝑖 after 𝑡 steps? 𝑣2
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Markov chains
• A Markov chain describes a discrete time stochastic process over a set of 

states
𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}

according to a transition probability matrix 𝑃 = {𝑃𝑖𝑗}
– 𝑃𝑖𝑗 = probability of moving to state 𝑗 when at state 𝑖

• Matrix 𝑃 has the property that the entries of all rows sum to 1

 

𝑗

𝑃 𝑖, 𝑗 = 1

A matrix with this property is called stochastic

• State probability distribution: The vector 𝑝𝑡 = (𝑝1
𝑡 , 𝑝2
𝑡 , … , 𝑝𝑛

𝑡 ) that stores 
the probability of being at state 𝑠𝑖 after 𝑡 steps

• Memorylessness property: The next state of the chain depends only at the 
current state and not on the past of the process (first order MC)
– Higher order MCs are also possible

• Markov Chain Theory: After infinite steps the state probability vector 
converges to a unique distribution if the chain is irreducible (possible to get from 
any state to any other state) and aperiodic



Random walks

• Random walks on graphs correspond to 
Markov Chains

– The set of states 𝑆 is the set of nodes of the graph 
𝐺

– The transition probability matrix is the probability 
that we follow an edge from one node to another

𝑃 𝑖, 𝑗 = 1/ deg𝑜𝑢𝑡(𝑖)
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Node Probability vector

• The vector 𝑝𝑡 = (𝑝1
𝑡 , 𝑝2
𝑡 , … , 𝑝𝑛

𝑡 ) that stores the 
probability of being at node 𝑣𝑖 at step 𝑡

• 𝑝𝑖
0= the probability of starting from state 
𝑖 (usually) set to uniform

• We can compute the vector 𝑝𝑡 at step t using a 
vector-matrix multiplication

𝑝𝑡 = 𝑝𝑡−1 𝑃



Stationary distribution

• The stationary distribution of a random walk with 
transition matrix 𝑃, is a probability distribution 𝜋, such 
that 𝜋 = 𝜋𝑃

• The stationary distribution is an eigenvector of matrix 𝑃
– the principal left eigenvector of P – stochastic matrices have 

maximum eigenvalue 1

• The probability 𝜋𝑖 is the fraction of times that we visited  
state 𝑖 as 𝑡 → ∞

• Markov Chain Theory: The random walk converges to a 
unique stationary distribution independent of the initial 
vector if the graph is strongly connected, and not
bipartite. 



Computing the stationary distribution

• The Power Method

• After many iterations qt → 𝜋 regardless of the initial 
vector 𝑞0

• Power method because it computes 𝑞𝑡 = 𝑞0𝑃𝑡

• Rate of convergence
– determined by the second eigenvalue 𝜆2

Initialize 𝑞0 to some distribution 
Repeat 
𝑞𝑡 = 𝑞𝑡−1𝑃

Until convergence



Random walk with absorbing nodes

• Absorbing nodes: nodes from which the 
random walk cannot escape.

• Two absorbing nodes: the red and the blue.
P. G. Doyle, J. L. Snell. Random Walks and Electrical Networks. 1984



Absorption probability

• In a graph with more than one absorbing 
nodes a random walk that starts from a non-
absorbing (transient) node t will be absorbed 
in one of them with some probability

– For node t we can compute the probabilities of 
absorption



Absorption probabilities

• The absorption probability has several practical uses.

• Given a graph (directed or undirected) we can choose 
to make some nodes absorbing.
– Simply direct all edges incident on the chosen nodes 

towards them and create a self-loop.

• The absorbing random walk provides a measure of 
proximity of transient nodes to the chosen nodes.
– Useful for understanding proximity in graphs

– Useful for propagation in the graph
• E.g, on a social network some nodes are malicious, while some are 

certified, to which class is a transient node closer?



Absorption probabilities

• The absorption probability can be computed iteratively:
– The absorbing nodes have probability 1 of being absorbed 

in themselves and zero of being absorbed in another node.
– For the non-absorbing nodes, take the (weighted) average 

of the absorption probabilities of your neighbors 
• if one of the neighbors is the absorbing node, it has probability 1

– Repeat until convergence (= very small change in probs)
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Absorption probabilities

𝑃 𝐵𝑙𝑢𝑒 𝑃𝑖𝑛𝑘 =
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• The absorption probability can be computed iteratively:
– The absorbing nodes have probability 1 of being absorbed 

in themselves and zero of being absorbed in another node.
– For the non-absorbing nodes, take the (weighted) average 

of the absorption probabilities of your neighbors 
• if one of the neighbors is the absorbing node, it has probability 1

– Repeat until convergence (= very small change in probs)



Absorption probabilities

• Compute the absorption probabilities for red 
and blue
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Linear Algebra

• Our matrix looks like this

• 𝑃𝑇𝑇: transition probabilities between transient nodes

• 𝑃𝑇𝐴: transition probabilities from transient to 
absorbing nodes

• When computing the absorption probability to node 
𝑖 we essentially iteratively apply matrix 𝑃 on the vector 
(0,… , 1, … , 0)

𝑃 =
𝑃𝑇𝑇 𝑃𝑇𝐴
0 𝐼



Propagating values

• Assume that Red has a positive value and Blue a 
negative value

• We can compute a value for all transient nodes in the 
same way we compute probabilities
– This is the expected value at the absorbing node for the 

non-absorbing node

𝑉(𝑃𝑖𝑛𝑘) =
2

3
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

3
𝑉(𝐺𝑟𝑒𝑒𝑛)

𝑉 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

5
𝑉(𝑃𝑖𝑛𝑘) +

1

5
−
2

5

𝑉 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑉 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑉(𝑃𝑖𝑛𝑘) +

1

3
−
1

6

+1

-1

0.05 -0.16

0.16 2

2

1

1

1
2

1



Electrical networks and random walks

• Our graph corresponds to an electrical network
• There is a positive voltage of +1 at the Red node, and a negative 

voltage -1 at the Blue node
• There are resistances on the edges inversely proportional to the 

weights (or conductance proportional to the weights)
• The computed values are the voltages at the nodes
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Springs and random walks

• Our graph corresponds to an spring system
• The Red node is pinned at position +1, while the Blue node is 

pinned at position -1 on a line. 
• There are springs on the edges with hardness proportional to the 

weights 
• The computed values are the positions of the nodes on the line



Springs and random walks

• Our graph corresponds to an spring system
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pinned at position -1 on a line. 
• There are springs on the edges with hardness proportional to the 
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Back to opinion formation

• The value propagation we described is closely related 
to the opinion formation process/game we defined.
– Can you see how? How can we use absorbing random 

walks to model the opinion formation for the network 
below?

2

2

1

1

1
2

1

s = +0.5

s = -0.3

s = -0.1s = +0.2

s = +0.8
Reminder:

𝑧𝑖 =
𝑠𝑖 +  𝑗∈𝑁(𝑖)𝑤𝑖𝑗𝑧𝑗

1 +  𝑗∈𝑁(𝑖)𝑤𝑖𝑗



Opinion formation and absorbing 
random walks

2
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1

1

1
2

1

1

1

1 1

1

s = +0.5

s = -0.3

s = -0.1s = -0.5

s = +0.8

The expressed opinion for each 
node is computed using the 
value propagation we described

• Repeated averaging

One absorbing node per user 
with value the intrinsic 
opinion of the user

z = +0.22z = +0.17

z = -0.03
z = 0.04

z = -0.01

One transient node per user 
that links to her absorbing 
node and the transient nodes 
of her neighbors

It is equal to the expected intrinsic opinion at the place of absorption



Opinion of a user

• For an individual user u

– u’s absorbing node is a stationary point 

– u’s transient node is connected to the absorbing 
node with a spring. 

– The neighbors of u pull with their own springs.





Opinion maximization problem

• Public opinion:

𝑔 𝑧 = 

𝑖∈𝑉

𝑧𝑖

• Problem: Given a graph G, the given opinion formation 
model, the intrinsic opinions of the users, and a budget k, 
perform k interventions such that the public opinion is 
maximized.

• Useful for image control campaign.

• What kind of interventions should we do?



Possible interventions

1. Fix the expressed opinion of k nodes to the maximum value 1.
– Essentially, make these nodes absorbing, and give them value 1.

2. Fix the intrinsic opinion of k nodes to the maximum value 1.
– Easy to solve, we know exactly the contribution of each node to the 

overall public opinion.

3. Change the underlying network to facilitate the propagation of 
positive opinions.
– For undirected graphs this is not possible

𝑔 𝑧 = 

𝑖

𝑧𝑖 = 

𝑖

𝑠𝑖

– The overall public opinion does not depend on the graph structure!
– What does this mean for the wisdom of crowds?



Fixing the expressed opinion
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Fixing the expressed opinion
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Opinion maximization problem

• The opinion maximization problem is NP-hard.

• The public opinion function is monotone and 
submodular

– The Greedy algorithm gives an 1 −
1

𝑒
-

approximate solution

• In practice Greedy is slow. Heuristics that use 
random walks perform well.

A. Gionis, E. Terzi, P. Tsaparas. Opinion Maximization in Social Networks. SDM 2013



Other problems related to opinion 
formation

• Modeling polarity

– Understand why extreme opinions are formed and 
people cluster around them

• Modeling herding/flocking

– Understand under what conditions people tend to 
follow the crowd

• Computational Sociology

– Use big data for modeling human social behavior.

R. Hegselmann, U. Krause. Opinion Dynamics and Bounded Confidence. Models, 
Analysis, and Simulation. Journal of Artificial Societies and Social Simulation (JASSS) 
vol.5, no. 3, 2002
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Thank you!

• Many thanks to Evimaria Terzi, Aris Gionis and 
Evaggelia Pitoura for their generous slide 
contributions.


